中值定理构造辅助函数

合集下载

中值定理构造辅助函数

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:1将要证的结论中的ξ换成x ;2通过恒等变形将结论化为易消除导数符号的形式;3用观察法或积分法求出原函数等式中不含导数符号,并取积分常数为零;4移项使等式一边为零,另一边即为所求辅助函数()F x .例1:证明柯西中值定理.分析:在柯西中值定理的结论()()'()()()'()f b f a fg b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f ag x f x g b g a -=-再两边同时积分得()()()()()()f b f ag x f x C g b g a -=+-,令0C =,有()()()()0()()f b f a f x g x g b g a --=-故()()()()()()()f b f a F x f xg x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在0,1内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++⎰…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231n n a a a F x a x x x x n +=+++++…取0C =,则 1()F x 在0,1上连续2()F x 在0,1内可导3(0)F =0, 120(1)0231n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….这说明方程20120n n a a x a x a x ++++=…在0,1内至少有实根x ξ=.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数.例3:设()f x 在1,2上连续,在1,2内可导,1(1)2f =,(2)2f =.证明存在(1,2)ξ∈使2()'()f f ξξξ=.分析:结论变形为'()2()0f f ξξξ-=,不易凑成'()0x F x ξ==.我们将ξ换为x ,结论变形为'()20()f x f x x -=,积分得:2()ln ()2ln ln ln f x f x x c x -==,即2()f x c x=,从而可设辅助函数为2()()f x F x x =,有1(1)(2)2F F ==.本题获证. 例4:设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内可微,()()0f a f b ==.证明存在(,)a b ξ∈,使得:'()()'()0f f g ξξξ+=.证:将'()()'()0f f g ξξξ+=变形为'()()'()f f g ξξξ=-⇒'()'()()f g f ξξξ=-,将ξ换为x ,则'()'()()f x g x f x =-,两边关于x 积分,得:'()'()()f x dx g dx f x ξ=-⇒⎰⎰1[()][()]ln ()()()d f x d g x f x g x C f x =-⇒=-+⎰⎰,所以()(())exp(())exp()f x exp g x C g x C =-+=-exp(())K g x =-,其中exp()K C =,由()(())f x Kexp g x =-可得()exp(())K f x g x =.由上面积分的推导可知,()exp(())f x g x 为一常数K ,故其导数必为零,从整个变形过程知,满足这样结论的ξ的存在是不成问题的.因而令()()exp(())F x f x g x =,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数.例5:证明拉格朗日中值定理.分析:通过弦AB 两个端点的直线方程为()()()()f b f a y f a x a b a-=+--,则函数()f x 与直线AB 的方程之差即函数()()()()[()()]f b f a F x f x f a x a b a -=-+--在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数.例6:若()f x 在[,]a b 上连续且(),()f a a f b b <>.试证在(,)a b 内至少有一点ξ,使()f ξξ=.分析:由图可看出,此题的几何意义是说,连续函数()y f x =的图形曲线必跨越y x =这一条直线,而两者的交点的横坐标ξ,恰满足()f ξξ=.进而还可由图知道,对[,]a b 上的同一自变量值x ,这两条曲线纵坐标之差()f x x -构成一个新的函数()g x ,它满足()g a <0,()g b >0,因而符合介值定理的条件.当ξ为()g x 的一个零点时,()0g ξ=恰等价于()f ξξ=.因此即知证明的关键是构造辅助函数()()g x f x x =-.4 常数k 值法此方法构造辅助函数的步骤分为以下四点:1)将结论变形,使常数部分分离出来并令为k .2)恒等变形使等式一端为a 及()f a 构成的代数式,另一端为b 及()f b 构成的代数式.3观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为x ,相应的函数值改为()f x .4端点换变量x 的表达式即为辅助函数()F x .例7:设()f x 在[,]a b 上连续,在(,)a b 内可导,(0)a b <<,试证存在一点(,)a b ξ∈,使等式()()ln '()a f b f a f bξξ-=成立. 分析:将结论变形为()()'()ln ln f b f a f b a ξξ-=-,令()()ln ln f b f a k b a-=-,则有()ln ()ln f b k b f a k a -=-,令b x =,可得辅助函数()()ln F x f x k x =-.例8:设''()f x 在[,]a b 上存在,在a c b <<,试证明存在(,)a b ξ∈,使得()()()1''()()()()()()()2f a f b f c f a b a c b a b c c a c b ξ++=------. 分析:令()()()()()()()()()f a f b f c k a b a c b a b c c a c b ++=------,于是有()()()()()()()()()b c f a a b f c c a f b k a b a c b c -+-+-=---,上式为关于a ,b ,c 三点的轮换对称式,令b x =or :c x =,or :a x =,则得辅助函数()()()()()()()()()()F x x c f a a x f c c a f x k a x a c x c =-+-+-----.5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论.例9:设函数()F x 在0,1上连续,在0,1内可导,证明在0,1内存在一点C ,使得1(1)(0)()'()c c F F e e F C --=+-.分析:所要证的结论可变形为:11(1)(0)()'()'()c c c e F F e e F c F c e----=-=,即(1)(0)'()1c F F F c e e-=-,因此可构造函数()x G x e =,则对()F x 与()G x 在0,1上应用柯西中值定理即可得到证明.例10:设函数()f x 在0,1上连续,在0,1内可导,且(0)f =0,对任意(0,1)x ∈有()0f x ≠.证明存在一点(0,1)ξ∈使'()'(1)()(1)nf f f f ξξξξ-=-n 为自然数成立. 分析:欲证其成立,只需证'()(1)'(1)()0nf f f f ξξξξ---=由于对任意(0,1)x ∈有()0f x ≠,故只需证:1(())'()(1)'(1)(())0n n n f f f f f ξξξξξ----=即'[(())(1)]0n x f x f x ξ=-=,于是引入辅助函数()(())(1)n F x f x f x =-n 为自然数.例11:设函数()f x 在区间0,+∞上可导,且有n 个不同零点:120n x x x <<<<….试证()'()af x f x +在0,+∞内至少有1n -个不同零点.其中,a 为任意实数证明:欲证()'()af x f x +在0,+∞内至少有1n -个不同零点,只需证方程()'()af x f x +=0在0,+∞内至少有1n -个不同实根.因为,[0,+)x ∈∞,ax e 0≠,故只需证方程ax e [()'()]0af x f x +=在[0,+)∞内至少有1n -个不同实根.引入辅助函数()()ax F x e f x =,易验证()F x 在区间12,x x ,23,x x ,…,1,n n x x -上满足罗尔定理的条件,所以,分别在这1n -个区间上应用罗尔定理,得121'()'()'()0n F F F ξξξ-====…,其中11222311(,),(,),(,)n n n x x x x x x ξξξ--∈∈∈…且1210n ξξξ-<<<<…以上说明方程'()0F x =在12,x x 23,x x …1,n n x x -⊂0,+∞内至少有1n -个不同实根,从而证明了方程()'()af x f x +=0在0,+∞内至少有1n -个不同实根.6 待定系数法在用待定系数法时,一般选取所证等式中含ξ的部分为M ,再将等式中一个端点的值b 换成变量x ,使其成为函数关系,等式两端做差构造辅助函数()x ϕ,这样首先可以保证()b ϕ=0,而由等式关系()a ϕ=0自然满足,从而保证()x ϕ满足罗尔定理条件,再应用罗尔定理最终得到待定常数M 与'()f ξ之间的关系.例12:设()f x 是[,]a b 上的正值可微函数,试证存在(,)a b ξ∈,使()'()ln ()()()f b f b a f a f ξξ=-. 证明:设()ln ()()f b M b a f a =-,令()()ln ()()f x x M x a f a ϕ=--容易验证()x ϕ在[,]a b 上满足罗尔定理条件,由罗尔定理,存在(,)a b ξ∈使'()0ϕξ=,解得'()()f M f ξξ=,故()'()ln ()()()f b f b a f a f ξξ=-. 例13:设函数()f x 在[,]a b 上连续,在(,)a b 内可导,则在(,)a b 内至少存在一点ξ使222[()()]()'()f b f a b a f ξξ-=-. 证明:将所证等式看作22'()()()()2f f b f a b a ξξ-=-,设22()()()f b f a M b a -=-,令22()()()()x f x f a M x a ϕ=---,则()x ϕ满足罗尔定理条件,由罗尔定理得,存在一点(,)a b ξ∈,使'()0ϕξ=,即'()2f M ξξ=,若ξ=0,则'()0f ξ=,结论成立;若0ξ≠,则'()2f M ξξ=,从而有222[()()]()()f b f a f b a ξξ-=-. 例14:设120x x <<,则存在12(,)x x ξ∈使211212(1)()x x x e x e e x x ξξ-=--.分析:对于此题设211212()x x x e x e M x x -=-作函数11()x x x x e xe ϕ=-1()M x x --.应用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即110x x e e M ξ-+=,从而11x M e x e ξ=-,这样并不能证明原结论,遇到这种情况,说明所作的辅助函数不合适,则需要将所证明的等式变形,重新构造辅助函数. 证明:将所证等式变形为21212111(1)()x x e e e x x x x ξξ-=--,设2121x x e e x x -=2111()M x x -,令11()x x e e x x x ϕ=-111()M x x --,则()x ϕ满足罗尔定理条件,用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即2210e e M ξξξξξ-+=,于是(1)M e ξξ=-,故211212(1)()x x x e x e e x x ξξ-=--. 总之,证明微分中值命题的技巧在于:一是要仔细观察,适当变换待证式子;二是要认真分析,巧妙构造辅助函数.抓住这两点,即可顺利完成证明.。

应用微分中值定理构造辅助函数的三种方法

应用微分中值定理构造辅助函数的三种方法
缨,手∈(o,1). 妒(拿)一(1一搴)厂(e)=0,即厂(拿)= 1一‘
导,以o):以1):o,l卸畔:1.求证:(1)存 例6设,(戈)在[0,1]上连续,在(0,1)内可 一(茗一告)2
在叩∈(专,1)使八叩)=17;(2)对任意实数A,存
在拿∈(0,叩),使厂(e)一A[八乎)一手]=1.
38
成都纺织高等专科学校学报
2007年4月
分析:(1)fH连续函数的零点定理,证明起来
比较直观.(2)目的是要证(厂(∈)一拿)7一A(f(车) 一车)=0.由构造函数的待定因子法,令:
F(戈)=P(石)(.厂(石)一菇),得:
∥(石)=P’(z)(厂(戈)一z)+尸(戈)(厂(戈)一戈)7
=k((八戈)一菇)7一A(/.(石)一戈))
分析:将结论中的车换成菇后,可得厂(戈)∥ (石)一g(菇)厂(菇)=O,对等式左端求积分可得一 簇函数G(戈),并令积分常数C=0,即G(戈)=』
嗽菇)矿(菇)一g(茗)厂(戈)]dx=厂(菇)97(舅)一g
(x)f(名),可得r(x)=火x)97(戈)一g(x)厂(菇). 证明令F(茹)=“石)97(并)一g(茗)/(菇),
(名)戈一赢~=O,对等式左端,,求积分可得一簇函 数G(石),并令积分常数C=0,即G(戈)=『[厂
(茗)戈一志一嘉彤髫)戈一忐一1]d菇=厂(茹)戈一去’,可
得F(石)=.厂(茹)茹一赢~.
证明令F(x)=八x)x一赢~, 则F(石)在[口,6]上连续,在(口,b)内可导,且:
F(口)=F(b)=0. 由罗尔定理知,存在e∈(口,b),使得r(拿)=0, 另一方面:
构造辅助函数F(戈):△型来试一试.
证明令F(茁):丛型.

罗尔定理构造辅助函数微分方程法

罗尔定理构造辅助函数微分方程法

构造辅助函数时(这种情况适用于所有一阶齐次微分方程的情况→即f(x)与f~(x)只差一阶导时),先把方程写成一阶齐次微分方程的形式:f~(∮)+g(∮)f(∮)=0,再把∮改成x,最后两端同乘e~(∫g(x)dx),即可得到辅助函数。

罗尔(Rolle)中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理。

罗尔定理描述如下:
如果 R 上的函数 f(x) 满足以下条件:
(1)在闭区间 [a,b] 上连续。

(2)在开区间 (a,b) 内可导。

(3)f(a)=f(b),则至少存在一个ξ∈(a,b),使得 f'(ξ)=0。

证明:
因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:
1. 若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

2. 若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在ξ处取得极值,由费马引理,可导的极值点一定是驻点,推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

中值定理构造辅助函数的方法

中值定理构造辅助函数的方法

中值定理构造辅助函数的方法
中值定理是微积分中重要的定理之一,它是用来描述凸函数的性质的。

在构造辅助函数时,我们可以使用中值定理来简化问题或某些证明。

具体方法如下:
1. 构造辅助函数:根据问题的特点,构造一个合适的辅助函数。

辅助函数的选择要根据具体问题来决定,可以是原函数的导数,原函数的积分等。

2. 应用中值定理:利用构造的辅助函数应用中值定理来得到有关函数的性质。

中值定理通常有两种形式:拉格朗日中值定理和柯西中值定理。

具体选择哪个中值定理要根据辅助函数的性质和问题的要求来决定。

3. 利用中值定理的结论解决问题:根据中值定理的结论,进一步推导出问题的解决方法或者证明某些性质。

需要注意的是,构造辅助函数和应用中值定理需要根据具体的问题进行判断和分析。

不同的问题可能需要不同的辅助函数和中值定理形式来求解或证明。

因此,在使用中值定理构造辅助函数的时候,需要根据问题的特点灵活运用。

运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。

今天笔者就介绍下三种方式帮忙寻找到这个函数。

首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。

因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。

至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。

一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。

说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。

还不懂?没事,举两个例子。

例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。

解析:这是非常常见的一道题。

估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。

其实利用原函数法,很容易就找到这个辅助函数了。

首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。

拉格朗日中值定理证明导数

拉格朗日中值定理证明导数

拉格朗日中值定理证明导数1. 引言拉格朗日中值定理是微积分中的一条重要定理,用于研究函数在某区间上的平均变化率与其导数之间的关系。

本文将详细介绍拉格朗日中值定理的推导过程,并证明了导数存在的条件。

2. 拉格朗日中值定理的表述首先,我们来看一下拉格朗日中值定理的表述:定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导。

那么存在ξ∈(a,b),使得:f′(ξ)=f(b)−f(a)b−a其中,ξ为(a,b)内的某个数。

从定理的表述中,我们可以看出拉格朗日中值定理是关于函数导数和函数值之间的关系的定理。

3. 证明过程为了证明拉格朗日中值定理,我们将分步进行证明。

步骤 1:构造辅助函数首先,我们构造辅助函数:F(x)=f(x)−f(b)−f(a)b−a(x−a)辅助函数F(x)与原函数f(x)的作用是相辅相成的。

步骤 2:使用罗尔定理由于辅助函数F(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导,我们可以应用罗尔定理来证明存在一个ξ∈(a,b),使得F′(ξ)=0。

根据罗尔定理,F(x)在闭区间[a,b]上可导,且F(a)=F(b),则存在一个ξ∈(a,b),使得F′(ξ)=0。

步骤 3:推导辅助函数的导数根据辅助函数F(x)的定义:F(x)=f(x)−f(b)−f(a)b−a(x−a)对其求导,得到:F′(x)=f′(x)−f(b)−f(a)b−a步骤 4:辅助函数的导数为零根据步骤 2 和步骤 3 的结果,我们得到:F′(ξ)=0代入辅助函数的导数表达式,得到:f′(ξ)−f(b)−f(a)b−a=0经过整理,可以得到:f′(ξ)=f(b)−f(a)b−a这就是拉格朗日中值定理的结论。

4. 导数存在的条件根据拉格朗日中值定理的证明过程,我们可以得出导数存在的条件:•函数f(x)在闭区间[a,b]上连续•函数f(x)在开区间(a,b)上可导只有满足这两个条件,才能使用拉格朗日中值定理求得导数的值。

关于复变函数的微分中值定理及其证明

关于复变函数的微分中值定理及其证明

关于复变函数的微分中值定理及其证明一、引言复变函数微分中值定理是复变函数理论中的重要定理之一。

它是由微积分中的实数函数中值定理推广而来的,是研究复变函数性质的基础。

本文将详细探讨复变函数的微分中值定理及其证明过程。

二、复变函数的微分中值定理复变函数的微分中值定理是指:设f(z)在区域D上解析,z1和z2是D中的任意两点,若存在一条连接z1和z2的曲线C,且C上的每一点都在D内,则存在一点ζ在C上,使得[f(z_2)-f(z_1)=(z_2-z_1)f’().]其中,f′(ζ)是f(z)在点ζ处的导数。

三、证明过程为了证明复变函数的微分中值定理,我们将分为以下几步进行证明。

1. 构造辅助函数设ℎ(t)=f(z2)−f(z1)−(z2−z1)f(t),其中t为参数。

令g(t)=|ℎ(t)|2,我们将证明g(t)在区间[0,1]上的最大值和最小值都达到于某一点ζ。

2. 计算辅助函数的导数根据复变函数的导数定义,我们有[g’(t)=2{h^(t)h’(t)}.]其中,ℎ∗(t)表示复共轭。

将ℎ(t)的表达式代入,得到[g’(t)=2{[f(z_2)-f(z_1)-(z_2-z_1)f(t)]^[f’(t)(z_2-z_1)-f(z_2)+f(z_1)]}.]3. 利用导数的性质由于f(z)在区域D上解析,根据柯西-黎曼方程的性质可知,f′(t)(z2−z1)−f(z2)+f(z1)=0。

根据导数的性质,g′(t)=0意味着g(t)在其定义域上取得极值。

4. 确定辅助函数的极值点根据步骤3的结果,我们知道g(t)在[0,1]上的极值点对应于ℎ(t)为常数的点。

令ℎ(t)=C,其中C为常数。

解方程可以得到t=ζ。

这表明最大值和最小值都取自于某一点ζ。

5. 求解极值点通过解方程ℎ(t)=C,我们可以求解出ζ的值。

代入ℎ(t)的表达式并整理可以得到[f’()=(f(z_2)-f(z_1))/(z_2-z_1).]由此,我们证明了复变函数的微分中值定理。

微分中值定理辅助函数类型的构造技巧

微分中值定理辅助函数类型的构造技巧

微分中值定理辅助函数类型的构造技巧构造辅助函数是应用微分中值定理的一种常用技巧,通过构造合适的辅助函数,可以简化定理的证明过程,使得结论更容易得到。

下面将介绍几种常见的构造辅助函数的技巧。

1.构造差商辅助函数:差商是在微积分中常用的一个概念,表示函数在一点附近的平均变化率。

通过构造差商辅助函数,可以将函数的变化率转化成差商的形式,从而应用差商的性质进行分析和证明。

具体来说,如果要证明一个函数在一些区间上的平均变化率等于两个点之间的差商,可以构造一个辅助函数,使得辅助函数的导数等于差商,从而可以利用微分中值定理得到所需的结果。

2.构造导函数辅助函数:导函数是函数在一点处的斜率,表示函数的变化速率。

通过构造导函数辅助函数,可以转化函数在区间上的斜率问题为导函数在特定点上的函数值问题。

具体来说,可以通过构造辅助函数的导函数等于原函数的导函数,再利用微分中值定理得到结论。

3.构造积分辅助函数:积分是函数的反导数,表示函数在一点处与坐标轴之间的面积。

通过构造积分辅助函数,可以将函数的积分转化为函数在区间上的平均值。

具体来说,可以通过构造辅助函数的积分等于原函数的积分,再利用微分中值定理得到所需的结论。

4.构造复合函数辅助函数:复合函数是两个或多个函数通过函数运算得到的新函数。

通过构造复合函数辅助函数,可以将定理的证明转化为复合函数的导数的证明。

具体来说,可以通过构造复合函数辅助函数使得辅助函数的导数等于复合函数的导数,再利用微分中值定理得到结论。

总之,构造辅助函数是证明微分中值定理的一种常见技巧,可以简化证明过程,使得结论更容易得到。

不同的辅助函数类型适用于不同的证明问题,具体的构造方法需要根据具体的问题进行选择。

在构造辅助函数时,需要充分发挥函数的性质和微积分的基本概念,灵活运用各种技巧,才能得到令人满意的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分中值定理证明中辅助函数的构造1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理.分析:在柯西中值定理的结论()()'()()()'()f b f a fg b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f ag x f x g b g a -=-再两边同时积分得()()()()()()f b f ag x f x C g b g a -=+-,令0C =,有()()()()0()()f b f a f x g x g b g a --=-故()()()()()()()f b f a F x f xg x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++⎰…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设231120()231n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续2)()F x 在(0,1)内可导3)(0)F =0, 120(1)0231n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….这说明方程20120n n a a x a x a x ++++=…在(0,1)内至少有实根x ξ=.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数.例3:设()f x 在[1,2]上连续,在(1,2)内可导,1(1)2f =,(2)2f =.证明存在(1,2)ξ∈使2()'()f f ξξξ=.分析:结论变形为'()2()0f f ξξξ-=,不易凑成'()0x F x ξ==.我们将ξ换为x ,结论变形为'()20()f x f x x -=,积分得:2()ln ()2ln ln ln f x f x x c x -==,即2()f x c x=,从而可设辅助函数为2()()f x F x x =,有1(1)(2)2F F ==.本题获证. 例4:设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内可微,()()0f a f b ==.证明存在(,)a b ξ∈,使得:'()()'()0f f g ξξξ+=.证:将'()()'()0f f g ξξξ+=变形为'()()'()f f g ξξξ=-⇒'()'()()f g f ξξξ=-,将ξ换为x ,则'()'()()f x g x f x =-,两边关于x 积分,得:'()'()()f x dx g dx f x ξ=-⇒⎰⎰1[()][()]ln ()()()d f x d g x f x g x C f x =-⇒=-+⎰⎰,所以()(())exp(())exp()f x exp g x C g x C =-+=-exp(())K g x =-,其中exp()K C =,由()(())f x Kexp g x =-可得()exp(())K f x g x =.由上面积分的推导可知,()exp(())f x g x 为一常数K ,故其导数必为零,从整个变形过程知,满足这样结论的ξ的存在是不成问题的.因而令()()exp(())F x f x g x =,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数.例5:证明拉格朗日中值定理.分析:通过弦AB 两个端点的直线方程为()()()()f b f a y f a x a b a-=+--,则函数()f x 与直线AB 的方程之差即函数()()()()[()()]f b f a F x f x f a x a b a -=-+--在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数.例6:若()f x 在[,]a b 上连续且(),()f a a f b b <>.试证在(,)a b 内至少有一点ξ,使()f ξξ=.分析:由图可看出,此题的几何意义是说,连续函数()y f x =的图形曲线必跨越y x =这一条直线,而两者的交点的横坐标ξ,恰满足()f ξξ=.进而还可由图知道,对[,]a b 上的同一自变量值x ,这两条曲线纵坐标之差()f x x -构成一个新的函数()g x ,它满足()g a <0,()g b >0,因而符合介值定理的条件.当ξ为()g x 的一个零点时,()0g ξ=恰等价于()f ξξ=.因此即知证明的关键是构造辅助函数()()g x f x x =-.4 常数k 值法此方法构造辅助函数的步骤分为以下四点:1)将结论变形,使常数部分分离出来并令为k .2)恒等变形使等式一端为a 及()f a 构成的代数式,另一端为b 及()f b 构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为x ,相应的函数值改为()f x .4)端点换变量x 的表达式即为辅助函数()F x .例7:设()f x 在[,]a b 上连续,在(,)a b 内可导,(0)a b <<,试证存在一点(,)a b ξ∈,使等式()()ln '()a f b f a f bξξ-=成立. 分析:将结论变形为()()'()ln ln f b f a f b a ξξ-=-,令()()ln ln f b f a k b a-=-,则有()ln ()ln f b k b f a k a -=-,令b x =,可得辅助函数()()ln F x f x k x =-.例8:设''()f x 在[,]a b 上存在,在a c b <<,试证明存在(,)a b ξ∈,使得()()()1''()()()()()()()2f a f b f c f a b a c b a b c c a c b ξ++=------. 分析:令()()()()()()()()()f a f b f c k a b a c b a b c c a c b ++=------,于是有()()()()()()()()()b c f a a b f c c a f b k a b a c b c -+-+-=---,上式为关于a ,b ,c 三点的轮换对称式,令b x =(or :c x =,or :a x =),则得辅助函数()()()()()()()()()()F x x c f a a x f c c a f x k a x a c x c =-+-+-----.5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论.例9:设函数()F x 在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点C ,使得1(1)(0)()'()c c F F e e F C --=+-. 分析:所要证的结论可变形为:11(1)(0)()'()'()c c c e F F e e F c F c e----=-=,即(1)(0)'()1c F F F c e e-=-,因此可构造函数()x G x e =,则对()F x 与()G x 在[0,1]上应用柯西中值定理即可得到证明.例10:设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)f =0,对任意(0,1)x ∈有()0f x ≠.证明存在一点(0,1)ξ∈使'()'(1)()(1)nf f f f ξξξξ-=-(n 为自然数)成立. 分析:欲证其成立,只需证'()(1)'(1)()0nf f f f ξξξξ---=由于对任意(0,1)x ∈有()0f x ≠,故只需证:1(())'()(1)'(1)(())0n n n f f f f f ξξξξξ----=即'[(())(1)]0n x f x f x ξ=-=,于是引入辅助函数()(())(1)n F x f x f x =-(n 为自然数).例11:设函数()f x 在区间[0,+∞]上可导,且有n 个不同零点:120n x x x <<<<….试证()'()af x f x +在[0,+∞]内至少有1n -个不同零点.(其中,a 为任意实数)证明:欲证()'()af x f x +在[0,+∞)内至少有1n -个不同零点,只需证方程()'()af x f x +=0在[0,+∞]内至少有1n -个不同实根.因为,[0,+)x ∈∞,ax e 0≠,故只需证方程ax e [()'()]0af x f x +=在[0,+)∞内至少有1n -个不同实根.引入辅助函数()()ax F x e f x =,易验证()F x 在区间[12,x x ],[23,x x ],…,[1,n n x x -]上满足罗尔定理的条件,所以,分别在这1n -个区间上应用罗尔定理,得121'()'()'()0n F F F ξξξ-====…,其中11222311(,),(,),(,)n n n x x x x x x ξξξ--∈∈∈…且1210n ξξξ-<<<<…以上说明方程'()0F x =在[12,x x ][23,x x ]…[1,n n x x -]⊂[0,+∞]内至少有1n -个不同实根,从而证明了方程()'()af x f x +=0在[0,+∞]内至少有1n -个不同实根.6 待定系数法在用待定系数法时,一般选取所证等式中含ξ的部分为M ,再将等式中一个端点的值b 换成变量x ,使其成为函数关系,等式两端做差构造辅助函数()x ϕ,这样首先可以保证()b ϕ=0,而由等式关系()a ϕ=0自然满足,从而保证()x ϕ满足罗尔定理条件,再应用罗尔定理最终得到待定常数M 与'()f ξ之间的关系.例12:设()f x 是[,]a b 上的正值可微函数,试证存在(,)a b ξ∈,使()'()ln ()()()f b f b a f a f ξξ=-. 证明:设()ln ()()f b M b a f a =-,令()()ln ()()f x x M x a f a ϕ=--容易验证()x ϕ在[,]a b 上满足罗尔定理条件,由罗尔定理,存在(,)a b ξ∈使'()0ϕξ=,解得'()()f M f ξξ=,故()'()ln()()()f b f b a f a f ξξ=-. 例13:设函数()f x 在[,]a b 上连续,在(,)a b 内可导,则在(,)a b 内至少存在一点ξ使222[()()]()'()f b f a b a f ξξ-=-.证明:将所证等式看作22'()()()()2f f b f a b a ξξ-=-,设22()()()f b f a M b a -=-,令22()()()()x f x f a M x a ϕ=---,则()x ϕ满足罗尔定理条件,由罗尔定理得,存在一点(,)a b ξ∈,使'()0ϕξ=,即'()2f M ξξ=,若ξ=0,则'()0f ξ=,结论成立;若0ξ≠,则'()2f M ξξ=,从而有222[()()]()()f b f a f b a ξξ-=-. 例14:设120x x <<,则存在12(,)x x ξ∈使211212(1)()x x x e x e e x x ξξ-=--. 分析:对于此题设211212()x x x e x e M x x -=-作函数11()x x x x e xe ϕ=-1()M x x --.应用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即110x x e e M ξ-+=,从而11x M e x e ξ=-,这样并不能证明原结论,遇到这种情况,说明所作的辅助函数不合适,则需要将所证明的等式变形,重新构造辅助函数. 证明:将所证等式变形为21212111(1)()x x e e e x x x x ξξ-=--,设2121x x e e x x -=2111()M x x -,令11()x x e e x x x ϕ=-111()M x x --,则()x ϕ满足罗尔定理条件,用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即2210e e M ξξξξξ-+=,于是(1)M e ξξ=-,故211212(1)()x x x e x e e x x ξξ-=--.总之,证明微分中值命题的技巧在于:一是要仔细观察,适当变换待证式子;二是要认真分析,巧妙构造辅助函数.抓住这两点,即可顺利完成证明.。

相关文档
最新文档