微分中值定理怎样构造辅助函数
应用微分中值定理构造辅助函数的三种方法

导,以o):以1):o,l卸畔:1.求证:(1)存 例6设,(戈)在[0,1]上连续,在(0,1)内可 一(茗一告)2
在叩∈(专,1)使八叩)=17;(2)对任意实数A,存
在拿∈(0,叩),使厂(e)一A[八乎)一手]=1.
38
成都纺织高等专科学校学报
2007年4月
分析:(1)fH连续函数的零点定理,证明起来
比较直观.(2)目的是要证(厂(∈)一拿)7一A(f(车) 一车)=0.由构造函数的待定因子法,令:
F(戈)=P(石)(.厂(石)一菇),得:
∥(石)=P’(z)(厂(戈)一z)+尸(戈)(厂(戈)一戈)7
=k((八戈)一菇)7一A(/.(石)一戈))
分析:将结论中的车换成菇后,可得厂(戈)∥ (石)一g(菇)厂(菇)=O,对等式左端求积分可得一 簇函数G(戈),并令积分常数C=0,即G(戈)=』
嗽菇)矿(菇)一g(茗)厂(戈)]dx=厂(菇)97(舅)一g
(x)f(名),可得r(x)=火x)97(戈)一g(x)厂(菇). 证明令F(茹)=“石)97(并)一g(茗)/(菇),
(名)戈一赢~=O,对等式左端,,求积分可得一簇函 数G(石),并令积分常数C=0,即G(戈)=『[厂
(茗)戈一志一嘉彤髫)戈一忐一1]d菇=厂(茹)戈一去’,可
得F(石)=.厂(茹)茹一赢~.
证明令F(x)=八x)x一赢~, 则F(石)在[口,6]上连续,在(口,b)内可导,且:
F(口)=F(b)=0. 由罗尔定理知,存在e∈(口,b),使得r(拿)=0, 另一方面:
构造辅助函数F(戈):△型来试一试.
证明令F(茁):丛型.
辅助函数在微分中值问题中的构造及应用

辅助函数在微分中值问题中的构造及应用学生姓名:XXX(XXX)指导老师:XXX摘要:构造辅助函数是解决微分中值问题的一种重要途径.快速而又准确的构造相应的辅助函数是解决当前微分中值问题的关键.本文给出了几种辅助函数的构造方法:积分法,常数k值法,原函数法,微分方程法;并且举出具体例子加以说明. 关键词:辅助函数;微分中值定理Construction and Application of the Auxiliary Function inDifferential Mean Value ProblemsStudent:X XXInstructor:X XXAbstract:The construction of auxiliary function is an important way to solve the differential median problem. The key to solve current differential median problem is construct the auxiliary function quickly and accurately. This paper presents several methods of constructing auxiliary function: Integral method, The value of the constant K method, The original function method, The method of differential equation; And shows some specific examples to explain how to constructing.Key Word: Auxiliary function;Differential median theorem目录1 引言 (1)2 数学分析中的三种微分中值定理 (1)3 构造辅助函数的四种方法 (3)3.1 积分法 (3)3.2 常数k值法 (5)3.3 原函数法 (6)3.4 微分方程法 (8)4 结论 (10)参考文献 (12)致谢 (12)1 引言微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础.所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命题,实际上,高等数学中的一些定理,如:罗尔定理,拉格朗日定理,柯西定理均可看做是中值命题.我们可以利用这些定理来证明其他的中值命题.这部分内容理论性强,抽象程度高,教学过程中又容易照本宣科, 导致学生学习兴趣不大, 难于理解和应用.究其主要原因是中值定理证明过程中要借用到的辅助函数, 学生对辅助函数的由来不知其然, 因而辅助函数的引入一直是微分中值定理教学上的一个难点.辅助函数的构造有很大技巧性和灵活性,一般说来,应先分析命题的条件和结论,正确选择所应用的定理,然后将欲证的等式或不等式变形,将其视为对辅助函数应用定理后的结果,并作为构造辅助函数的主要依据,即: 分析条件或结论→选择定理→构造辅助函数→得出结论.根据命题形式的变化选择合适的方法并加以解决.人们在探究辅助函数构造规律的教学实践中,总结出了很多有益的方法,比如常数K 值法,原函数法,微分方程法等.下面我们就通过几个具体例子来寻求构造辅助函数的常用方法.2 数学分析中的三种微分中值定理罗尔定理 若函数)(x f '满足下列条件:1) 在闭区间[]b a ,连续;2) 在开区间()b a ,可导;3) )()(b f a f =,则在()b a ,内至少存在一点c ,使0)(='c f .几何意义 在闭区间[]b a ,上有连续曲线)(x f y =,曲线上每一点都存在切线,在闭区间[]b a ,的两个端点a 与b 的函数值相等,即)()(b f a f =,则线上至少有一点,过该点的切线平行x 轴,如图1.图1拉格朗日定理 若函数)(x f '满足下列条件:1) 在闭区间[]b a ,连续;2) 在开区间()b a ,可导,则在开区间()b a ,内至少存在一点c ,使ab a f b fc f --=')()()(. 几何意义 在∆ABP 中,αtan )()(=--ab a f b f , 其中α是割线AB 与x 轴的交角,即a b a f b f --)()(是通过曲线)(x f y =上二点A ))(,(a f a 与B ))(,(b f b 的割线斜率.拉格朗日定理的几何意义是:若闭区间[]b a ,上有一条连续曲线,曲线上每一点都存在切线,则曲线上至少存在一点M ))(,(c f c ,过点M 的切线平行于割线AB.如图2.图2柯西中值定理 若函数)(x f 与)(x g 满足下列条件:1) 在闭区间[]b a ,连续;2) 在开区间()b a ,可导,且),(b a x ∈∀,有0)(≠'x g ,则在),(b a 内至少存在一点c ,使)()()()()()(a g b g a f b f c g c f --=''. 几何意义 若令)(x f u =,)(x g v =,这个形式可理解为参数方程,而)()()()(a g b g a f b f --则是连接参数曲线的端点斜率,)()(c g c f ''表示曲线上某点处的切线斜率,在定理的条件下,可理解如下:用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦.几个微分中值定理之间的关系 我们不难看出,当)()(b f a f =时,拉格朗日定理就成为罗尔定理,即罗尔定理是拉格朗日定理的特殊情况.拉格朗日定理是微分学最重要的定理之一,也称微分中值定理.它是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具.在柯西中值定理中,当x x g =)(时,1)(='x g ,a a g =)(,b b g =)(,那么柯西中值定理也就成为拉格朗日定理,即拉格朗日定理是柯西中值定理的特殊情况.正确把握中值定理之间的关系,才能更好的处理微分中值问题.3 构造辅助函数的四种方法3.1 积分法在一些问题中,要借助积分法来构造出符合题设要求且满足微分中值定理条件的辅助函数.具体方法是把欲证结论中的ξ换成x ,将替换后的等式变形为易于积分的形式,再两边积分解出C ,由此可构造出相应的辅助函数.例1 设函数)(x f 在[]1,0上二阶可导,且0)1()0(==f f ,证明存在)1,0(∈ξ,使得ξξξ-'=''1)(2)(f f . 分析:在结论中用x 替换ξ,有xx f x f -'=''1)(2)(, 将其变形为易于积分的形式: xx f x f -='''12)()(, 两边积分:x xx x f x f d 12d )()(⎰⎰-=''', 即 C x x f ln 1ln 2)(ln +--=',解得)()1(2x f x C '-=.证明:设辅助函数)()1()(F 2x f x x '-=.因为)(x f 在[]1,0上二阶可导,所以)(x f 在[]1,0上连续,在)1,0(内可导,且0)1()0(==f f ,故满足罗尔定理条件,所以存在)1,0(∈η使0)(='ηf .又在)1,(η内,0)()(1)F(2='-=ηηηf ,0)1()11()1F(2='-=f ,)(F x 满足罗尔定理条件,所以存在)1,(ηξ∈,使0)()1()()1(2)(F 2=''-+'--='ξξξξξf f ,即ξξξ-'=''1)(2)(f f . 例2 设)(x f ,)(x g 在[]b a ,上二阶可导,且)()()()(b g a g b f a f ===,证明存在),(b a ∈ξ,使得)()()()(ξξξξg f g f ''=''.分析:将要证的式子移项、通分,使右端为零,得0)()()(=''''ξξξg g f ,再将ξ换为x 得0)()()()(=''-''x g x f x g x f .令)()()()()(F x g x f x g x f x ''-''=',积分(积分常数C 取0)得辅助函数:[])()()()(d )()()()()(F x g x f x f x g x x g x f x g x f x '-'=''-''=⎰.证明:令辅助函数为)()()()()(F x g x f x f x g x '-'=,则易知)(F x 在[]b a ,上可导,且0F(b))F(==a ,由罗尔定理得,在),(b a 内至少存在一点ξ,使0)(F ='ξ,即)()()()(ξξξξg f g f ''=''.3.2 常数k 值法在构造辅助函数时,若表达式关于端点处的函数值具有对称性,也就是说常数部分可以分离出来,那么通常采用常数K 值法来寻求构造辅助函数.其具体方法是:将题设的结论变形,使其常数部分分离出来并令其为k ,而后通过恒等变形,使等式一端为a 及)(a f 所构成的代数式,另一端b 及)(b f 所构成的代数式,将所证等式中的端点值(a 或b )改为变量x ,移项即为辅助函数)F(x ,再用中值定理或待定系数法等方法确定k .例1 设0>a ,0>b 。
罗尔定理构造辅助函数万能公式

罗尔定理构造辅助函数万能公式郭元春陈思源马晓燕1.西安思源学院基础部陕西西安 710038;2.西安思源学院高等教育营销研究中心陕西西安 710038微分中值定理在微积分学中占有十分重要的地位,是用函数局部性质推断整体性质的有力工具。
罗尔定理是微分中值定理中最为基础的一个,定理内容:若函数f(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则存在某个中值ξ∈(a,b),使得等式f′(ξ)=0。
利用罗尔定理证明中值等式问题的难点就是辅助函数的构造。
刘文武、张军、肖俊等人[1-3]采用逆向思维法对该类问题做了相应的研究。
逆向思维法是从结果出发分析中值等式的特点,选择适当的方法构造辅助函数。
微分中值等式问题常见的形式是:已知函数f(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(x)满足某些附加条件,求证存在某个中值ξ∈(a,b),使得等式F(ξ,f(ξ),f′(ξ))=0。
该等式左边看作是某个函数g(x)在点ξ处的导数,即g′(ξ)=0。
由拉格朗日中值定理可知,g(x)=C 是满足该等式的最简单的函数。
显然这个隐函数是原微分方程的通解,因此,在微分中值问题中,一般把通解中的积分常数令为辅助函数。
本文采用逆向思维法,对微分中值问题中构造辅助函数的常见题型作归纳和总结。
一、利用分离变量法构造辅助函数(一)证明的等式是关于ξ,f(ξ),f′(ξ)的微分方程例1[4]:设函数f(x)在闭区间[0,π]上连续,在开区间(0,π)内可导,证明:在开区间(0,π)内至少存在一点ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。
证明:令F(x)=f(x)sinx,显然,F(x)在闭区间[0,π]上连续,在开区间(0,π)内可导,且F(0)=F(π),故由罗尔定理知,在开区间(0,π)内至少存在一点ξ,使得F′(ξ)=0,而F′(ξ)=f′(ξ)sinξ+f(ξ)cosξ,也就是说,在开区间(0,π)内至少存在一点ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。
数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法摘要数学中运用辅助函数就像是在几何中添加辅助线,其应用是非常广泛的. 构造辅助函数是数学命题推证的有效方法,是转化问题的一种重要手段。
遇到特殊的问题时,用常规方法可能比较复杂.这时就需要构造辅助函数,就如同架起一座桥梁,不需要大量的算法就可以得到结果.如何构造辅助函数是数学分析解题中的难点,看似无章可循,但仔细研究不失基本方法和一般规律。
文章通过对微分中值定理证明中,关于构造辅助函数方法的总结和拓展,给出了多种形式的辅助函数;通过详尽的实例,讲明了辅助函数在不等式、恒等式、函数求极限、讨论方程的根及非齐次线性微分方程求解中的运用,尝试找出如何构造辅助函数的几种方法,并通过这些方法在一些具体实例中的运用归纳出构造函数法的一些思路.关键词辅助函数;中值定理;恒等式与不等式;函数表达式;极值1.引言数学中,不等式与等式的证明、微分中值定理、拉格朗日条件极值、线性微分方程求解公式等,都是通过构造一个辅助函数来完成推证的,有时候构造辅助函数也是求证数学命题的简便而有效的方法之一,掌握构造辅助函数证明数学命题的方法的关键是要对“数学现象”善于观察,联想和发现问题,根据直观的结论倒推构造什么样的辅助函数.基本思路是从一个目标出发,联想起某种曾经遇到过的方法、手段,而后借助于这些方法和手段去接近目标,或者从这些方法和手段出发,去联想别的通向目标的方法和手段,这样继续下去,直到达到把问题归结到一个明显成立的结构上为止.构造辅助函数实质上就是分析法的一种技巧,也是数学中的一个难点,值得重视的是,在证明命题的过程中要不断研究问题的本质,从而寻求构造辅助函数的方法,文章重点分析了微分中值定理的证明中辅助函数的构造方法与技巧,进而应用到其他一般命题的证明中.2.微分中值定理证明中构造辅助函数的方法与技巧2.1 拉格朗日(Lagrange )中值定理辅助函数的作法定理1(Rolle ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续; (ii )()f x 在开区间(,)a b 内可导; (iii )()()f a f b =;则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.定理2(Lagrange ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b aξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为Rolle 定理的结论。
运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。
今天笔者就介绍下三种方式帮忙寻找到这个函数。
首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。
因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。
至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。
一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。
说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。
还不懂?没事,举两个例子。
例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。
解析:这是非常常见的一道题。
估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。
其实利用原函数法,很容易就找到这个辅助函数了。
首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。
浅谈应用微分中值定理解证明题时构造辅助函数的指数因子法汇总

科技信息高校理科研究浅谈应用微分中值定理解证明题时构造辅助函数的指数因子法中国矿业大学(北京)理学院吴新峰张晓宁[摘要]本文通过典型例子讨论了应用微分中值定理解证明题时构造辅助函数的一种常用的方法:指数因子法。
[关键词]指数因子法微分中值定理辅助函数1.指数因子法的基本原理微分中值定理是高等数学中的一个重要定理,它建立了函数与导数之间的联系,有着十分广泛的应用。
在证明含有抽象函数及其导数值的等式中,微分中值定理,特别是罗尔中值定理,常常发挥着重要的作用。
[1]《高等数学》中的罗尔中值定理是这样叙述的:定理:若函数F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b),则至少存在一点ξ∈(a,b),使F'(ξ)=0。
微积分中,许多与函数及其导数有关的证明题都可用罗尔中值定理证明,关键在于正确构造辅助函数。
而在实践中,学生遇到的困难往往是:如何构造辅助函数F(x),使得它满足罗尔定理的条件,从而推得结论成立?我们知道,构造辅助函数的方法很多,辅助函数也不唯一。
一般而言,构造辅助函数的方法是根据要证明的等式为突破口,其中指数因子法就是一种简单且易掌握的方法。
[2]众所周知,(ex)'=ex,这表明,指数函数ex是“求导”运算的“不动点”。
x正是由于指数函数e的这种特性,使得它在解决很多高等数学问题中由复合函数求导法则,有发挥了重要的作用。
我们假定函数f,φ可导,φ(x)φ(x)[ef(x)]'=e[φ'(x)f(x)+f'(x)]。
再由指数函数恒正,知下面两式等价:(1)φ'(x)f(x)+f'(x)=0(2)[eφ(x)f(x)]'=0因此,凡是欲证明的等式具有(1)的形式或者可以通过恒等变形转化为(1)的形式,我们都可以考虑用指数因子法构造辅助函数:即欲证明(1)式成立,只需证明(2)式成立。
因此,通常可将辅助函数取成:F(x)=eφ(x)f(x)。
2.典型例题例一:设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,k为正实数。
构造辅助函数

则 在 上满足罗尔定理三个条件,于是分别存在 , 使得 .
又
从而可知 在 上满足罗尔定理三个条件,故存在 使 即
.
亦即
将常数k值法进行总结并归纳出下面一般性结论:
(1)常数 值法适用于欲证结论为:至少存在一点 ,使得 及其代数式的命题.
(2)常数 值法构造辅助函数的步骤为:
①将欲证等式中常数部分分离出来并令为 .
例一:设函数 在 上连续,在 内可导,证明在 内至少存在一点 ,使得
.
分析:令
,
则
,
为一个关于 与 的对称式。故可取
.
证明:令
则 在 上连续,在 内可导,又 从而 在 上满足罗尔定理,于是存在一个 ,使得 ,即
亦即
.
例二:设 在 上存在, 试证明存在 ,使得
.
分析:令
于是有
,
上式为关于 三点的轮换对称式令 则得
③用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为0,
④移项使等式一边为0,另一边即为所求辅助函数 .
(2)拉氏中值定理证明中辅助函数的构造:在拉氏中值定理的结论
,
中令: 则有
两边积分得
,
取 ,得
,
移项得
,
故
,
为所求辅助函数.
(3)柯西中值定理证明中辅助函数的构造.在柯西中值定理的结论中
摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。
关键字:辅助函数,微分方程,微分中值定理
Constructingauxiliary functiontoprovedifferential
微分中值定理辅助函数类型的构造技巧

微分中值定理辅助函数类型的构造技巧构造辅助函数是应用微分中值定理的一种常用技巧,通过构造合适的辅助函数,可以简化定理的证明过程,使得结论更容易得到。
下面将介绍几种常见的构造辅助函数的技巧。
1.构造差商辅助函数:差商是在微积分中常用的一个概念,表示函数在一点附近的平均变化率。
通过构造差商辅助函数,可以将函数的变化率转化成差商的形式,从而应用差商的性质进行分析和证明。
具体来说,如果要证明一个函数在一些区间上的平均变化率等于两个点之间的差商,可以构造一个辅助函数,使得辅助函数的导数等于差商,从而可以利用微分中值定理得到所需的结果。
2.构造导函数辅助函数:导函数是函数在一点处的斜率,表示函数的变化速率。
通过构造导函数辅助函数,可以转化函数在区间上的斜率问题为导函数在特定点上的函数值问题。
具体来说,可以通过构造辅助函数的导函数等于原函数的导函数,再利用微分中值定理得到结论。
3.构造积分辅助函数:积分是函数的反导数,表示函数在一点处与坐标轴之间的面积。
通过构造积分辅助函数,可以将函数的积分转化为函数在区间上的平均值。
具体来说,可以通过构造辅助函数的积分等于原函数的积分,再利用微分中值定理得到所需的结论。
4.构造复合函数辅助函数:复合函数是两个或多个函数通过函数运算得到的新函数。
通过构造复合函数辅助函数,可以将定理的证明转化为复合函数的导数的证明。
具体来说,可以通过构造复合函数辅助函数使得辅助函数的导数等于复合函数的导数,再利用微分中值定理得到结论。
总之,构造辅助函数是证明微分中值定理的一种常见技巧,可以简化证明过程,使得结论更容易得到。
不同的辅助函数类型适用于不同的证明问题,具体的构造方法需要根据具体的问题进行选择。
在构造辅助函数时,需要充分发挥函数的性质和微积分的基本概念,灵活运用各种技巧,才能得到令人满意的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分中值定理怎样构造
辅助函数
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生有所帮助。
先看这一题,已知f(x)连续,且f(a)=f(b)=0,求证在(a ,b )中存在ε使f ’(ε)=f(ε)
证明过程: f ’(ε)=f(ε), 所以f ’(x)=f(x), 让f(x)=y,
所以 y dx
dy =,即dx dy y =1,所以对两边简单积分,即⎰⎰=dx dy y 11,所以解出来(真的是不定积分的话后面还要加个常数C ,但这只是我的经验方法,所以不加)就是x y =ln ,也就是x e y =,这里就到了最关键的一步,要使等式一边为1!,所以把x e 除下来,就是1=x e
y ,所以左边就是构造函数,也就是x e y -⋅,而y 就是f(x),所以构造函数就是x e x f -)(,你用罗尔定理带进去看是不是。
再给大家举几个例子。
二、已知f(x)连续,且f(a)=f(b)=0,求证:
在(a ,b )中存在ε使f ’(ε)+2εf(ε)=0 证:一样的,
xy dx dy 2-=,把x,y 移到两边,就是xdx dy y 21-=,所以积分出来就是2ln x y -=,注意y 一定要单独出来,不能带ln ,所以就是=y 2x e
-,移出1就是,12=x ye 所以构造函数就是2)(x e x f ,再用罗尔定理就出来了。
三、已知f(x)连续,且f(a)=f(-a),求证在(-a ,a )中存在ε使f ’(ε) ε+2f(ε)=0.
证:
02=+y x dx dy ,移项就是dx x dy y 121-=,所以x y ln 2ln -=,所以就是21x
y =,移项就是12=⋅x y ,所以构造的函数就是2)(x x f ⋅,再用罗尔定理就可以了。
注:这种方法不是万能的,
结合下面例题尝试做下。
微分中值定理的证明题
1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,
(,)a b ξ∃∈使得:()()0f f ξλξ'+=。
证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ∃∈(,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。
经典题型二:
思路分析:
实战分析:
设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。
证:将上等式变形得:1111111111(1)()b a e e e b a b a
ξξ-=-- 作辅助函数1
()x f x xe =,则()f x 在11[,]b a 上连续,在11(,)b a
内可导, 由拉格朗日定理得: 11()()1()11f f b a f b a
ξ-'=- 1ξ11(,)b a ∈ ,
即 11111(1)11b a e e b a e b a
ξξ-=-- 1ξ11(,)b a ∈ , 即:ae (1)(,)b e be e a b ξξ-=- (,)a b ξ∈。
经典题型三
设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。
证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ∃∈,使得0()0F x '=
又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈⊂(0,1),即证。