构造辅助函数
浅析一元微积分学中的构造辅助函数法

浅析一元微积分学中的构造辅助函数法
一元微积分学中的构造辅助函数法
一、什么是构造辅助函数法?
构造辅助函数法是一元微积分学的简易方法。
它的作用是帮助学生快速找出一元微积分的原函数。
构造辅助函数法把几何形状分解成可以快速被积分的函数,从而实现快速求微积分的目的。
二、构造辅助函数法的运用
构造辅助函数法在一元微积分学中被广泛应用。
一般来说,不论曲线形状是什么,都可以用构造辅助函数法来积分。
具体来说,学习者要做的就是观察图形,分解出可以被分解处理的函数,由此能够获得较为准确的结果。
例如,当内接圆的半径是a的时候,可以把它分解为一个关于y的抛物线,然后通过微积分的方法计算出半径为a的内接圆的面积。
三、构造辅助函数法的优势
1.构造辅助函数法相比其它方法较快。
构造辅助函数法可以让学生在计算微积分的过程中少把精力花在一般的函数上,而多放在观察函数的几何形状上,从而更快的获得结果。
2.构造辅助函数法能够更好的理解函数的几何形状。
构造辅助函数法是一个抽象的概念,
但是它可以让学生用简单的描述来更好的理解一元函数的几何形状。
3.构造辅助函数法可以更快的求出极限。
用构造辅助函数法可以更加有效的求出一元微积分变量x进行极限求法,而且更容易理解。
总结
以上就是构造辅助函数法在一元微积分学中的用法,该方法的优势是方便、高效,可以辅助学生们解决许多一元微积分的问题。
数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法摘要数学中运用辅助函数就像是在几何中添加辅助线,其应用是非常广泛的. 构造辅助函数是数学命题推证的有效方法,是转化问题的一种重要手段。
遇到特殊的问题时,用常规方法可能比较复杂.这时就需要构造辅助函数,就如同架起一座桥梁,不需要大量的算法就可以得到结果.如何构造辅助函数是数学分析解题中的难点,看似无章可循,但仔细研究不失基本方法和一般规律。
文章通过对微分中值定理证明中,关于构造辅助函数方法的总结和拓展,给出了多种形式的辅助函数;通过详尽的实例,讲明了辅助函数在不等式、恒等式、函数求极限、讨论方程的根及非齐次线性微分方程求解中的运用,尝试找出如何构造辅助函数的几种方法,并通过这些方法在一些具体实例中的运用归纳出构造函数法的一些思路.关键词辅助函数;中值定理;恒等式与不等式;函数表达式;极值1.引言数学中,不等式与等式的证明、微分中值定理、拉格朗日条件极值、线性微分方程求解公式等,都是通过构造一个辅助函数来完成推证的,有时候构造辅助函数也是求证数学命题的简便而有效的方法之一,掌握构造辅助函数证明数学命题的方法的关键是要对“数学现象”善于观察,联想和发现问题,根据直观的结论倒推构造什么样的辅助函数.基本思路是从一个目标出发,联想起某种曾经遇到过的方法、手段,而后借助于这些方法和手段去接近目标,或者从这些方法和手段出发,去联想别的通向目标的方法和手段,这样继续下去,直到达到把问题归结到一个明显成立的结构上为止.构造辅助函数实质上就是分析法的一种技巧,也是数学中的一个难点,值得重视的是,在证明命题的过程中要不断研究问题的本质,从而寻求构造辅助函数的方法,文章重点分析了微分中值定理的证明中辅助函数的构造方法与技巧,进而应用到其他一般命题的证明中.2.微分中值定理证明中构造辅助函数的方法与技巧2.1 拉格朗日(Lagrange )中值定理辅助函数的作法定理1(Rolle ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续; (ii )()f x 在开区间(,)a b 内可导; (iii )()()f a f b =;则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.定理2(Lagrange ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b aξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为Rolle 定理的结论。
运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。
今天笔者就介绍下三种方式帮忙寻找到这个函数。
首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。
因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。
至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。
一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。
说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。
还不懂?没事,举两个例子。
例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。
解析:这是非常常见的一道题。
估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。
其实利用原函数法,很容易就找到这个辅助函数了。
首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。
数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法在数学证明中,当我们需要证明一个命题或者解决一个难题时,有时候需要借助一些额外的工具或函数来进行推导和证明,这些工具或函数就称为辅助函数。
构造辅助函数是一种常用的解题方法,它能够将原问题转化为更容易处理的新问题,通过解决新问题来获得原问题的解决。
构造辅助函数的方法通常分为以下几种:1.构造差函数:当需要证明一个函数f(x)在某个区间内单调递增或递减时,可以通过构造差函数F(x)=f(x+h)-f(x)来证明。
如果F(x)大于0,则f(x)递增,如果F(x)小于0,则f(x)递减。
2.构造积函数:当需要证明一个函数f(x)在某个区间内取得极值时,可以通过构造积函数P(x)=f(x)g(x)来证明。
其中g(x)是一个与f(x)无关的函数,通过求解P'(x)=0来找到极值点。
3.构造和函数:当需要证明一个函数f(x)在某个区间内周期性变化时,可以通过构造和函数S(x)=f(x)+f(x+T)来证明。
其中T为f(x)的周期,通过求解S'(x)=0来找到周期性变化的特征。
4.构造对数函数:当需要证明一个函数f(x)在某个区间内与对数函数有相似性质时,可以通过构造对数函数L(x)=lnf(x)来证明。
通过求解L'(x)=1/f'(x)来找到f(x)的变化规律。
在使用构造辅助函数的方法时,需要注意以下几点:1.要根据题目的具体问题进行合理构造,确保辅助函数与原问题有紧密联系。
2.要明确构造的辅助函数的性质和特征,以便进行后续的推导和证明。
3.要注意辅助函数的取值范围和定义域,确保推导和证明的正确性。
4.要注意辅助函数与原问题的等价性,确保最终能够得出原问题的结论。
下面给出一个具体的例子来说明构造辅助函数的方法。
例:证明当x>1时,不等式lnx<(x-1)/(x-2)恒成立。
证明:令f(x)=lnx-(x-1)/(x-2),则f'(x)=1/x-1/(x-2)^2=(x-1)^2/(x (x-2))^2>0,所以f(x)在(1,+∞)上单调递增,又因为f(1)=0,所以当x>1时,f(x)>0,即原不等式恒成立。
辅助函数构造

辅助函数构造
辅助函数构造是一种软件技术,允许软件程序员以更加有效的方式编写程序。
与基础类似,它不是一种基础构造,而是一种补充构造,程序员可以用它来更轻松地实现特定结构的特定功能。
辅助函数构造的最大优势是它可以帮助软件程序员更轻松地实
现特定的功能。
它把原本需要更复杂的程序结构和更复杂的代码分解成一系列更容易理解的步骤,使软件程序员能够更快地完成任务并实现自己的思路。
另外,辅助函数构造还有助于开发维护容易和管理可靠的软件系统。
它可以帮助改善软件系统的可读性,使软件构建变得更容易维护和更可靠。
例如,软件程序员可以使用辅助函数来规范软件程序的语法,使它更易于理解和管理。
此外,辅助函数构造还可以帮助软件程序员更容易地重用特定的功能。
它可以帮助程序员实现最佳实践,而不需要重复编写相同的代码,这样可以节省大量时间和精力。
因此,软件工程师可以用少量的时间和精力开发出高质量的软件产品。
辅助函数构造还可以帮助软件工程师更容易地实现复杂的功能。
因为它们把复杂的程序结构分解成更容易理解的步骤,软件工程师可以更好地理解并处理复杂问题,并实现该功能。
最后,辅助函数构造在软件开发过程中可以帮助改善代码质量。
由于它可以帮助改善软件程序的可读性,软件工程师可以更轻松地查看代码,更快速地解决问题,并且可以更好地控制软件产品的质量。
总之,辅助函数构造是一种重要的软件技术,能够帮助软件程序员更快、更高效地实现特定功能。
它可以帮助改善软件程序的可读性,使软件程序员可以更容易地查看、管理和维护软件系统,从而提高软件开发的效率。
辅助函数的构造

4ax3 3bx2 2cx (a b c) 0 在 ( 0, 1) 内至少有一个根.
分析: 上述两个方程的左端构成的函数 g( x ) 在所给的
闭区间上都是连续,在开区间内可导的. 但例 2 中 g(0) g(a b) b a[1 sin( a b)] 0 ,
例 4:设 f ( x ) 在区间 [a , b] 上连续,在 (a, b) 内可导, 证明:在 (a , b) 内至少存在一个 ,使
bf ( b ) a f ( a ) f ( ) f ( ) ba
------------------------------------------bf ( b ) a f ( a ) [ xf ( x ) ] 【分析】即证 ba
bf ( b ) a f ( a ) f ( ) f ( ) ba bf ( b ) a f ( a ) bf ( b ) kb af ( a ) ka k, 【分析】令 ba
显然,这是一个对称式( a 与 b 互换等式不变)
故作辅助函数 F ( x ) xf ( x ) kx xf ( x )
由零点定理:至少存在一点 (0, a b ) ,
使得 F ( ) 0 ;
由(1)、(2)即知 是方程 x a sin x b 0 ( a , b 0 ) 在 ( 0, a b] 上的正根.
4 3 2 F ( x ) ax bx cx (a b c) x , 例 3 证明:设
(3) 分析关于端点的代数表达式是否为对称式或轮换对称式,
若是,只要把端点的 a 改成
x ,相应的函数值 f (a ) 改成
难点2 构造辅助函数求解导数问题

难点2 构造辅助函数求解导数问题1.“作差(商)法”构造函数当试题中给出简单的基本初等函数,例如f(x)=x 3,g(x)=ln x,要证明在某个取值范围内不等式f(x)≥g(x)成立时,可以构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),证明h(x)min ≥0或φ(x)max ≤0即可,在求最值的过程中,可以利用导数.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可以构造函数h(x)=,证明h(x)min ≥1(0<φ(x)max ≤1).典例1 已知函数f(x)=e x -ax(a 为常数)的图象与y 轴交于点A,曲线y=f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值;(2)证明:当x>0时,x 2<e x ;(3)证明:对任意给定的正数c,总存在x 0,使得当x∈(x 0,+∞)时,恒有x 2<ce x .解析 (1)由f(x)=e x -ax 得f '(x)=e x -a,则f '(0)=1-a=-1,得a=2.所以f(x)=e x -2x, f '(x)=e x -2,令f '(x)=0,得x=ln 2.所以,当x<ln 2时, f '(x)<0, f(x)单调递减;当x>ln 2时, f '(x)>0, f(x)单调递增. 故当x=ln 2时, f(x)有极小值且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4, f(x)无极大值.(2)证明:令g(x)=e x -x 2,则g'(x)=e x -2x,由(1)得g'(x)≥f(ln 2)>0,所以g(x)为增函数,因此,当x>0时,g(x)>g(0)=1>0,即x 2<e x .(3)证明:首先证明当x∈(0,+∞)时,恒有x 3<e x .证明如下: 令h(x)=x 3-e x (x∈(0,+∞)),则h'(x)=x 2-e x ,由(2)知,当x>0时,x 2<e x ,从而h'(x)<0,h(x)在(0,+∞)上单调递减,所以h(x)<h(0)=-1<0,即x 3<e x .取x 0=,当x>x 0时,有x 2<x 3<e x ,因此,对任意给定的正数c,总存在x 0,当x∈(x 0,+∞)时,恒有x 2<ce x .点拨在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”;第(3)问中,必须结合第(2)问的结论,证明“x3<e x”,于是构造函数“h(x)=x3-e x”.对点练函数f(x)=ln x+x2+ax(a∈R),g(x)=e x+x2,若对于任意的x∈(0,+∞),总有f(x)≤g(x)成立.求实数a的取值范围.解析f(x)≤g(x)⇒e x-ln x+x2≥ax,因为x>0,所以a≤对于任意的x>0恒成立,设φ(x)=(x>0),φ'(x)==,∵x>0,∴当x∈(0,1)时,φ'(x)<0,φ(x)单调递减;当x∈(1,+∞)时,φ'(x)>0,φ(x)单调递增,∴φ(x)≥φ(1)=e+1,∴a≤e+1.2.“拆分法”构造函数当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f(x)≤g(x)的形式,进而证明f(x)max ≤g(x)min即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.典例2 设函数f(x)=ae x ln x+,曲线y=f(x)在点(1, f(1))处的切线为y=e(x-1)+2.(1)求a,b;(2)证明: f(x)>1.解析(1)函数f(x)的定义域为(0,+∞),f '(x)=ae x+,依题意得解得a=1,b=2.(2)证明:由(1)知f(x)=e x ln x+,从而f(x)>1等价于xln x>xe-x-.构造函数g(x)=xln x(x>0),则g'(x)=1+ln x,所以当x∈时,g'(x)<0,当x∈时,g'(x)>0,故g(x)在上单调递减,在上单调递增,从而g(x)在(0,+∞)上的最小值为g=-.构造函数h(x)=xe-x-(x>0),则h'(x)=e-x(1-x),所以当x∈(0,1)时,h'(x)>0,当x∈(1,+∞)时,h'(x)<0,故h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.点拨对于第(2)问的证明,若直接构造函数h(x)=e x ln x+(x>0),求导以后不易分析,因此先将不等式“e x ln x+>1”合理拆分为“xln x>xe-x-”,再分别对左右两边构造函数,进而达到证明原不等式的目的.对点练(2017山东,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3, f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析(1)由题意知f '(x)=x2-ax,所以当a=2时, f(3)=0, f '(x)=x2-2x,所以f '(3)=3,因此,曲线y=f(x)在点(3, f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g'(x)=f '(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h'(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时,g(x)取到极大值,极大值是g(a)=-a3-sin a,当x=0时,g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g'(x)=x(x-sin x),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增.所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时,g(x)取到极大值,极大值是g(0)=-a;当x=a时,g(x)取到极小值,极小值是g(a)=-a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sin a.3.“换元法”构造函数典例3 已知函数f(x)=ax2+xln x(a∈R)的图象在点(1, f(1))处的切线与直线x+3y=0垂直.(1)求实数a的值;(2)求证:当n>m>0时,ln n-ln m>-.解析(1)因为f(x)=ax2+xln x,所以f '(x)=2ax+ln x+1,因为切线与直线x+3y=0垂直,所以切线的斜率为3,所以f '(1)=3,即2a+1=3,故a=1.(2)证明:要证ln n-ln m>-,即证ln>-,只需证ln-+>0.令=x,由已知n>m>0,得>1,即x>1,构造函数g(x)=ln x-+x(x>1),则g'(x)=++1.因为x∈(1,+∞),所以g'(x)=++1>0,故g(x)在(1,+∞)上单调递增.所以g>g(1)=0,即证得ln-+>0成立,所以命题得证.点拨将待证不等式等价变形为“ln-+>0”后,观察可知,对“”进行换元,进而构造函数“g(x)=ln x-+x(x>1)”来证明不等式,简化了证明过程中的运算.对点练已知函数f(x)=x2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s,使t=f(s);(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有<<. 解析(1)函数f(x)的定义域为(0,+∞).f '(x)=2xln x+x=x(2ln x+1),令f '(x)=0,得x=.当x变化时, f '(x), f(x)的变化情况如下表:所以函数f(x)的单调递减区间是,单调递增区间是.(2)证明:当0<x≤1时, f(x)≤0.令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而====,其中u=ln s.要使<<成立,只需0<ln u<.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln u-,u>1.F '(u)=-,令F '(u)=0,得u=2.当1<u<2时,F '(u)>0;当u>2时,F '(u)<0.故对u>1,F(u)≤F(2)<0.因此ln u<成立.综上,当t>e2时,有<<.4.二次(或多次)构造函数典例4 已知函数f(x)=-a(x-ln x).(1)当a=1时,试求f(x)在(1, f(1))处的切线方程;(2)若f(x)在(0,1)内有极值,试求a的取值范围.解析(1)当a=1时, f(1)=e-1,f '(x)=-1+, f '(1)=0.故切线方程为y=e-1.(2)若f(x)在(0,1)内有极值,则f '(x)在(0,1)内有解.令f '(x)==0(x∈(0,1))⇒e x-ax=0⇒a=.设g(x)=,x∈(0,1),所以g'(x)=,当x∈(0,1)时,g'(x)<0恒成立,所以g(x)在(0,1)上单调递减.因为g(1)=e,又当x→0时,g(x)→+∞,所以g(x)在(0,1)上的值域为(e,+∞),所以当a>e时, f '(x)==0在(0,1)内有解.设H(x)=e x-ax,则H'(x)=e x-a<0(x∈(0,1)),所以H(x)在x∈(0,1)内单调递减.因为H(0)=1>0,H(1)=e-a<0,所以H(x)=e x-ax在(0,1)上有唯一解x.所以有:所以当a>e时, f(x)在(0,1)内有极值且唯一.当a≤e时, f '(x)≥0在(0,1)上恒成立,则f(x)在(0,1)上单调递增,不符合题意.综上,a的取值范围为(e,+∞).对点练已知函数f(x)=ex-xln x,g(x)=e x-tx2+x,t∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解析(1)由f(x)=ex-xln x,知f'(x)=e-ln x-1,则f'(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-xln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+xln x≥0对任意的x∈(0,+∞)恒成立,即t≤对任意的x∈(0,+∞)恒成立,令F(x)=,则F'(x)==,令G(x)=e x+e--ln x,x∈(0,+∞),则G'(x)=e x--=>0对任意的x∈(0,+∞)恒成立.∴G(x)=e x+e--ln x在(0,+∞)上单调递增,且G(1)=0,∴当x∈(0,1)时,G(x)<0,当x∈(1,+∞)时,G(x)>0,即当x∈(0,1)时,F'(x)<0,当x∈(1,+∞)时,F'(x)>0.∴F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴F(x)≥F(1)=1,∴t≤1,即t的取值范围是(-∞,1].5.“转化法”构造函数典例5 设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f '(x)-零点的个数;(3)若对任意的b>a>0,<1恒成立,求m的取值范围.解析(1)当m=e时, f(x)=ln x+(x>0),则f '(x)=,故当x∈(0,e)时, f '(x)<0, f(x)在(0,e)上单调递减,当x∈(e,+∞)时, f '(x)>0, f(x)在(e,+∞)上单调递增,故当x=e时,f(x)取到极小值,也即最小值, f(e)=ln e+=2,故f(x)的最小值为2.(2)g(x)=f '(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ'(x)=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,故x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,故φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=ln x+-x(x>0),故(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=--1≤0在(0,+∞)上恒成立,得m≥-x2+x=-+(x>0)恒成立,故m≥,当且仅当x=时等号成立,故m的取值范围为.点拨本例第(3)问中,利用不等式的性质,将“<1”等价转化为“f(b)-b<f(a)-a”,进而构造函数“h(x)=f(x)-x”,通过研究函数的单调性求解实数m的取值范围.对点练已知函数f(x)=x2+(1-a)x-aln x.(1)讨论f(x)的单调性;(2)设a<0,若∀x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.解析(1)f(x)的定义域为(0,+∞).f '(x)=x+1-a-==.若a≤0,则f '(x)>0,此时f(x)在(0,+∞)上单调递增.若a>0,则由f '(x)=0,得x=a.当0<x<a时, f '(x)<0;当x>a时, f '(x)>0.此时f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)不妨设x1≤x2,又a<0,故由(1)知, f(x)在(0,+∞)上单调递增,∴f(x1)≤f(x2).从而∀x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|等价于∀x1,x2∈(0,+∞),4x1-f(x1)≥4x2-f(x2).(*)令g(x)=4x-f(x),则g'(x)=4-f '(x)=4-=-x+3+a.(*)式等价于g(x)在(0,+∞)上单调递减,∴g'(x)=-x+3+a≤0对任意的x∈(0,+∞)恒成立,∴a≤对任意的x∈(0,+∞)恒成立,∴a≤.又=x+1+-5≥2-5=-1,当且仅当x+1=,即x=1时,等号成立.∴a≤-1.故a的取值范围是(-∞,-1].。
浅谈定积分不等式证明中辅助函数的构造方法

浅谈定积分不等式证明中辅助函数的构造方法构造辅助函数法是高等数学中解决问题的一种重要方法,在解决实际问题中有着广泛的应用,通过研究微积分学中辅助函数的构造法,构造与问题相关的辅助函数,从而得出欲证明的结论。
尤其关于定积分不等式的证明在近几年的研究生数学考试中又频繁出现。
借助适当的辅助函数来证明定积分不等式是一种非常重要且行之有效的方法。
本文对某些定积分不等式中辅助函数的构造方法简单探讨。
标签:定积分不等式;构造;辅助函数;变限法当某些数学问题使用通常办法去考虑而很难奏效时,可根据题设条件和结论特征、性质展开联想,进而构造出解决问题的特殊模式——构造辅助函数。
辅助函数构造法是高等数学中一个重要的思想方法,在高等数学中广泛应用。
构造辅助函数是把复杂问题转化为已知的容易解决问题的一种方法,在解题时,常表现为不对问题本身求解,而是构造一个与问题有关的辅助问题进行求解。
微积分学中辅助函数的构造是在一定条件下利用微积分中值定理求解数学问题的方法。
可以解决高等数学中众多难题,尤其是在微积分证明题中应用颇广,可达到事半功倍的效果。
特别是定积分不等式的证明,往往需要借助恰当的辅助函数才能顺利完成,然而,对基础一般的学生来说,构造恰当的辅助函数是相当有难度的。
笔者在教学中进行探索,找到一些可行的方法,在此与广大读者进行交流。
一、构造辅助函数的原则辅助函数的构造是有一定规律的。
当某些数学问题使用通常的方法按定势思维去考虑很难奏效时,可根据题设条件和结论的特征、性质展开联想,进而构造出解决问题的特殊模式,这就是构造辅助函数解题的一般思路。
二、构造辅助函数方法探讨1.仅告知被积函数连续的命题的证法一般来说,这类命题的证明要做辅助函数(或者说用辅助函数法更简便)。
在定积分不等式中,辅助函数φ(x)的构造方法是将定积分不等式中,积分上限(或下限)及相同字母换成x,移项使不等式一端为0,则另一端即为所设的辅助函数φ(x)。
这类命题的证明思路:(1)做辅助函数φ(x);(2)求φ(x)的导数φ’(x),并判别φ(x)的单调性;(3)求φ(x)在积分区间[a,b]的端点值φ(a),φ(b),其中必有一个值为“0”,由第2条思路可推出φ(b)>φ(a)(或φ(b)<φ(a)),从而得出命题的证明。