2018高考数学文科异构异模复习考案撬分法习题 第八章 立体几何 8-2 含答案 精品
2018高考数学(文科)异构异模复习考案撬分法习题 第八章 立体几何 课时撬分练8-2 Word版含答案

………………………………………………………………………………………………时间:分钟基础组.设,,是三条不同的直线,α,β是两个不同的平面,则下列命题中,其逆命题不成立的是( ).当⊥α时,若⊥β,则α∥β.当⊂α时,若⊥β,则α⊥β.当⊂α,且是在α内的射影时,若⊥,则⊥.当⊂α,且⊄α时,若∥α,则∥答案解析的逆命题为:当⊥α时,若α∥β,则⊥β,由线面垂直的性质知⊥β;的逆命题为:当⊂α时,若α⊥β,则⊥β,显然错误;的逆命题为:当⊂α,且是在α内的射影时,若⊥,则⊥,由三垂线的逆定理知⊥;的逆命题为:当⊂α,且⊄α时,若∥,则∥α,由线面平行的判定定理可得∥α.故选..对于空间的两条直线,和一个平面α,下列命题中的真命题是( ).若∥α,∥α,则∥.若∥α,⊂α,则∥.若∥α,⊥α,则∥.若⊥α,⊥α,则∥答案解析对,直线,可能平行、异面或相交,故错误;对,直线与可能平行,也可能异面,故错误;对,与垂直而非平行,故错误;对,垂直于同一平面的两直线平行,故正确..已知直线和平面α,β,α∩β=,⊄α,⊄β,且在α,β内的射影分别为直线和,则直线和的位置关系是( ).相交或平行.相交或异面.平行或异面.相交、平行或异面答案解析依题意,直线和的位置关系可能是相交、平行或异面,故选..已知,,为三条不同的直线,且⊂平面,⊂平面,∩=.①若与是异面直线,则至少与,中的一条相交;②若不垂直于,则与一定不垂直;③若∥,则必有∥;④若⊥,⊥,则必有⊥.其中正确命题的个数是( )....答案解析命题①③正确,命题②④错误.其中命题②中和有可能垂直;命题④中当∥时,平面,有可能不垂直,故选.. 已知正四棱柱-中,=,是的中点,则异面直线与所成角的余弦值为( )点击观看解答视频答案解析如图,连接.由题意知綊,所以四边形为平行四边形,故∥.所以∠为异面直线与所成的角.不妨设==,则=,=,=,在△中,∠===,故选.. 设,,是空间中的三条直线,下面给出四个命题:点击观看解答视频①若∥,∥,则∥;②若⊥,⊥,则∥;③若与相交,与相交,则与相交;④若⊂平面α,⊂平面β,则,一定是异面直线.上述命题中正确的命题是(写出所有正确命题的序号).答案①。
2018高考数学文科异构异模复习考案撬分法习题 第八章 立体几何 8-1-3 含答案 精品

1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )点击观看解答视频A .14斛B .22斛C .36斛D .66斛答案 B解析 设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=3203π(立方尺),因此堆放的米约有3203×1.62π≈22(斛).故选B.2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323cm 3D.403cm 3答案 C解析 该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V =2×2×2+13×2×2×2=323cm 3.3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )点击观看解答视频A.2π3B.4π3C.5π3D .2π答案 C解析 如图,过点D 作BC 的垂线,垂足为H .则由旋转体的定义可知,该梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个圆锥.其中圆柱的底面半径R =AB =1,高h 1=BC =2,其体积V 1=πR 2h 1=π×12×2=2π;圆锥的底面半径r =DH=1,高h 2=1,其体积V 2=13πr 2h 2=13π×12×1=π3.故所求几何体的体积为V =V 1-V 2=2π-π3=5π3.故选C.4.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59 C.1027D.13答案 C解析 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm ,高为4 cm ;另一个圆柱的底面半径为 3 cm ,高为 2 cm.则零件的体积V 1=π×22×4+π×32×2=34π(cm 3).而毛坯的体积V =π×32×6=54π (cm 3),因此切削掉部分的体积V 2=V -V 1=54π-34π=20π(cm 3),所以V 2V =20π54π=1027.故选C.5.某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4答案 B解析 由三视图知,原几何体是棱长为2的正方体挖去两个底面半径为1,高为2的四分之一圆柱,故几何体的体积为8-2×π×2×14=8-π.故选B.6.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113 答案 B解析 由题意可知:L =2πr ,即r =L 2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭⎪⎫L 2π2h =112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B. 7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2π D.4π3答案 D解析 依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R ,则2R =12+12+22=2,解得R =1,所以V =4π3R 3=4π3.8.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4 答案 B解析 由三视图可得原石材为如下图所示的直三棱柱A 1B 1C 1-ABC ,且AB =8,BC =6,BB 1=12,AC =82+62=10.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r =6+8-102=2.故选B.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.点击观看解答视频答案8π3解析 由三视图可得该几何体是由两个圆锥和一个圆柱构成的组合体,圆柱的底面圆的半径为1 m ,高为2 m ,圆锥的底面圆的半径和高都是1 m ,且圆锥的底面分别与圆柱的两个底面重合,故该组合体的体积为2π+2×13π=8π3(m 3).10.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案7解析 底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π×r 2×4+π×r 2×8=28π3r2=196π3,解得r =7.11.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.答案 14解析 由题意知,V D -ABE =V A -BDE =V 1,V P -ABC =V A -PBC =V 2.因为D ,E 分别为PB ,PC 中点,所以S △BDE S △PBC =14. 设点A 到平面PBC 的距离为d , 则V 1V 2=13S △BDE ·d 13S △PBC ·d =S △BDE S △PBC =14. 12.设甲、乙两个圆柱的底面积分别为S 1、S 2,体积分别为V 1、V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设甲、乙两个圆柱底面半径和高分别为r 1,h 1,r 2,h 2,则2πr 1h 1=2πr 2h 2,h 1h 2=r 2r 1.又S 1S 2=πr 21πr 22=94,所以r 1r 2=32,则V 1V 2=πr 21h 1πr 22h 2=r 21r 22·h 1h 2=r 1r 2=32. 13.已知三棱锥P -ABC 的各顶点均在一个半径为R 的球面上,球心O 在AB 上,PO ⊥平面ABC ,ACBC=3,则三棱锥与球的体积之比为________.答案3∶8π解析 如图,依题意,AB =2R ,又ACBC=3,∠ACB =90°,∴∠CAB =30°,因此AC =3R ,BC =R ,V P -ABC =13PO ·S △ABC =13×R ×⎝ ⎛⎭⎪⎫12×3R ×R =36R 3.而V 球=4π3R 3,因此V P -ABC ∶V 球=36R 3∶4π3R 3=3∶8π.。
2018高考数学(文科)异构异模复习考案撬分法习题 第八章 立体几何 课时撬分练8-3 Word版含答案

………………………………………………………………………………………………时间:分钟基础组.已知,为两条不同的直线,α,β为两个不同的平面,则下列为真命题的是( ).∥,⊥α⇒⊥α.α∥β,⊂α,⊂β⇒∥.⊥α,⊥⇒∥α.⊂α,⊂α,∥β,∥β⇒α∥β答案解析选项中,如图①,∥,⊥α⇒⊥α一定成立,选项正确.选项中,如图②,α∥β,⊂α,⊂β,与互为异面直线,∴选项不正确.选项中,如图③,⊥α,⊥,⊂α,∴选项不正确.选项中,如图④,⊂α,⊂α,∥β,∥β,但α与β相交,∴选项不正确..直线,均不在平面α,β内,给出下列命题:①若∥,∥α,则∥α;②若∥β,α∥β,则∥α;③若⊥,⊥α,则∥α;④若⊥β,α⊥β,则∥α.其中正确命题的个数是( )....答案解析对命题①,根据线面平行的判定定理知,∥α;对命题②,如果直线与平面α相交,则必与平面β相交,而这与α∥β矛盾,故∥α;对命题③,在平面α内取一点,设过,的平面γ与平面α相交于直线.因为⊥α,所以⊥,又⊥,所以∥,则∥α;对命题④,设α∩β=,在α内作′⊥β,因为⊥β,所以∥′,从而∥α.故四个命题都正确..已知,是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是( ).若⊥α,⊥β,则α∥β.若α∥γ,β∥γ,则α∥β.若⊂α,⊂β,∥,则α∥β.若,是异面直线,⊂α,∥β,⊂β,∥α,则α∥β答案解析由线面垂直的性质可知正确;由两个平面平行的性质可知正确;由异面直线的性质易知也是正确的;对于选项,α,β可以相交、可以平行,故错误,选..平面α∥平面β,点,∈α,,∈β,则直线∥直线的充要条件是( ).∥.∥.与相交.,,,四点共面答案解析充分性:,,,四点共面,由平面与平面平行的性质知∥.必要性显然成立..如图,在正四棱柱中,,,,分别是棱,,,的中点,是的中点,点在四边形及其内部运动,则只需满足条件时,就有∥平面.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案位于线段上解析连接,,,则∥,∥,∴平面∥平面,只要∈,则⊂平面,∴∥平面.(答案不唯一).给出下列关于互不相同的直线、、和平面α、β、γ的三个命题:①若与为异面直线,⊂α,⊂β,则α∥β;②若α∥β,⊂α,⊂β,则∥;③若α∩β=,β∩γ=,γ∩α=,∥γ,则∥.其中真命题为.答案③解析①中当α与β不平行时,也能存在符合题意的、.②中与也可能异面.。
[精品]2018高考数学(文科)习题第八章立体几何83和答案
![[精品]2018高考数学(文科)习题第八章立体几何83和答案](https://img.taocdn.com/s3/m/5dfc9da8cc22bcd126ff0c38.png)
1.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )点击观看解答视频A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案 D解析A中,垂直于同一个平面的两个平面可能相交也可能平行,故A错误;B中,平行于同一个平面的两条直线可能平行、相交或异面,故B错误;C中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C错误;D中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D正确.2.如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=π2,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB ⊥平面PFE ;(2)若四棱锥P -DFBC 的体积为7,求线段BC 的长.解 (1)证明:如图,由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC .又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE .(2)设BC =x ,则在Rt △ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,得△AFE ∽△ABC ,故S △AFE S △ABC =⎝ ⎛⎭⎪⎫232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12·49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S DFBC =S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC , 所以PE 为四棱锥P -DFBC 的高.在Rt △PEC 中,PE =PC 2-EC 2=42-22=2 3. 体积V P -DFBC =13·S DFBC ·PE =13·718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3.所以,BC =3或BC =3 3.3.如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.5.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC 的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)证法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点,又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE ∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB,由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.6. 如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.解(1)证明:连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C 为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,AO∩BC1=0,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.(2)作OD⊥BC,垂足为D,连接AD.作OH⊥AD,垂足为H.由于BC⊥AO,BC⊥OD,故BC⊥平面AOD,所以OH⊥BC.又OH⊥AD,所以OH⊥平面ABC.因为∠CBB1=60°,所以△CBB1为等边三角形,又BC=1,可得OD =34.由于AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 故三棱柱ABC -A 1B 1C 1的高为217. 7.如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .证明 (1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB=BC=12AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.8.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB 的中点.已知PA⊥AC,PA=6,BC=8,DF=5.点击观看解答视频求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC .证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA . 又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA =3, EF =12BC =4. 又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .。
2018年普通高等学校招生全国统一考试仿真卷文科数学(八)(解析版)

2018年普通高等学校招生全国统一考试仿真卷文科数学(八)(解析版)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·天门联考]设i 为虚数单位,则下列命题成立的是( ) A .a ∀∈R ,复数3ia--是纯虚数B .在复平面内()i 2i -对应的点位于第三象限C .若复数12i z=--,则存在复数1z ,使得1z z ⋅∈RD .x ∈R ,方程2i 0x x +=无解【答案】C 【解析】当3a=时,复数3i a --是纯虚数;()i 2i 2i 1-=+,对应的点位于第一象限;若复数12i z=--,则存在复数112iz =-+,使得1z z ⋅∈R;0x=,方程2i 0xx +=成立.因此C 正确.2.[2018·闽侯八中]在下列函数中,最小值为2的是( )A .1y x x=+B C .2y=D .122xxy=+【答案】D【解析】A 选项x 可以是负数;B 选项2y≥=,等号成立时sin 1x =,在定义域内无法满足;C 在实数范围内无法满足;由基本不等式知D 选项正确.3.[2018·吉林调研]从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为( )A .30B .25C .22D .20【答案】D【解析】()50 1.000.750.250.220⨯++⨯=,故选D .4.[2018·天门期末]若存在非零的实数a ,使得()()f x fa x =-对定义域上任意的x 恒成立,则函数()f x 可能是( ) A .()221f x x x =-+B .()21f x x =-C .()2xf x =D .()21f x x =+【答案】A【解析】由存在非零的实数a ,使得()()f x fa x =-对定义域上任意的x 恒成立,只有()221f x x x =-+满足题意,而()21f x x =-,()2xfx =,()21f x x =+都不满足题意,故选A .5.[2018·漳州调研]已知1=a ,=b ()⊥-a a b ,则向量a在b 方向上的投影为( )A .1 B C .12D .2【答案】D【解析】设a 与b 的夹角为θ,()⊥-a a b ,()2∴⊥-=-⋅=a a b a a b ,2co s 0θ-⋅=a a b ,c o s 2θ∴=,∴向量a 在b 方向上的投影为c o s 2θ⋅=a,故选D.6.[2018·孝义模拟]某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为()A.13B.12C.23D.56【答案】C【解析】根据题意得到原图是半个圆锥和半个圆柱构成的图形,圆锥的地面半径为2,圆柱底面半径为2,半个圆柱的体积23.故答案为:C.7.[2018·南平质检]函数()()2sin3f x xϕ=+得到的图象关于y轴对称,则ϕ的最小值为()A B C D【答案】B【解析】函数()()2s i n3f x xϕ=+的图象向右平移个单位得到:y轴对称,即函数为偶函数,ϕ8.[2018·豫南中学]《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”,可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d的值为33,则输出的i的值为()A .4B .5C .6D .7【答案】C 【解析】0i=,0S=,1x =,1y =,开始执行程序框图,1i =,11S =+,2x =,12y =,1i =,11212S =+++,4x =,14y =,......,5i =,()111112481613324816S ⎛⎫=+++++++++< ⎪⎝⎭,32x=,132y=,再执行一行,s d>退出循环,输出6i=,故选C .9.[2018·佛山调研]在A B C △中,角A 、B 、C 所对的边分别是a ,b ,c ,且a ,b,c 成等差数列,则角B 的取值范围是( )A B C D 【答案】B【解析】2ba c =+,所基本不等式,所以B 的取值范围是B .10.[2018·集宁一中]一个三棱锥A B C D -内接于球O,且3A DBC ==,4A C B D ==,O 到平面A B C 的距离是( )A .2B .3C .4D .6【答案】D【解析】由题意可得三棱锥A B C D-的三对对棱分别相等,所以可将三棱锥补成一个长方体A E D F G C H B-,如图所示,该长方体的外接球就是三棱锥A B C D-的外接球O ,长方体A E D FG C H B-共顶点的三条面对角线的长分别为3,4设球O 的半径为R ,则有()2222223419419R R=++=⇒=,在A B C △中,由余弦定理得r 为A B C △外接圆的半径)因此球心O 到平面A B C 的距离6d==,故选D .11.[2018·深圳一调]设等差数列{}n a 满足:7135a a=,()22222244747456co s co s sin sin co s sin co s a a a a a a a a -+-=-+,公差()2,0d∈-,则数列{}n a 的前n 项和n S 的最大值为( ) A .100π B .54π C .77π D .300π【答案】C 【解析】由71335a a =,得()()1136512a da d +=+,解得121a d=-,222222447474c o s c o s s in s in c o s s in a a a a a a -+-=()222247474747co s co s sin sin co s co s sin sin a a a a a a a a -=-()4747co s co s sin sin a a a a +()()()474756co s co s co s a a a a a a =+-=-+,又4756a a a a +=+,()47cos 1a a ∴-=-,故4732a a d k -=-=π+π又公差()2,0d∈-,3d π∴=-,17a =π,由()7103na n π⎛⎫=π+--≥ ⎪⎝⎭,得22n≤,故22S 或21S 最大,最大值为2222212277723S ⨯π⎛⎫=⨯π+⨯-=π ⎪⎝⎭,故选C .12.[2018·集宁一中]已知()f x 为定义在R 上的函数,其图象关于y 轴对称,当x ≥时,有()()1fx f x +=-,且当[)0,1x ∈时,()()2l o g 1fx x =+,若方程()0fx k x -=(0k >)恰有5个不同的实数解,则k 的取值范围是( ) ABCD【答案】C 【解析】当0x≥时,有()()1f x fx +=-,所以()()()21f x fx fx +=-+=,所以函数()f x 在[)0,+∞上是周期为[)0,+∞的函数, 从而当[)1,2x ∈时,[)10,1x -∈,有()21lo g f x x-=,又()()()()()221111lo g lo g f x fx fx fx x fx x⎡⎤-+=--⇒-=-=⇒=-⎣⎦,即()()[)[)22lo g 1,0,1 lo g ,1,2x x f x x x ⎧+∈⎪=⎨-∈⎪⎩,有易知()f x 为定义在R 上的偶函数,所以可作出函数()f x 的图象与直线(0)ykx k =>有5个不同的交点,所以51714161k k k k <≥->--⎧⎪≤⎨-⎪⎪⎪⎩,解得1165k ≤<,故选C .第Ⅱ卷本卷包括必考题和选考题两部分。
2018高考数学理科异构异模复习考案撬分法课件:第八章

2
直线与平面平行的性质定理
这条直线的任一平面
自然语言:一条直线与一个平面平行,则过 行.简称:线面平行,则线线平行. 图形语言:如图所示.
与此平面的交线与该直线平
符号语言:a∥α,a⊂β,α∩β=b⇒条相交直线
线面平行, 与另一个平面平行,则这两个平面平行.简称:
①求证:BE=DE; ②若∠BCD=120° ,M 为线段 AE 的中点,求证:DM∥平面 BEC.
[解] (1)①证明:如图 1,取 BD 的中点 O,连接 CO,EO. 由于 CB=CD,所以 CO⊥BD,又 EC⊥BD,EC∩CO=C, CO,EC⊂平面 EOC, 所以 BD⊥平面 EOC, 因此 BD⊥EO, 又 O 为 BD 的中点, 所以 BE=DE.
与 n 平行或相交,应排除 B;若 m⊥α,m⊥n,则 n∥α 或 n⊂α,应排除 C.
3.已知不重合的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, ④ 上面命题中正确的是________( 填序号).
因为 CB=CD,∠BCD=120° ,
所以∠CBD=30° . 因为△ABD 为正三角形, 所以∠BAD=60° , ∠ABC=90° , 因此∠AFB=30° . 1 所以 AB=2AF. 又 AB=AD,所以 D 为线段 AF 的中点,连接 DM,由点 M 是线段 AE 的中点,因此 DM∥EF. 又 DM⊄平面 BEC,EF⊂平面 BEC, 所以 DM∥平面 BEC.
高考数学· 理
第八章
立体几何
第3讲
直线、平面平行的判定与性质
点击观看 考点视频
2018高考数学(理科)复习考案撬分法课件:第八章 立体几何 8-1-3

1.思维辨析 (1)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × ) (4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )
2.某几何体的三视图如图所示,则它的体积是(
(2)与球有关的切、接问题的处理方法 ①求球的表面积或体积的关键是求出球的半径.反之,若已知球的表面积或体积,那么就可以得到球 的半径. 求球半径常用的方法有两个: a.根据球心到内接多面体各顶点的距离相等确定球心,然后求出半径; b.依据已知的线线或线面之间的关系推理出球心位置,然后求出半径. ②处理与几何体外接球有关的问题时,一般需依据球和几何体的对称性,确定球心与几何体的特殊点 间的关系.解决与棱柱有关的问题时需注意运用棱柱的体对角线即为外接球直径这一知识.
高考数学· 理
第八章
立体几何
第1讲
空间几何体的三视图、表面 积和体积
点击观看 考点视频
考点三
体积
撬点· 基础点 重难点
空间几何体的体积公式
注意点 求几何体体积的注意事项 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决. (2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.
8π A. 3 10π C. 3
B.3π D.6π
(2)已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形, SC 为球 O 的直径,且 SC=2,则此棱锥的体积为( 2 A. 6 2 C. 3 3 B. 6 2 D. 2 )
1 [解析] (1)由三视图可知,此几何体为如图所示是底面半径为 1,高为 4 的圆柱被截去了圆柱的4,所 3 2 3 以其体积 V=πr2· h· = π·1 · 4· 4 4=3π,故选 B. (2)因为△ABC 是边长为 1 的正三角形,且球半径为 1,所以四面体 O-ABC 为正四面体,所以△ABC 3 的外接圆的半径为 3 ,所以点 O 到面 ABC 的距离为
2018年高考数学复习演练第八章立体几何含2014_2017年真题20180517320

第八章立体几何考点1 空间几何体的结构及其三视图与直观图1、(2017•浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1B.+3C.+1D.+31. A 由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为× ×π×12×3+ × × × ×3=+1,故选A.2.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+185C.90D.812.B[由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+3×45×2=54+18 5.]3.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.C [由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.]4.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1 4.A[由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.]5.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π5.C[由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥, ∴V =13×1×1×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π,故选C.]6.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.大于5 B.等于5 C.至多等于4 D.至多等于36.C [当n =3时显然成立,故排除A ,B ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选C.]7.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.C [该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,S 表=S △BCD +S △ACD +S △ABD +S △ABC=12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.]8.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C.323cm 3D.403cm 3 8.C [该几何体是棱长为2 cm 的正方体与一底面边长为2 cm 的正方形,高为2 cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323(cm 3).故选C.]9.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.B [由题意知,2r ·2r +12·2πr ·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2.]10.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱10.A [圆柱的正视图是矩形,则该几何体不可能是圆柱.]11.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )11.B [由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.]12.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②12.D [在空间直角坐标系O-xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D.]13.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.4 2C.6D.413.C [如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥ABCD,最长的棱为AD=(42)2+22=6,选C.]14.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.14.83π [由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3.]考点2 空间几何体的表面积和体积1.(2017•新课标Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.161. B 由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S 梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选B.2.(2017•新课标Ⅱ,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π2. B 由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选B.3.(2017•新课标Ⅲ,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.3.B ∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r= = ,∴该圆柱的体积:V=Sh= = .故选B.4.(2017•北京,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.24.B 由三视图可得直观图,在四棱锥P ﹣ABCD 中,最长的棱为PA , 即PA= ==2,故选B .5.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π35.B[由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.]6.(2016·全国Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π6.A[由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π,故选A.]7.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+47.D [由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为:S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.]8.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 2 8.B [由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.]9.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π 9.C [如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π,选C.]10.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3D.2π 10.C [如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.]11.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π 11.A [这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A.]12.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15 12.D [如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为1111111111111111A AB D A A B D BCD ABCDA B C D ABCD A A B D V V V V V -----=-=13×12×12×113-13×12×12×1=15,选D.]13.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89πB.169πC.4(2-1)3πD.12(2-1)3π13.A [易知原工件为一圆锥,V1=13πr2h=23π,设内接长方体长、宽、高为a、b、c,欲令体积最大,则a=b.由截面图的相似关系知,c+a2+b2=2,即c+2a=2,∴V长方体=abc=a2c=a2(2-2a),设g(a)=2a2-2a3,则g′(a)=4a-32a=0,令g′(a)=0,解得a=432,所以令a=432时,V长方体最大为1627,∴V长方体V1=16272π3=89π.故选A.]14.(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.7214.B [该几何体的直观图如图所示,易知该几何体的表面是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积S =12×3×4+12×3×5+2+52×5+2+52×4+3×5=60.选B.]15.(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm215.D [由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S =3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm 2).]16.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π416.A [设球的半径为R ,由题意可得(4-R )2+(2)2=R 2,解得R =94,所以该球的表面积为4πR 2=81π4.故选A.]17.(2014·安徽,7)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.1817.A [根据题意作出直观图如图,该多面体是由正方体切去两个角而得到的,根据三视图可知其表面积为6(22-12×1×1)+2×34×(2)2=6×72+3=21+ 3.故选A.]18.(2014·陕西,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B.4πC.2πD.4π318.D [如图为正四棱柱AC 1.根据题意得AC =2,∴对角面ACC 1A 1为正方形,∴外接球直径2R =A 1C =2,∴R =1,∴V 球=4π3,故选D.]19.(2014·湖北,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511319.B [圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,故选B.]20.(2014·新课标全国Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.1320.C [由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm ,高为4 cm ;另一个圆柱的底面半径为 3 cm ,高为 2 cm.则零件的体积V 1=π×22×4+π×32×2=34π(cm 3).而毛坯的体积V =π×32×6=54π(cm 3),因此切削掉部分的体积V 2=V -V 1=54π-34π=20π(cm 3),所以V 2V =20π54π=1027.故选C.]21.(2017•新课标Ⅰ,16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.21. 4 cm 3由题意,连接OD ,交BC 于点G ,由题意得OD ⊥BC ,OG=BC ,即OG 的长度与BC 的长度成正比,设OG=x ,则BC=2x ,DG=5﹣x ,22.(2017•山东,13)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为________.22. 2+ 由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2= ×π×12×1= ,则该几何体的体积V=V1+2V1=2+ ,故答案为:2+ .23.(2017·天津,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.23.设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R= ,则球的体积V= π•()3= ;故答案为:.24.(2017•江苏,6)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.24. 设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则= = .故答案为:.25.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.25.33[由题可知,∵三棱锥每个面都是腰为2的等腰三角形,由正视图可得如右俯视图,且三棱锥高为h =1,则面积V =13Sh =13×⎝ ⎛⎭⎪⎫12×23×1×1=33.]26.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.26.12[设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos∠ABC =4+4-2×2×2×cos 120°=23, ∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ×sin∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD 的最大值为16×3=12.]27.(2015·江苏,9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.27.7 [设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.]28.(2014·江苏,8)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.28.32[设圆柱甲的底面半径为r 1,高为h 1,圆柱乙的底面半径为r 2,高为h 2. 由题意得S 1S 2=πr 21πr 22=94,∴r 1r 2=32.又∵S 甲侧=S 乙侧,即2πr 1h 1=2πr 2h 2,∴h 1h 2=r 2r 1=23,故V 1V 2=S 1h 1S 2h 2=S 1S 2·h 1h 2=94×23=32.]考点3 点、线、面的位置关系1.(2017•新课标Ⅱ,10)已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A. B. C. D.1. C 如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点,则AB 1、BC 1夹角为MN 和NP夹角或其补角(因异面直线所成角为(0, ]),可知MN= AB 1= ,NP= BC 1= ;作BC 中点Q ,则△PQM 为直角三角形;∵PQ=1,MQ= AC ,△ABC 中,由余弦定理得AC 2=AB 2+BC 2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣ )=7,∴AC=,∴MQ= ;在△MQP 中,MP= = ;在△PMN 中,由余弦定理得cos ∠MNP= = =﹣ ;又异面直线所成角的范围是(0, ],∴AB 1与BC 1所成角的余弦值为 .2. (2016·全国Ⅰ,11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.132. A[如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m , 又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m 、n 所成角的大小与B 1D 1、CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.]3.(2015·安徽,5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m ,n 平行于同一平面,则m 与n 平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m ,n 不平行,则m 与n 不可能垂直于同一平面3.D [对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.]4.(2014·辽宁,4)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A.若m ∥α,n ∥α,则m ∥n B.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ∥αD.若m ∥α,m ⊥n ,则n ⊥α4.B [对于选项A ,若m ∥α,n ∥α,则m 与n 可能相交、平行或异面,A 错误;显然选项B 正确;对于选项C ,若m ⊥α,m ⊥n ,则n ⊂α或n ∥α,C 错误;对于选项D ,若m ∥α,m ⊥n ,则n ∥α或n ⊂α或n 与α相交.D 错误.故选B.]5.(2015·浙江,13)如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.5.78 [连接DN ,作DN 的中点O ,连接MO ,OC .在△AND 中.M 为AD 的中点,则OM 綉12AN .所以异面直线AN ,CM 所成角为∠CMO ,在△ABC 中,AB =AC =3,BC =2,则AN =22,∴OM = 2.在△ACD 中,同理可知CM =22,在△BCD 中,DN =22,在Rt △ONC 中,ON =2,CN =1∴OC = 3.在△CMO 中,由余弦定理cos ∠CMO =|MC |2+|MO |2-|OC |22|MC |·|MO |=8+2-32×22×2=78.]考点4 线面平行的判定与性质1.(2017•新课标Ⅱ,19)如图,四棱锥P ﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD=∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE ∥平面PAB ;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ﹣AB ﹣D 的余弦值.1.(Ⅰ)证明:取PA 的中点F ,连接EF ,BF ,因为E 是PD 的中点,所以EFAD ,AB=BC=AD ,∠BAD=∠ABC=90°,∴BC ∥ AD ,∴BCEF 是平行四边形,可得CE ∥BF ,BF ⊂平面PAB ,CF ⊄平面PAB ,∴直线CE ∥平面PAB ;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2, BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ= = ,二面角M ﹣AB﹣D的余弦值为:= .2.(2017•江苏,15)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.2.证明:(Ⅰ)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(Ⅱ)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD ⊥平面EFG ,所以AD ⊥EG , 故AD ⊥AC .3.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.3.(1)证明设FC 中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC , 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M ,所以FM =FB 2-BM 2=3,可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的一个法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0.可得⎩⎨⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角F -BC -A 的余弦值为77.4.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 4.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是cos 〈n ,AN →〉=n ·AN →|n ||AN →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成的角的正弦值为8525.5.(2015·江苏,16)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.5.证明 (1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC . 又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C ,所以DE ∥平面AA 1C 1C . (2)因为棱柱ABCA 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC . 因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.6.(2014·江苏,16)如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .6.证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA .又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC . 又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .7.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角DAEC 为60°,AP =1,AD =3, 求三棱锥EACD 的体积.7.(1)证明 连接BD 交AC 于点O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2) 因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12. 设B (m ,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0).设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥EACD 的高为12,三棱锥EACD 的体积V =13×12×3×32×12=38.8.(2014·湖北,19)如图,在棱长为2的正方体ABCDA 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 8.法一(几何法)(1)证明 如图1,连接AD 1,由ABCDA 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1.所以BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2) 如图2,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD , 从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1, 于是EQ =FP =1+λ2,所以四边形EFPQ 是等腰梯形. 同理可证四边形PQMN 是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN ,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点,所以GH =ME =2. 在△GOH 中,GH 2=4,OH 2=1+λ2-⎝ ⎛⎭⎪⎫222=λ2+12,OG 2=1+(2-λ)2-⎝ ⎛⎭⎪⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 法二(向量方法)以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图3所示的空间直角坐标系Dxyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)证明 当λ=1时,FP →=(-1,0,1),又因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ . (2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面E FPQ与面PQMN所成的二面角为直二面角.考点5 线面垂直的判定与性质1.(2016·浙江,2)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n1.C [由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.]2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′CDB的平面角为α,则( )A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α2.B [极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB 都可以大于0,排除A,C.故选B. ]3.(2014·广东,7)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定3.D [构造如图所示的正方体ABCDA1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A、B、C,选D.]4.(2016·全国Ⅱ,14)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).4.②③④ [当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.]5.(2017•新课标Ⅰ,18)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.5.(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.6.(2017•新课标Ⅲ,19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)设点D,B到平面ACE的距离分别为h D, h E.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O (0,0,0),A (1,0,0),C (﹣1,0,0),D (0,0,1),B (0, ,0),E .=(﹣1,0,1), = , =(﹣2,0,0).设平面ADE 的法向量为 =(x ,y ,z ),则,即 ,取 =.同理可得:平面ACE 的法向量为 =(0,1,).∴cos = = =﹣ .∴二面角D ﹣AE ﹣C 的余弦值为 .7.(2016·全国Ⅰ,18)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ; (2)求二面角E -BC -A 的余弦值.7.(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.8.(2016·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .8.证明 (1)由已知,DE 为△ABC 的中位线,∴DE ∥AC ,又由三棱柱的性质可得AC ∥A 1C 1,∴DE ∥A 1C 1, 且DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,∴DE ∥平面A 1C 1F . (2)在直三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴AA 1⊥A 1C 1,又∵A 1B 1⊥A 1C 1,且A 1B 1∩AA 1=A ,∴A 1C 1⊥平面ABB 1A 1, ∵B 1D ⊂平面ABB 1A 1,∴A 1C 1⊥B 1D ,又∵A 1F ⊥B 1D ,且A 1F ∩A 1C 1=A 1,∴B 1D ⊥平面A 1C 1F , 又∵B 1D ⊂平面B 1DE ,∴平面B 1DE ⊥平面A 1C 1F .9.(2015·新课标全国Ⅱ,19)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.9.解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,所以AH =10. 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.10.(2015·新课标全国Ⅰ,18)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ,(2)求直线AE 与直线CF 所成角的余弦值.10.(1)证明 连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若空间中n个不同的点两两距离都相等,则正整数n的取值( )
A.至多等于3 B.至多等于4
C.等于5 D.大于5
答案 B
解析首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C、D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.
2.若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( ) A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 B
解析由“m⊥α且l⊥m”推出“l⊂α或l∥α”,但由“m⊥α且l∥α”可推出“l ⊥m”,所以“l⊥m”是“l∥α”的必要而不充分条件,故选B.
3.已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )
点击观看解答视频
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n⊂α,则m⊥n
C.若m⊥α,m⊥n,则n∥α
D.若m∥α,m⊥n,则n⊥α
答案 B
解析A选项m、n也可以相交或异面,C选项也可以n⊂α,D选项也可以n∥α或n 与α斜交.根据线面垂直的性质可知选B.
4.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )
A.1
10
B.
2
5
C.
3010
D.
22
答案 C
解析 解法一:取BC 的中点Q ,连接QN ,AQ ,易知BM ∥QN ,则∠ANQ 即为所求, 设BC =CA =CC 1=2,
则AQ =5,AN =5,QN =6,
∴cos ∠ANQ =AN 2+NQ 2-AQ 22AN ·NQ =5+6-525×6=6230=30
10
,故选C.
5.如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,
BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.
点击观看解答视频
答案 7
8
解析 如下图所示,连接ND ,取ND 的中点E ,连接ME ,CE ,则ME ∥AN ,
则异面直线AN ,CM 所成的角即为∠EMC .由题可知CN =1,AN =22, ∴ME = 2.又CM =22,DN =22,NE =2,∴CE =3,
则cos ∠CME =CM 2+EM 2-CE 22CM ·EM =8+2-32×22×2=7
8
.
6. 如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段
PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大
值为________.
答案 2
5
解析 取BF 的中点N ,连接MN ,EN ,则EN ∥AF ,所以直线EN 与EM 所成的角就是异面直线EM 与AF 所成的角.在△EMN 中,当点M 与点P 重合时,EM ⊥AF ,所以当点M 逐渐趋近于点Q 时,直线EN 与EM 的夹角越来越小,此时cos θ越来越大.故当点M 与点Q 重合时,cos θ取最大值.设正方形的边长为4,连接EQ ,NQ ,在△EQN 中,由余弦定理,得cos ∠
QEN =EQ 2+EN 2-QN 22EQ ·EN =20+5-332×20×5
=-25,所以cos θ的最大值为25.
7.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,
A 1
B 1,A 1D 1的中点,求证:
(1)直线BC1∥平面EFPQ;
(2)直线AC1⊥平面PQMN.
证明(1)连接AD1,由ABCD-A1B1C1D1是正方体,
知AD1∥BC1,
因为F,P分别是AD,DD1的中点,所以FP∥AD1.
从而BC1∥FP.
而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.
(2)如图,连接AC,BD,
则AC⊥BD.
由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.
又AC∩CC1=C,
所以BD⊥平面ACC1.
而AC1⊂平面ACC1,
所以BD⊥AC1.
因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.
同理可证PN⊥AC1.
又PN∩MN=N,所以直线AC1⊥平面PQMN.
8.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.
解 (1)证明:在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC .所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1. 所以平面ABE ⊥平面B 1BCC 1.
(2)证明:取AB 的中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =1
2
AC .
因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .
又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .
(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2
-BC 2
= 3. 所以三棱锥E -ABC 的体积
1 3S△ABC·AA1=
1
3
×
1
2
×3×1×2=
3
3
.
V=。