几种构造辅助函数的方法及应用
简析导数问题中构造辅助函数的常用方法

简析导数问题中构造辅助函数的常用方法作者:杨光关键来源:《新课程·中旬》2013年第09期导数在函数中的应用是现今高考的一大热点问题,年年必考,在这道压轴的大题中,解答时常涉及构造函数,我简单谈一下常用的构造方法.一、作差法(直接构造法)这是最常用的一种方法,通常题目中以不等式形式给出,我们可以作差构造新的函数,通过研究新函数的性质从而得出结论.当然,适合用这个方法解的题目中,构造的函数要易于求导,易于判断导数的正负.例1.设x∈R,求证ex≥1+x构造函数f (x)=ex-1-x,对函数求导可得f ′ (x)≥ex-1,当x≥0时,f ′ (x)≥0,f (x)在[0,+∞)上是增函数,f (x)≥f (0)=0,当xf (0)=0,因此,当x∈R,f (x)≥f (0)=0,即ex≥1+x例2.x>-1,求证1-■≤ln(x+1)≤x以证明右侧为例,设f (x)=x-ln(x+1),f ′ (x)=1-■(x>-1)令f ′ (x)=0,x=0,当x∈(-1,0)时,f ′ (x)0,函数递增,所以x=0时,函数取最小值f (0)=0,∴f (x)≥0.二、先去分母再作差有的问题直接作差构造函数后,求导非常麻烦,不具有可操作性,可先去分母再作差.例3.x>1,求证■分析:设f (x)=■-lnx,f (x)=■-■-lnx,f ′ (x)=■x-■+■x-■-■,f ′ (x)=■≥0,f (x)≥f (1),f (1)=0,∴f (x)>0三、先分离参数再构造例4.(哈三中2012期末试题21)已知函数f (x)=xlnx,g (x)=-x2+ax-3(1)求f (x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f (x)≥g (x)恒成立,求实数a的取值范围;(3)证明对一切x∈(0,+∞),都有lnx>■-■成立.分析:(1)略(2)2xlnx≥-x2+ax-3恒成立,∵x>0,原不等式等价于a≤2lnx+x+■.令g (x)=2lnx+x+■,则g′ (x)=■,所以g (x)的最小值为g (1)=4,即a≤4(3)利用前面提到的第二种方法,先去分母再构造,目的就是使得构造的函数易于求导,易于分析.原不等式等价于xlnx>■-■,令F (x)=xlnx,G (x)=■-■则可求F (x)的最小值为F (■)=-■;G (x)的最大值为G (1)=-■,所以原不等式成立.四、从条件特征入手构造函数证明例5.若函数y=f (x)在R上可导且满足不等式xf ′ (x)>-f (x)恒成立,且常数a,b 满足a>b,求证:af (a)>bf (b)分析:由条件移项后xf ′ (x)+f (x),可以构造函数F (x)=xf (x),求导即可完成证明.若题目中的条件改为xf ′ (x)>f (x),则移项后xf ′ (x)-f (x),要想到是一个商的导数的分子,构造函数F (x)=■,求导去完成证明.五、由高等数学中的结论构造利用泰勒公式,可以把任意一个函数用幂函数近似表示.f (x)=f (x0)+f ′ (x0)(x-x0)+■(x-x0)2+…+■(x-x0)n+…当f (x)=lnx,取x=1,则lnx=x-1-■+…lnx≈x-1例6.数列{an},a1=1,an+1=lnan+an+2,求证an≤2n-1分析:设f (x)=lnx-(x-1),f ′ (x)=■-1=■,当x∈(0,1),f ′ (x)>0当x∈(1,+∞),f ′ (x)lnan≤an-1,an+1=lnan+an+2≤2an+1,∴an+1+1≤2(an+1)迭代,1+an≤2(1+an-1)≤…≤2n-1(1+a1)=2n∴an≤2n-1例7.(2008年山东理21)已知函数f (x)=■+aln(x-1)其中n∈N*,a为常数.(1)当n=2时,求函数f (x)的极值;(2)当a=1时,证明:对任意的正整数n,当x≥2时,有f (x)≤x-1分析(2):当a=1时,f (x)=■+ln(x-1).当x≥2时,对任意的正整数n,恒有■≤1,故只需证明1+ln(x-1)≤x-1.令h (x)=x-1-[1+ln(x-1)]=x-2-ln(x-1),x∈[2,+∞),则h ′ (x)=1-■=■,当x≥2时,h ′ (x)≥0,故,h (x)在[2,+∞)上单调递增,因此x≥2时,当h (x)≥h (2)=0,即1+ln(x-1)≤x-1成立.故当x≥2时,有■+ln(x-1)≤x-1.即f (x)≤x-1.另外,高等数学中有一个极限结论:■■=1由以上极限不难得出,当x>0时,sinx所以函数 f (x)在(0,+∞)上单调递增,f (x)>f (0)=0.所以x-sinx>0,即sinx导数问题中构造辅助函数还有其他的方法,例如变更主元法,二次求导再构造,难度偏大,这里先不做详解.(作者单位杨光:黑龙江省哈尔滨师范大学数学系关键:黑龙江省大庆市第四中学)?誗编辑谢尾合。
根据微分中值公式构造辅助函数的3种类型及其方法

证 明: 设 ( )= 3 z f 1一 z z f( ) ( )一厂( 1一
z) ( , ∈ ( , ) 由题 设 令 q x)= f x) ( f x) z 0 1, ( ( f 1一
z)代入 式 ()得 , 1,
在( b a, )内恒 成立 , 中 ( 见 下述 步骤 ① , 其 z) 就可 统
怎样构 造适 当的辅助 函数 是证 明一 些 与微分 中值 有关 的题 目的关 键 , 对 所 给题 目中与 微 分 中值 有关 针 的等 式 的不 同特 征 , 根据微 分 中值公 式 , 归纳 出 3种构
造辅 助 函数 的方 法 .
( . 根据 命 题 2 求 q z) 2个零 点定 出函数 z)② 要 ( 有 q x)③ 将 步骤 ① 所设 的 和 步 骤 ② 所 定 的 代 入 式 ( . () 1 ,求 出 函 数 P( . 对 辅 助 函 数 F( = z) q( a, )使 )+ q ) ( ( )= 0 . 证 明 : F( 设 z)= q z) )则 由命 题 1 存 在 ( , 知
∈ ( b , F( a, )使 )= 0 由此 便得 .
q ( + q ) )= 0 ) ( P( 证毕.
命题 2 :若 函 数 q z)P( ( , z)满 足 以 下 条 件 :
① q x) [ b 连 续 , ( b ( 在 a, ] 在 a, )内可 导 , 口 a 且 ( )= qb ( )= 0 ② ( 在 [ b 广 义连续 , ( b . z) a, ] 在 a, )内可
④ 作 辅助 函数 F( = q x)p ) f x)一 使 x) ( e( = ( e妇.
q z) p 使 用罗 尔定 理 , ( e 即得 出需证 明 的结果 . 这种 类 型 的辅 助 函数 , 又称 为指 数 型辅助 函数 .
罗尔定理中辅助函数的构造与应用

龙源期刊网
罗尔定理中辅助函数的构造与应用
作者:郭欣红
来源:《消费导刊·理论版》2008年第14期
[摘要]构造辅助函数是解决罗尔定理问题的一种重要方法,本文介绍了几种巧妙构造辅助函数的有效方法。
[关键词]罗尔定理辅助函数
微分中值定理中的罗尔定理是高等数学中的一个重要内容,因为它的应用非常广泛,而构造辅助函数是解决罗尔定理问题的最主要的方法。
若辅助函数构造得合理巧妙,满足定理的三
个条件,则问题很快就能迎刃而解。
本文将主要讨论几种构造辅助函数的常用方法。
一、归纳法构造辅助函数
参考文献
[1] 汪诚义. 高等数学与微积分[M]. 群言出版社
[2] 微积分辅导.[M].华中科技大学高等数学教研室.华中科技大学出版社
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法摘要数学中运用辅助函数就像是在几何中添加辅助线,其应用是非常广泛的. 构造辅助函数是数学命题推证的有效方法,是转化问题的一种重要手段。
遇到特殊的问题时,用常规方法可能比较复杂.这时就需要构造辅助函数,就如同架起一座桥梁,不需要大量的算法就可以得到结果.如何构造辅助函数是数学分析解题中的难点,看似无章可循,但仔细研究不失基本方法和一般规律。
文章通过对微分中值定理证明中,关于构造辅助函数方法的总结和拓展,给出了多种形式的辅助函数;通过详尽的实例,讲明了辅助函数在不等式、恒等式、函数求极限、讨论方程的根及非齐次线性微分方程求解中的运用,尝试找出如何构造辅助函数的几种方法,并通过这些方法在一些具体实例中的运用归纳出构造函数法的一些思路.关键词辅助函数;中值定理;恒等式与不等式;函数表达式;极值1.引言数学中,不等式与等式的证明、微分中值定理、拉格朗日条件极值、线性微分方程求解公式等,都是通过构造一个辅助函数来完成推证的,有时候构造辅助函数也是求证数学命题的简便而有效的方法之一,掌握构造辅助函数证明数学命题的方法的关键是要对“数学现象”善于观察,联想和发现问题,根据直观的结论倒推构造什么样的辅助函数.基本思路是从一个目标出发,联想起某种曾经遇到过的方法、手段,而后借助于这些方法和手段去接近目标,或者从这些方法和手段出发,去联想别的通向目标的方法和手段,这样继续下去,直到达到把问题归结到一个明显成立的结构上为止.构造辅助函数实质上就是分析法的一种技巧,也是数学中的一个难点,值得重视的是,在证明命题的过程中要不断研究问题的本质,从而寻求构造辅助函数的方法,文章重点分析了微分中值定理的证明中辅助函数的构造方法与技巧,进而应用到其他一般命题的证明中.2.微分中值定理证明中构造辅助函数的方法与技巧2.1 拉格朗日(Lagrange )中值定理辅助函数的作法定理1(Rolle ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续; (ii )()f x 在开区间(,)a b 内可导; (iii )()()f a f b =;则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.定理2(Lagrange ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b aξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为Rolle 定理的结论。
微分中值定理(怎样构造辅助函数)

怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生有所帮助。
先看这一题,已知f(x)连续,且f(a)=f(b)=0,求证在(a ,b )中存在ε使f ’(ε)=f(ε)证明过程: f ’(ε)=f(ε), 所以f ’(x)=f(x), 让f(x)=y,所以 y dx dy =,即dx dy y =1,所以对两边简单积分,即⎰⎰=dx dy y11,所以解出来(真的是不定积分的话后面还要加个常数C ,但这只是我的经验方法,所以不加)就是x y =ln ,也就是x e y =,这里就到了最关键的一步,要使等式一边为1!,所以把x e 除下来,就是1=x ey ,所以左边就是构造函数,也就是x e y -⋅,而y 就是f(x),所以构造函数就是x e x f -)(,你用罗尔定理带进去看是不是。
再给大家举几个例子。
二、已知f(x)连续,且f(a)=f(b)=0,求证:在(a ,b )中存在ε使f ’(ε)+2εf(ε)=0 证:一样的,xy dx dy 2-=,把x,y 移到两边,就是xdx dy y21-=,所以积分出来就是2ln x y -=,注意y 一定要单独出来,不能带ln ,所以就是=y 2x e -,移出1就是,12=x ye 所以构造函数就是2)(x e x f ,再用罗尔定理就出来了。
三、已知f(x)连续,且f(a)=f(-a),求证在(-a ,a )中存在ε使f ’(ε) ε+2f(ε)=0.证:02=+y x dx dy ,移项就是dx x dy y 121-=,所以x y ln 2ln -=,所以就是21x y =,移项就是12=⋅x y ,所以构造的函数就是2)(x x f ⋅,再用罗尔定理就可以了。
注:这种方法不是万能的,结合下面例题尝试做下。
微分中值定理的证明题1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,(,)a b ξ∃∈使得:()()0f f ξλξ'+=。
辅助函数的构造

F (a) F (b)
即 F ( x ) 满足罗尔定理,
于是,至少 一个 (a , b) ,使得 F ( ) 0
f (b) f (a ) 1 f ( ) 0 即 , ln b ln a
ab 0
b 亦即 f (b ) f (a ) f ( ) ln a
一般来说,命题中涉及闭区间上连续函数, 但不涉
及可导,会考虑利用介值定理或零点定理. 如果证明中
缺少区间端点的函数值的性质, 要考虑利用最值定理后,
再利用介值定理.
例 1.设 f (x) 在 [a, b]上连续,xi [a, b],ti 0 (i 1, 2, , n) ,
t 且
i 1
则 F ( x ) 在区间 [a, b] 上连续,在 (a , b) 内可导,
f (b ) f (a ) 又 F ( a ) f ( a ) ln b ln a ln a
ln b f (a ) ln a f (a ) ln a f (b) ln a f (a ) ln b ln a
例 5: (P146 习题 3.1 第 7 题) 设 f ( x ) 在区间 [a , b] 上连续, 在 (a, b) 内可导, a b 0 ,证明:在 ( a , b ) 内至少存在一个
bf ( b ) a f ( a ) f ( ) f ( ) ba bf ( b ) a f ( a ) bf ( b ) kb af ( a ) ka k, 【分析】令 ba
显然,这是一个对称式( a 与 b 互换等式不变)
故作辅助函数 F ( x ) xf ( x ) kx xf ( x )
bf (b ) a f (a ) x, 【证明 1】 令 F ( x ) xf ( x ) ba
运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。
今天笔者就介绍下三种方式帮忙寻找到这个函数。
首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。
因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。
至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。
一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。
说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。
还不懂?没事,举两个例子。
例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。
解析:这是非常常见的一道题。
估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。
其实利用原函数法,很容易就找到这个辅助函数了。
首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。
构造辅助函数法在《数学分析》中的应用

关键词 :辅助 函数 ; 方程 ; 不等式 ; 恒等式 ; 有界 ; 一致连续
中图分类号 : 14 0 7
构造辅助 函数法是在《 数学分析》 中解题经 常用到的方
法, 它能将 问题化繁为简 , 使隐含条件变得 明显 、 具体. 所谓 构造辅助 函数就是在解题 中 , 依据题设和结论 , 构造 出一个 新 的函数 , 把结论转化为研究该 函数的性质 , 以此达到解题
n十 J
=
+ ,则 fx c ’) (
C + x … + l- o C1+ CIl 】 【
在判别方程根的存在性 时 ,主要依据是零点存在 定理
和 罗尔 定 理 .
因 为 f ) 【,] 连 续 , ( , ) 可 导 , f )0 f ) (在 0 1 x 上 在 0 1内 且 (= ,1 0 (
21 利用 函数的单调性证明不等式 . 例 4 证明不等式 x < i < (> ) 一 s x ) xo. n 【
证明 (i) f )s x x 则 (  ̄OX 1 , 以 f ) 令 ( =i — , x n X CS一 ≤0 所 i ) x
令 x x ̄ix b 则 f ) 0 + 】 ) 一 s — , (在[, b上连续 , = n x a 且
sn x ix< .
超 过 a b的正 实 根 . +
() g= n则 ’ 1o 手 2 一 i令 (x x g) c 一 i 等 i x一 ) , ( 一s s争 x x : n
+
X—
例 2 证 明方程
X— l
+ 』 : 0在 ( 2 与 ( , ) 1 ) 2 3
,
c + = 据 尔 理t0【] 少 D … 0 罗 定 ,)在 , 至 有 + + 根 争 f o内 ( 1 x =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种构造辅助函数的方法及应用
许生虎
(西北师范大学数学系,甘肃 兰州 730070)
摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求
辅助函数的几种方法及在解题中的作用。
应用。
2. 构造辅助函数的七中方法
2.1“逆向思维法”
例1: 设()x f 在[]1,0 上可微,且满足 ()()⎰=2
1
21dx x xf f ,证明在][1,0内至少有一点θ,
使()()
θθθf f -='.
证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数.
将()()
θθθf f '变为()()0='⋅+θθθf f ,联想到()[]()()θθθθf f x xf x '⋅+='=,可考虑
辅助函数 ()()[].1,0,∈=x x xf x F
(2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式;
(3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;
(4)移项,将等式一边为零,则等式的另一边为所求的辅助函数.
例2: ()[]()
(),0,0,,>>a f a b a b a x f 且内可导,其中上连续,在在设 分析: ()()ξξξf a
b f '⋅-= 可令 ()()()x f x b x F a -=
证明: 作辅助函数 ()()()x f x b x F a
-=
例3:设函数()()x g x f ,在[]上连续,b a ,且()(),1==a g b g 在()b a ,内()()x g x f ,可导,且()()()0,0≠'≠'+x f x g x g .试证明: ()∍∈∃,,,b a ηξ ()()()()[]η
ξξξηξe g g e f f '+='' 分析:欲证等式
将ηξ和均看作变量,则上式写成
辅助函数可取:x x e x x g e x ==)()()(ψϕ
证明:),()(x g e x x ⋅=ϕ令则由题设可知],[)(),(b a x g x f 在上满足柯西中值定理,于是,使得),,(b a ∈∃ξ
因为1)()(==b g a g
由图1知:)()()
,0[1x x f x ϕ≥+∞∈∀有 即:
111()()()()f x f x f x x x '≥+- (1)
即:切线总在曲线的下方(几何意义). 由图2知:..
122121k k l l k k >则的斜率和分别表示和由
即: 证明:方法一:有分析及(1)知
取10,x x x ==时()()()()00f f x f x x '≥+-
即:
方法二:由(2)知,令00=x ,则(2)式变为
再次引进辅助函数,
则)(x F 递增, .0)(≥'⇒x F
即:
2.5微分方程法
所谓“微分方程法”是指遇到诸如“求证存在),(b a ∈ξ,使得)]([)(ξξϕξf f ,='”之类的问题时,可先解微分方程),(y x y ϕ=',得其通解:c y x G =),(,则可构造辅助函数
).,()(y x G x F =
例5 设)(x f 在],[b a 上连续,在),(b a 内可导,且,0)(≠x f ),,(b a x ∈,0)()(==b f a f 若 证明:对k x f x f b a R k ='∈∃∈∀)()(),,(,使
ξ. 分析:将结论中的ξ换成x ,得可分离变量的微分方程:
此法适用于从结论中可分离出常数部分的命题,构造出辅助函数)(x F 的具体步骤如下:
(1) 从结论中分离出常数部分,将它令为k ;
(2) 做恒等变化,是等式(或不等式)一端为a 及f(a)构成的代数式,另一端为b
和f(b)构成的代数式;
(3) 分析端点a,b 的表达式是否为对称式或轮换式。
若是将端点改为x ,相应的函
数值f(a)(或f(b))改为f(x),则关于x,f(x)的表达式即为索求的辅助函数
F(x).
例6: 内可导,上连续,在在设),(],[)(,0b a b a x f a b >>
即 2)()()()()(ξ
ξξξf f a b ab a bf b af -'⋅=--. 亦即
)]()()[()]()([2ξξξξf f a b ab a bf b af -'-=- 2.7 弧弦差法
利用弧弦差来构造辅助函数,称为弧弦差构造函数法。
微分中值定理的相关证明就采
用种方法]2[,现以拉格朗日中值定理为例:(原定理叙述略)
题 7:内可导,上连续,在在),(],[)(b a b a x f 有向线段x NM 是的函数,设直线AB 的方程为).(x L y =
则 )()()()()(a x a
b a f b f a f x L ---+= 由于点N M ,的纵坐标分别为).(),(x L x f
6)29
Xu Shenghu
(Northwest Normal University, Gansu Lanzhou 730070 )
Abstract: On the basis of studying and analyzing mathematical, some methods about
construction of auxiliary are proposed. By the property of the function ’s graph and mean-value theorem of integrals, combined with the example, some
methods for constructing the auxiliary function and their application are
illustrated.
Key words: auxiliary function, arc-chord difference,original function method, differential equation method。