四年级下奥数中的年龄问题和牛羊吃草问题讲义
小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)

拓展:有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
例5、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
拓展:自动扶梯以均匀速度行驶着,小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?
教学内容
牛吃草问题
教学目标
能理解牛吃草问题并会解决问题
重点
用二元一次方程组求有草量和每天生长草量
难点
用二元一次方程组求原有草量和每天生长草量
教
学
过
程
课堂精讲
知识点详解
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
拓展:牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?
例2、一牧区长满牧草,每天牧草都在匀速生长。这牧区的草可供27头牛食用6周,可供23头牛食用9周。多少头牛8周可食完这牧区的草?
拓展:一块1000平方米扩大牧场里的草能够让12头牛吃16个星期,或让18头牛吃8个星期。如果在全部时间内,草能够均匀地生长,那么,一块4000平方米的牧场6个星期能养活多少头牛?
四年级奥数-牛吃草问题例题讲解

例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
例4:有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。
要使牧草永远吃不完,至多可以放牧几头牛?分析:要牧草永远吃不完,就要保证每天最多只吃新增的量,否则一旦超过每天新增的量,吃了原来的量,总有一天会吃完。
四升五暑期奥数培优讲义——5-08-牛吃草问题4-讲义-教师

第8讲牛吃草问题【学习目标】1、了解牛吃草问题研究的内容;2、熟悉牛吃草问题的常见题型;3、掌握牛吃草问题常见的解题方法。
【知识梳理】1、“牛吃草”涉及三个量:草的数量、牛的头数、时间.2、难点:随着时间的增长,草也在按不变的速度均匀生长,所以草的总量一直在变.3、“牛吃草”解答的依据:(1)草的每天生长量不变;(2)每头牛每天的食草量不变;(3)草的总量=草场原有的草量+新生的草量.“牛吃草”问题的变例:抽水问题、检票口检票问题等等。
【典例精析】【例1】牧场上有一片青草,每天匀速生长,这片青草可供10头牛吃20天,可供15头牛吃10天,如果饲养25头牛,多少天可以把牧场上的草吃完?解:设1头牛1天吃1份草:10×20=200(份)15×10=150(份)每天长草量:(200-150)÷(20-10)=5(份)原草:200-20×5=100(份)100÷(25-5)=5(天)【趁热打铁-1】牧场上有一片青草可供27头牛吃6天,可供23头牛吃9天,如果牧草每天生长速度相同,那么这片牧草可供21头牛吃多少天?解:设1头牛1天吃1份草:27×6=162(份)23×9=207(份)每天长草量:(207-162)÷(9-6)=15(份)原草:162-15×6=72(份)72÷(21-15)=12(天)【例2】牧场上有一片青草,每天匀速生长,这片青草可供10头牛吃20天,可供15头牛吃10天,问可供多少头牛吃5天?解:设1头牛1天吃1份草:10×20=200(份)15×10=150(份)每天长草量:(200-150)÷(20-10)=5(份)原草:200-20×5=100(份)(100+5×5)÷5=25(头)【趁热打铁-2】草场上的草匀速生长,每天每人割草量相等,一片草若用17人去割,30天可以割尽,若用19人去割,则只要24天便可割尽,若要6天割尽需要多少人?解:设1人1天割1份草17×30=510(份)19×24=456(份)(510-456)÷(30-24)=9(份)510-30×9=240(份)(240+9×6)÷6=49(人)【例3】一块草地,每天生长的速度相同。
四年级第9次课奥数.应用题.牛吃草问题(A级).学生版

知识框架(1)英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2)“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3)解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值新生的草量=每天生长量×天数.(4)同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数×较多天数−对应牛的头数×较少天数)÷(较多天数−较少天数);⑶原来的草量=对应牛的头数×吃的天数−草的生长速度×吃的天数;⑷吃的天数=原来的草量÷(牛的头数−草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(5)“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.重难点牛吃草问题(1)理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.(2)初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系例题精讲一、一块草地的牛吃草【例1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例2】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
四年级奥数详解答案第14讲牛吃草问题

四年级奥数详解答案第14讲牛吃草问题四年级奥数详解答案第14讲第十四讲牛吃草问题一、知识概要“一堆草,可供3头牛和5只羊吃15天,或供5头牛和6只羊吃10天,问这堆草可供8头牛11只羊吃多少天,”,像这类题类似“工程问题”的数学题目,因常涉及“中”与“羊”的关系,故命名为“牛吃草问题”。
解决这类问题的基本方法是:1. 先把每头牛每天吃的草量看做一个单位2. 再求出牧场上牧羊每天生长出来的数量是多少3. 再求出原来牧场上牧羊的数量是多少4. 最后求出牧羊能够吃的天数二、典型题目精讲1. 有一片牧场,已知牛27头,6天把草吃光;牛23头,9天把草吃光。
若有牛21头,几天能把草吃光,”~则27头牛6天共吃草27×6=162, 解:分析~把每头牛每天的吃草量看作单位“123头牛9天共吃草23×9=207。
显而易见~这“162”和“207”都是牧场上牧羊的数量~为什么不一样呢,原来是在(9-6)=3(天)时间里~牧场上又长出新的“草量”:(207-162=45)~则每天长出45?3=15“草量”。
因而~牧场原有草量为:162-15×6=72。
所以~21头牛分为2组~一组15头~每天吃新生的草量(15),另一组6头,每天去吃原有草量(72)。
于是有72?(21-15)=12(天)答:21头牛12天能把草吃光。
2. 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多,若同时开4个检票口,从开始检票到等候检票的队伍消失,需要30分钟;同时开5个检票口,需要20分钟;如果同时打开7个检票口,那么需要多少分钟,解:这个题是个“牛吃问题”,这里的“牛”就是“检票口”;“草”就是“旅客”。
首先把1个检票口1分钟检票的旅客看作1个单位,则,4个检票口30分钟检票的旅客人数为:4×30=120(人);同理,5个检票口的旅客人数是:5×20=100(人);每分钟新来增加的旅客数为(120-100)?(30-20)=2(人)。
奥数——牛吃草讲义

【教师寄语:跟着张老师的思路走,最棒的成绩,你值得拥有!】奥数讲解——牛吃草问题一、复习旧知1、知识点复习典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用的四个基本公式,分别是:设定一头牛一天吃草量为“1”1草的生长速度=(对应的牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)2原有草量=牛头数×吃的天数-草的生长速度×吃的天数3吃的天数=原有草量÷(牛头数-草的生长速度)4牛头数=原有草量÷吃的天数+草的生长速度二、新课讲解重难点:由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正由于这个不变量,才能导出上面的四个基本公式。
牛吃草的问题经常给出不同头数的牛吃同一片草地,这地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题的关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有的草量,进而解答问题。
易混点:这类题的基本数量关系是:1(牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)=草地每天新长出的草2牛头数×吃的天数-草的生长速度×吃的天数=原有草量解决多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
思维拓展三. 典型例题例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?【分析】“牛吃草”问题的特点是随时间的增长,所研究的量也等量地增加。
四年级下第10讲 牛吃草问题

四春第10讲牛吃草问题一、知识要点牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化。
解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
二、例题精选【例1】一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周或供23头牛吃9周。
那么,可供21头牛吃几周?【巩固1】牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?【例2】一块牧场长满草,每天牧草都均匀生长。
这片牧场可供15头牛吃10天,或供25头牛吃5天。
现有一群牛20天才将草吃光,请问这群牛有多少头?【巩固2】有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。
如果需要6天割完,需要派多少人去割草?【例3】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?【巩固3】由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?【例4】有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草的每天生长速度不变.现有羊若干只,吃了4天后又增加了6只,这样又吃了2天便将草吃完,问原来有羊多少只?【巩固4】有一牧场长满草,每天牧草匀速生长。
小学奥数应用题讲义 5-牛吃草问题

牛吃草问题牛吃草问题的由来在英国伟大的科学家牛顿所著的《普通算术》一书中有一道非常有名的关于牛在牧场上吃草的题目:12头牛4周吃牧草133格尔(格尔:牧场面积单位),同样的牧草,21头牛9周吃10格尔,问24格尔牧草,多少头牛吃18周吃完?后人把这一类题目称为“牛顿问题”,也称为“牛吃草”问题。
本讲学习目标一、掌握牛吃草问题的基本模型二、总结牛吃草问题的基本思路三、练习牛吃草问题的八大题型一、牛吃草问题的“基本模型”这部分不需要记公式,我们通过一道题目来说明:牧场上长满牧草,每天牧草都均匀生长,这片牧场可供10头牛吃20天,可供15头牛吃10天。
供25头牛可吃几天?二、牛吃草问题的“基本思路”牛吃草问题的两个基本量:每天草的生长量、原草量牛吃草问题的两种常见题型:已知头数求天数、已知天数求头数三、牛吃草问题的八大题型1.基本牛吃草问题2.草衰减问题3.多种角色问题4.多块地问题5.排水问题6.排队问题7.行程问题(多人相遇、多人追及、电梯问题)8.特殊牛吃草问题1.基本牛吃草问题【例1】草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?2.草衰减问题【例2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?3.多种角色问题【例3】一块草地,每天生长的速度相同。
现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。
如果1头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?4.多块地问题【例4】有三块草地,面积分别是4公顷、8公顷和10公顷。
草地上的草一样厚而且长得一样快。
第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。
问:第三块草地可供50头牛吃几周?5.排水问题【例5】一只船发现漏水时,已经进了一些水,水匀速进入船内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学员姓名:毕杰瑞辅导科目:数学年级:四年级学科教师:张先安
授课日期及时段
2015年5月24日8:00-10:00
课题
奥数题中的年龄问题和牛羊吃草问题
重点、难点、考点
设未知数是解决年龄问题最常见的方法,一般解法和公式解法是解决牛羊吃草问题的基本方法
学习目标
会设未知数解决年龄问题,会用公式法解决牛羊吃草问题
12.哥哥5年前的年龄等于7年后弟弟的年龄,哥哥4年后的年龄与弟弟3父亲的年龄是儿子年龄的7倍,15年后父亲的年龄是他儿子年龄的2倍,问今年父子二人各多少岁?
14.今年小刚的年龄是明明年龄的5倍,25年后,小刚的年龄比明明的年龄的2倍少16岁,今年小刚、明明各多少岁?
配套习题
1、填空题
1.甲、乙两人的年龄和是33岁,甲比乙大3岁,那么甲______岁,乙______岁。
2.父亲今年47岁,儿子21岁,________年前父亲的年龄是儿子年龄的3倍。
3.今年叔叔21岁,小强5岁,______年后叔叔的年龄是小强的3倍。
4.小明今年9岁,妈妈今年39岁,再过______年妈妈年龄正好是小明年龄的3倍。
教学内容
专题一:奥数中的年龄问题
例1父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?(设未知数)
例2李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?
例3姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
例4小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?
例5大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?
例6 15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。
专题二:牛羊吃草问题
第一种:一般解法
例8 “有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
第二种:公式解法
例9有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?
9.叔叔比红红大19岁,叔叔的年龄比红红的年龄的3倍多1岁,叔叔_____岁,红红_______岁。
10.弟弟今年8岁,哥哥今年14岁,当两人年龄之和是50岁时,弟弟______岁,哥哥______岁。
2、解答题
11.小刚四年前的年龄与小明7年后的年龄之和是39岁,小刚5年后的年龄等于小明3年前的年龄,求小刚、小明今年的年龄是多少?
三、本次课后作业:
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
主任签字:
泽仕学堂教务处
5.明明比爸爸小28岁,爸爸今年的年龄是明明年龄的5倍,明明今年______岁,爸爸今年_____岁。
6.爸爸比小强大30岁,明年爸爸的年龄是小强的3倍,今年小强_______岁。
7.父亲比儿子大27岁,4年后父亲的年龄是儿子的4倍,那么儿子今年________岁。
8.现在母女年龄和是48岁,3年后母亲年龄是女儿年龄的5倍,那么母亲今年______岁,女儿今年_____岁。