中值定理构造辅助函数

合集下载

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法

数学证明中的构造辅助函数方法摘要数学中运用辅助函数就像是在几何中添加辅助线,其应用是非常广泛的. 构造辅助函数是数学命题推证的有效方法,是转化问题的一种重要手段。

遇到特殊的问题时,用常规方法可能比较复杂.这时就需要构造辅助函数,就如同架起一座桥梁,不需要大量的算法就可以得到结果.如何构造辅助函数是数学分析解题中的难点,看似无章可循,但仔细研究不失基本方法和一般规律。

文章通过对微分中值定理证明中,关于构造辅助函数方法的总结和拓展,给出了多种形式的辅助函数;通过详尽的实例,讲明了辅助函数在不等式、恒等式、函数求极限、讨论方程的根及非齐次线性微分方程求解中的运用,尝试找出如何构造辅助函数的几种方法,并通过这些方法在一些具体实例中的运用归纳出构造函数法的一些思路.关键词辅助函数;中值定理;恒等式与不等式;函数表达式;极值1.引言数学中,不等式与等式的证明、微分中值定理、拉格朗日条件极值、线性微分方程求解公式等,都是通过构造一个辅助函数来完成推证的,有时候构造辅助函数也是求证数学命题的简便而有效的方法之一,掌握构造辅助函数证明数学命题的方法的关键是要对“数学现象”善于观察,联想和发现问题,根据直观的结论倒推构造什么样的辅助函数.基本思路是从一个目标出发,联想起某种曾经遇到过的方法、手段,而后借助于这些方法和手段去接近目标,或者从这些方法和手段出发,去联想别的通向目标的方法和手段,这样继续下去,直到达到把问题归结到一个明显成立的结构上为止.构造辅助函数实质上就是分析法的一种技巧,也是数学中的一个难点,值得重视的是,在证明命题的过程中要不断研究问题的本质,从而寻求构造辅助函数的方法,文章重点分析了微分中值定理的证明中辅助函数的构造方法与技巧,进而应用到其他一般命题的证明中.2.微分中值定理证明中构造辅助函数的方法与技巧2.1 拉格朗日(Lagrange )中值定理辅助函数的作法定理1(Rolle ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续; (ii )()f x 在开区间(,)a b 内可导; (iii )()()f a f b =;则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.定理2(Lagrange ):若函数()f x 满足如下条件:(i )()f x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b aξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为Rolle 定理的结论。

运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法

运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。

今天笔者就介绍下三种方式帮忙寻找到这个函数。

首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。

因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。

至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。

一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。

说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。

还不懂?没事,举两个例子。

例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。

解析:这是非常常见的一道题。

估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。

其实利用原函数法,很容易就找到这个辅助函数了。

首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。

拉格朗日中值定理证明导数

拉格朗日中值定理证明导数

拉格朗日中值定理证明导数1. 引言拉格朗日中值定理是微积分中的一条重要定理,用于研究函数在某区间上的平均变化率与其导数之间的关系。

本文将详细介绍拉格朗日中值定理的推导过程,并证明了导数存在的条件。

2. 拉格朗日中值定理的表述首先,我们来看一下拉格朗日中值定理的表述:定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导。

那么存在ξ∈(a,b),使得:f′(ξ)=f(b)−f(a)b−a其中,ξ为(a,b)内的某个数。

从定理的表述中,我们可以看出拉格朗日中值定理是关于函数导数和函数值之间的关系的定理。

3. 证明过程为了证明拉格朗日中值定理,我们将分步进行证明。

步骤 1:构造辅助函数首先,我们构造辅助函数:F(x)=f(x)−f(b)−f(a)b−a(x−a)辅助函数F(x)与原函数f(x)的作用是相辅相成的。

步骤 2:使用罗尔定理由于辅助函数F(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导,我们可以应用罗尔定理来证明存在一个ξ∈(a,b),使得F′(ξ)=0。

根据罗尔定理,F(x)在闭区间[a,b]上可导,且F(a)=F(b),则存在一个ξ∈(a,b),使得F′(ξ)=0。

步骤 3:推导辅助函数的导数根据辅助函数F(x)的定义:F(x)=f(x)−f(b)−f(a)b−a(x−a)对其求导,得到:F′(x)=f′(x)−f(b)−f(a)b−a步骤 4:辅助函数的导数为零根据步骤 2 和步骤 3 的结果,我们得到:F′(ξ)=0代入辅助函数的导数表达式,得到:f′(ξ)−f(b)−f(a)b−a=0经过整理,可以得到:f′(ξ)=f(b)−f(a)b−a这就是拉格朗日中值定理的结论。

4. 导数存在的条件根据拉格朗日中值定理的证明过程,我们可以得出导数存在的条件:•函数f(x)在闭区间[a,b]上连续•函数f(x)在开区间(a,b)上可导只有满足这两个条件,才能使用拉格朗日中值定理求得导数的值。

关于复变函数的微分中值定理及其证明

关于复变函数的微分中值定理及其证明

关于复变函数的微分中值定理及其证明一、引言复变函数微分中值定理是复变函数理论中的重要定理之一。

它是由微积分中的实数函数中值定理推广而来的,是研究复变函数性质的基础。

本文将详细探讨复变函数的微分中值定理及其证明过程。

二、复变函数的微分中值定理复变函数的微分中值定理是指:设f(z)在区域D上解析,z1和z2是D中的任意两点,若存在一条连接z1和z2的曲线C,且C上的每一点都在D内,则存在一点ζ在C上,使得[f(z_2)-f(z_1)=(z_2-z_1)f’().]其中,f′(ζ)是f(z)在点ζ处的导数。

三、证明过程为了证明复变函数的微分中值定理,我们将分为以下几步进行证明。

1. 构造辅助函数设ℎ(t)=f(z2)−f(z1)−(z2−z1)f(t),其中t为参数。

令g(t)=|ℎ(t)|2,我们将证明g(t)在区间[0,1]上的最大值和最小值都达到于某一点ζ。

2. 计算辅助函数的导数根据复变函数的导数定义,我们有[g’(t)=2{h^(t)h’(t)}.]其中,ℎ∗(t)表示复共轭。

将ℎ(t)的表达式代入,得到[g’(t)=2{[f(z_2)-f(z_1)-(z_2-z_1)f(t)]^[f’(t)(z_2-z_1)-f(z_2)+f(z_1)]}.]3. 利用导数的性质由于f(z)在区域D上解析,根据柯西-黎曼方程的性质可知,f′(t)(z2−z1)−f(z2)+f(z1)=0。

根据导数的性质,g′(t)=0意味着g(t)在其定义域上取得极值。

4. 确定辅助函数的极值点根据步骤3的结果,我们知道g(t)在[0,1]上的极值点对应于ℎ(t)为常数的点。

令ℎ(t)=C,其中C为常数。

解方程可以得到t=ζ。

这表明最大值和最小值都取自于某一点ζ。

5. 求解极值点通过解方程ℎ(t)=C,我们可以求解出ζ的值。

代入ℎ(t)的表达式并整理可以得到[f’()=(f(z_2)-f(z_1))/(z_2-z_1).]由此,我们证明了复变函数的微分中值定理。

求中值定理证明的几种构造函数的方法

求中值定理证明的几种构造函数的方法

求中值定理证明的几种构造函数的方法1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点1)将要证的结论中的换成;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数 . 例1:证明柯西中值定理分析:在柯西中值定理的结论中令,得,先变形为再两边同时积分得,令,有故为所求辅助函数. 例2:若, , ,…, 是使得的实数.证明方程在(0,1)内至少有一实根. 证:由于并且这一积分结果与题设条件和要证明的结论有联系,所以设(取),则 1)在[0,1]上连续 2)在(0,1)内可导 3) =0,故满足罗尔定理的条件,由罗尔定理,存在使,即亦即 . 这说明方程在(0,1)内至少有实根.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数. 例3:设在[1,2]上连续,在(1,2)内可导,, .证明存在使 . 分析:结论变形为,不易凑成 .我们将换为,结论变形为,积分得: ,即,从而可设辅助函数为,有 .本题获证. 例4:设函数,在上连续,在内可微, .证明存在,使得: . 证:将变形为,将换为,则,两边关于积分,得: ,所以,其中,由可得 .由上面积分的推导可知,为一常数,故其导数必为零,从整个变形过程知,满足这样结论的的存在是不成问题的.因而令,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数. 例5:证明拉格朗日中值定理. 分析:通过弦两个端点的直线方程为,则函数与直线AB的方程之差即函数在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数. 例6:若在上连续且 .试证在内至少有一点,使 . 分析:由图可看出,此题的几何意义是说,连续函数的图形曲线必跨越这一条直线,而两者的交点的横坐标,恰满足 .进而还可由图知道,对上的同一自变量值,这两条曲线纵坐标之差构成一个新的函数,它满足 <0, >0,因而符合介值定理的条件.当为的一个零点时,恰等价于 .因此即知证明的关键是构造辅助函数 .4 常数k值法此方法构造辅助函数的步骤分为以下四点: 1)将结论变形,使常数部分分离出来并令为 . 2)恒等变形使等式一端为及构成的代数式,另一端为及构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为,相应的函数值改为 . 4)端点换变量的表达式即为辅助函数 . 例7:设在上连续,在内可导,,试证存在一点,使等式成立. 分析:将结论变形为,令,则有,令,可得辅助函数 . 例8:设在上存在,在,试证明存在,使得 . 分析:令,于是有,上式为关于,,三点的轮换对称式,令(or: ,or: ),则得辅助函数 .5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论. 例9:设函数在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点,使得 . 分析:所要证的结论可变形为: ,即,因此可构造函数,则对与在[0,1]上应用柯西中值定理即可得到证明. 例10:设函数在[0,1]上连续,在(0,1)内可导,且 =0,对任意有 .证明存在一点使(为自然数)成立. 分析:欲证其成立,只需证由于对任意有,故只需证: 即,于是引入辅助函数(为自然数). 例11:设函数在区间[0,+ ]上可导,且有个不同零点: .试证在[0,+ ]内至少有个不同零点.(其中,为任意实数)证明:欲证在[0,+ )内至少有个不同零点,只需证方程 =0在[0,+ ]内至少有个不同实根. 因为,,,故只需证方程在内至少有个不同实根. 引入辅助函数,易验证在区间[ ],[ ],…,[ ]上满足罗尔定理的条件,所以,分别在这个区间上应用罗尔定理,得,其中且以上说明方程在[ ] [ ] … [ ] [0,+ ]内至少有个不同实根,从而证明了方程 =0在[0,+ ]内至少有个不同实根。

利用中值定理证明问题时辅助函数的几种构造方法

利用中值定理证明问题时辅助函数的几种构造方法

,使
。 分析 所给等式中含有ξ和η,把含有ξ的函数式与含
有η的函数式分离到等式两边,得
将η换成x后进行单侧积分,求出原函数为 即为一辅助函数。
将ξ换成x后进行单侧积分求出原函数为 即为另一辅助函数。
证明:设
,则由已知
b]上满足拉格朗日中值定理条件,所以存在
使


在[a, ,

又由f(a)=f(b)=1得
一、 使用洛尔定理时用“积分法”或 “解微分方程法”构造辅助函数
用 “积分法”构造辅助函数的基本步骤是:第一 步,将结论等式中的ξ换成x;第二步,对第一步的结果 进行变形,使两边可求积分;第三步,两边求不定积 分;第四步,把第三步的结果化为C=F(x)的形式,其中 C为任意常数且F(x)中不含有C,最后F(x)就是构造的辅 助函数。


(2)
由(1)和(2)得,存在
,使

H
(作者单位:常州工学院理学院)
,分别对分子和
分母进行积分求出原函数(a+b)f(x)和x2,这可作为使用 柯西定理的两个辅助函数。
证明:因为f(x)在[a,b]上连续,在(a,b)内可导,且 a>0,所以f(x)在[a,b]上满足拉格朗日定理的条件,存在
,使
(1) 又对f(x)和x2使用柯西定理有:存在
,使
ACADEMIC RESEARCH 学术研究
(1);
又设
,则由已知
在[a,b]上
满足拉格朗日中值定理条件,所以存在
,使

(2)
由(1)和(2) 得
即存在
,使

三、使用柯西中值定理时用 “上下积 分法”构造辅助函数

中值定理构造辅助函数

中值定理构造辅助函数

中值定理构造辅助函数微分中值定理证明中辅助函数的构造1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)⽤观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式⼀边为零,另⼀边即为所求辅助函数()F x .例1:证明柯西中值定理.分析:在柯西中值定理的结论()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f ag x f x C g b g a -=+-,令0C =,有()()()()0()()f b f a f x g x g b g a --=-故()()()()()()()f b f a F x f xg x g b g a -=--为所求辅助函数.例2:若0a ,1a ,2a ,…,n a 是使得1200231n a a a a n ++++=+…的实数.证明⽅程20120n n a a x a x a x ++++=…在(0,1)内⾄少有⼀实根.证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这⼀积分结果与题设条件和要证明的结论有联系,所以设231120()231n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续2)()F x 在(0,1)内可导3)(0)F =0, 120(1)0231n a a a F a n =++++=+… 故()F x 满⾜罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….这说明⽅程20120n n a a x a x a x ++++=…在(0,1)内⾄少有实根x ξ=.2 积分法对⼀些不易凑出原函数的问题,可⽤积分法找相应的辅助函数.例3:设()f x 在[1,2]上连续,在(1,2)内可导,1(1)2f =,(2)2f =.证明存在(1,2)ξ∈使2()'()f f ξξξ=.分析:结论变形为'()2()0f f ξξξ-=,不易凑成'()0x F x ξ==.我们将ξ换为x ,结论变形为'()20()f x f x x -=,积分得:2()ln ()2ln ln ln f x f x x c x -==,即2()f x c x=,从⽽可设辅助函数为2()()f x F x x =,有1(1)(2)2F F ==.本题获证.例4:设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内可微,()()0f a f b ==.证明存在(,)a b ξ∈,使得:'() ()'()0f f g ξξξ+=.证:将'()()'()0f f g ξξξ+=变形为'()()'()f f g ξξξ=-?'()'()()f g f ξξξ=-,将ξ换为x ,则'()'()()f x g x f x =-,两边关于x 积分,得:'()'()()f x dx g dx f x ξ=-1[()][()]l n ()()()d f x d g x f x g x C f x =-?=-+??,所以()(())e x p ((f x e x pg x C g x C =-+=-e x p ((K g x =-,其中e x p ()K C =,由()(()f x K e x p g x =-可得()exp(())K f x g x =.由上⾯积分的推导可知,()exp(())f x g x 为⼀常数K ,故其导数必为零,从整个变形过程知,满⾜这样结论的ξ的存在是不成问题的.因⽽令()()exp(())F x f x g x =,易验证其满⾜罗尔定理的条件,原题得证.3 ⼏何直观法此法是通过⼏何图形考查两函数在区间端点处函数值的关系,从⽽建⽴适当的辅助函数.例5:证明拉格朗⽇中值定理.分析:通过弦AB 两个端点的直线⽅程为()()()()f b f a y f a x a b a-=+--,则函数()f x 与直线AB 的⽅程之差即函数()()()()[()()]f b f a F x f x f a x a b a -=-+--在两个端点处的函数值均为零,从⽽满⾜罗尔定理的条件故上式即为要做辅助函数.例6:若()f x 在[,]a b 上连续且(),()f a a f b b <>.试证在(,)a b 内⾄少有⼀点ξ,使()f ξξ=.分析:由图可看出,此题的⼏何意义是说,连续函数()y f x =的图形曲线必跨越y x =这⼀条直线,⽽两者的交点的横坐标ξ,恰满⾜()f ξξ=.进⽽还可由图知道,对[,]a b 上的同⼀⾃变量值x ,这两条曲线纵坐标之差()f x x -构成⼀个新的函数()g x ,它满⾜()g a <0,()g b >0,因⽽符合介值定理的条件.当ξ为()g x 的⼀个零点时,()0g ξ=恰等价于()f ξξ=.因此即知证明的关键是构造辅助函数()()g x f x x =-.4 常数k 值法此⽅法构造辅助函数的步骤分为以下四点:1)将结论变形,使常数部分分离出来并令为k .2)恒等变形使等式⼀端为a 及()f a 构成的代数式,另⼀端为b 及()f b 构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中⼀个端点设为x ,相应的函数值改为()f x .4)端点换变量x 的表达式即为辅助函数()F x .例7:设()f x 在[,]a b 上连续,在(,)a b 内可导,(0)a b <<,试证存在⼀点(,)a b ξ∈,使等式()()ln '()a f b f a f bξξ-=成⽴.分析:将结论变形为()()'()ln ln f b f a f b a ξξ-=-,令()()l n l nf b f a k b a -=-,则有()ln ()ln f b k b f a k a -=-,令b x =,可得辅助函数()()ln F x f x k x =-.例8:设''()f x 在[,]a b 上存在,在a c b <<,试证明存在(,)a b ξ∈,使得()()()1''()()()()()()()2f a f b f c f a b a c b a b c c a c b ξ++=------.分析:令()()()()()()()()()f a f b f c k a b a c b a b c c a c b ++=------,于是有()()()()()()b c f a a b f c c a f b k a b a c b c -+-+-=---,上式为关于a ,b ,c 三点的轮换对称式,令b x =(or :c x =,or :a x =),则得辅助函数()()()()()()()()()()F x x c f a a x f c c a f x k a x a c x c =-+-+-----.5 分析法分析法⼜叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论.例9:设函数()F x 在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在⼀点C ,使得1(1)(0)()'()c c F F e e F C --=+-.分析:所要证的结论可变形为:11(1)(0)()'()'()c c c e F F e e F c F c e----=-=,即(1)(0)'()1c F F F c e e-=-,因此可构造函数()x G x e =,则对()F x 与()G x 在[0,1]上应⽤柯西中值定理即可得到证明.例10:设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)f =0,对任意(0,1)x ∈有()0f x ≠.证明存在⼀点(0,1)ξ∈使'()'(1)()(1)nf f f f ξξξξ-=-(n 为⾃然数)成⽴.分析:欲证其成⽴,只需证'()(1)'(1)()0nf f f f ξξξξ---=由于对任意(0,1)x ∈有()0f x ≠,故只需证:1(())'()(1)'(1)n n n f f f f f ξξξξξ----=即'[(())(1)]0n x f x f x ξ=-=,于是引⼊辅助函数()(())(1)n F x f x f x =-(n 为⾃然数).例11:设函数()f x 在区间[0,+∞]上可导,且有n 个不同零点:120n x x x <<<<….试证()'()af x f x +在[0,+∞]内⾄少有1n -个不同零点.(其中,a 为任意实数)证明:欲证()'()af x f x +在[0,+∞)内⾄少有1n -个不同零点,只需证⽅程()'()af x f x +=0在[0,+∞]内⾄少有1n -个不同实根.因为,[0,+)x ∈∞,ax e 0≠,故只需证⽅程ax e [()'()]0af x f x +=在[0,+)∞内⾄少有1n -个不同实根.引⼊辅助函数()()ax F x e f x =,易验证()F x 在区间[12,x x ],[23,x x ],…,[1,n n x x -]上满⾜罗尔定理的条件,所以,分别在这1n -个区间上应⽤罗尔定理,得121'()'()'()0n F F F ξξξ-====…,其中1122231(,),(,),(,)n n n x x x x x x ξξξ--∈∈∈…且1210n ξξξ-<<<<… 以上说明⽅程'()0F x =在[12,x x ][23,x x ]…[1,n n x x -]?[0,+∞]内⾄少有1n -个不同实根,从⽽证明了⽅程()'()af x f x +=0在[0,+∞]内⾄少有1n -个不同实根.6 待定系数法在⽤待定系数法时,⼀般选取所证等式中含ξ的部分为M ,再将等式中⼀个端点的值b 换成变量x ,使其成为函数关系,等式两端做差构造辅助函数()x ?,这样⾸先可以保证()b ?=0,⽽由等式关系()a ?=0⾃然满⾜,从⽽保证()x ?满⾜罗尔定理条件,再应⽤罗尔定理最终得到待定常数M 与'()f ξ之间的关系.例12:设()f x 是[,]a b 上的正值可微函数,试证存在(,)a b ξ∈,使()'()l n ()()()f b f b a f a f ξξ=-.证明:设()ln ()()f b M b a f a =-,令()()ln ()()f x x M x a f a ?=--容易验证()x ?在[,]a b 上满⾜罗尔定理条件,由罗尔定理,存在(,)a b ξ∈使'()0?ξ=,解得'()()f M f ξξ=,故()'()ln()()()f b f b a f a f ξξ=-.例13:设函数()f x 在[,]a b 上连续,在(,)a b 内可导,则在(,)a b 内⾄少存在⼀点ξ使222[()()]()'()f b f a b a f ξξ-=-.证明:将所证等式看作22'()()()()2f f b f a b a ξξ-=-,设22()()()f b f a M b a -=-,令22()()()()x f x f a M x a ?=---,则()x ?满⾜罗尔定理条件,由罗尔定理得,存在⼀点(,)a bξ∈,使'()0?ξ=,即'()2f M ξξ=,若ξ=0,则'()0f ξ=,结论成⽴;若0ξ≠,则'()2f M ξξ=,从⽽有222[()()]()()f b f a f b a ξξ-=-.例14:设120x x <<,则存在12(,)x x ξ∈使211212(1)()x x x e x e e x x ξξ-=--.分析:对于此题设211212()x x x e x e M x x -=-作函数11()x x x x e xe ?=-1()M x x --.应⽤罗尔定理可得存在12(,)x x ξ∈,使'()0?ξ=,即110x x e e M ξ-+=,从⽽11x M e x e ξ=-,这样并不能证明原结论,遇到这种情况,说明所作的辅助函数不合适,则需要将所证明的等式变形,重新构造辅助函数.证明:将所证等式变形为21212111(1)()x x e e e x x x x ξξ-=--,设2121x x e e x x -=2111()M x x -,令11()x x e e x x x ?=-111()M x x --,则()x ?满⾜罗尔定理条件,⽤罗尔定理可得存在12(,)x x ξ∈,使'()0?ξ=,即2210e e M ξξξξξ-+=,于是(1)M e ξξ=-,故211212(1)()x x x e x e e x x ξξ-=--.总之,证明微分中值命题的技巧在于:⼀是要仔细观察,适当变换待证式⼦;⼆是要认真分析,巧妙构造辅助函数.抓住这两点,即可顺利完成证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【第 1 页 共 8页】微分中值定理证明中辅助函数的构造1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理.分析:在柯西中值定理的结论()()'()()()'()f b f a fg b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f ag x f x g b g a -=-g 再两边同时积分得()()()()()()f b f ag x f x C g b g a -=+-g ,令0C =,有()()()()0()()f b f a f x g x g b g a --=-g 故()()()()()()()f b f a F x f xg x g b g a -=--g 为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++⎰…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设231120()231n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续2)()F x 在(0,1)内可导3)(0)F =0, 120(1)0231n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….这说明方程20120n n a a x a x a x ++++=…在(0,1)内至少有实根x ξ=.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数.例3:设()f x 在[1,2]上连续,在(1,2)内可导,1(1)2f =,(2)2f =.证明存在(1,2)ξ∈使2()'()f f ξξξ=.分析:结论变形为'()2()0f f ξξξ-=,不易凑成'()0x F x ξ==.我们将ξ换为x ,结论变形为'()20()f x f x x -=,积分得:2()ln ()2ln ln ln f x f x x c x -==,即2()f x c x=,从而可设辅助函数为2()()f x F x x =,有1(1)(2)2F F ==.本题获证. 例4:设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内可微,()()0f a f b ==.证明存在(,)a b ξ∈,使得:'()()'()0f f g ξξξ+=.证:将'()()'()0f f g ξξξ+=变形为'()()'()f f g ξξξ=-⇒'()'()()f g f ξξξ=-,将ξ换为x ,则'()'()()f x g x f x =-,两边关于x 积分,得:'()'()()f x dx g dx f x ξ=-⇒⎰⎰1[()][()]ln ()()()d f x d g x f x g x C f x =-⇒=-+⎰⎰,所以()(())exp(())exp()f x exp g x C g x C =-+=-g exp(())K g x =-,其中exp()K C =,由()(())f x Kexp g x =-可得()exp(())K f x g x =.由上面积分的推导可知,()exp(())f x g x 为一常数K ,故其导数必为零,从整个变形过程知,满足这样结论的ξ的存在是不成问题的.因而令()()exp(())F x f x g x =,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数.例5:证明拉格朗日中值定理.分析:通过弦AB 两个端点的直线方程为()()()()f b f a y f a x a b a-=+--,则函数()f x 与直线AB 的方程之差即函数()()()()[()()]f b f a F x f x f a x a b a -=-+--在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数.例6:若()f x 在[,]a b 上连续且(),()f a a f b b <>.试证在(,)a b 内至少有一点ξ,使()f ξξ=.分析:由图可看出,此题的几何意义是说,连续函数()y f x =的图形曲线必跨越y x =这一条直线,而两者的交点的横坐标ξ,恰满足()f ξξ=.进而还可由图知道,对[,]a b 上的同一自变量值x ,这两条曲线纵坐标之差()f x x -构成一个新的函数()g x ,它满足()g a <0,()g b >0,因而符合介值定理的条件.当ξ为()g x 的一个零点时,()0g ξ=恰等价于()f ξξ=.因此即知证明的关键是构造辅助函数()()g x f x x =-.4 常数k 值法此方法构造辅助函数的步骤分为以下四点:1)将结论变形,使常数部分分离出来并令为k .2)恒等变形使等式一端为a 及()f a 构成的代数式,另一端为b 及()f b 构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为x ,相应的函数值改为()f x .4)端点换变量x 的表达式即为辅助函数()F x .例7:设()f x 在[,]a b 上连续,在(,)a b 内可导,(0)a b <<,试证存在一点(,)a b ξ∈,使等式()()ln '()a f b f a f bξξ-=成立. 分析:将结论变形为()()'()ln ln f b f a f b a ξξ-=-,令()()ln ln f b f a k b a-=-,则有()ln ()ln f b k b f a k a -=-,令b x =,可得辅助函数()()ln F x f x k x =-.例8:设''()f x 在[,]a b 上存在,在a c b <<,试证明存在(,)a b ξ∈,使得()()()1''()()()()()()()2f a f b f c f a b a c b a b c c a c b ξ++=------. 分析:令()()()()()()()()()f a f b f c k a b a c b a b c c a c b ++=------,于是有()()()()()()()()()b c f a a b f c c a f b k a b a c b c -+-+-=---,上式为关于a ,b ,c 三点的轮换对称式,令b x =(or :c x =,or :a x =),则得辅助函数()()()()()()()()()()F x x c f a a x f c c a f x k a x a c x c =-+-+-----.5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论.例9:设函数()F x 在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点C ,使得1(1)(0)()'()c c F F e e F C --=+-. 分析:所要证的结论可变形为:11(1)(0)()'()'()c c c e F F e e F c F c e----=-=,即(1)(0)'()1c F F F c e e-=-,因此可构造函数()x G x e =,则对()F x 与()G x 在[0,1]上应用柯西中值定理即可得到证明.例10:设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)f =0,对任意(0,1)x ∈有()0f x ≠.证明存在一点(0,1)ξ∈使'()'(1)()(1)nf f f f ξξξξ-=-(n 为自然数)成立. 分析:欲证其成立,只需证'()(1)'(1)()0nf f f f ξξξξ---=由于对任意(0,1)x ∈有()0f x ≠,故只需证:1(())'()(1)'(1)(())0n n n f f f f f ξξξξξ----=即'[(())(1)]0n x f x f x ξ=-=,于是引入辅助函数()(())(1)n F x f x f x =-(n 为自然数).例11:设函数()f x 在区间[0,+∞]上可导,且有n 个不同零点:120n x x x <<<<….试证()'()af x f x +在[0,+∞]内至少有1n -个不同零点.(其中,a 为任意实数)证明:欲证()'()af x f x +在[0,+∞)内至少有1n -个不同零点,只需证方程()'()af x f x +=0在[0,+∞]内至少有1n -个不同实根.因为,[0,+)x ∈∞,ax e 0≠,故只需证方程ax e [()'()]0af x f x +=在[0,+)∞内至少有1n -个不同实根.引入辅助函数()()ax F x e f x =,易验证()F x 在区间[12,x x ],[23,x x ],…,[1,n n x x -]上满足罗尔定理的条件,所以,分别在这1n -个区间上应用罗尔定理,得121'()'()'()0n F F F ξξξ-====…,其中11222311(,),(,),(,)n n n x x x x x x ξξξ--∈∈∈…且1210n ξξξ-<<<<…以上说明方程'()0F x =在[12,x x ]U [23,x x ]U …U [1,n n x x -]⊂[0,+∞]内至少有1n -个不同实根,从而证明了方程()'()af x f x +=0在[0,+∞]内至少有1n -个不同实根.6 待定系数法在用待定系数法时,一般选取所证等式中含ξ的部分为M ,再将等式中一个端点的值b 换成变量x ,使其成为函数关系,等式两端做差构造辅助函数()x ϕ,这样首先可以保证()b ϕ=0,而由等式关系()a ϕ=0自然满足,从而保证()x ϕ满足罗尔定理条件,再应用罗尔定理最终得到待定常数M 与'()f ξ之间的关系.例12:设()f x 是[,]a b 上的正值可微函数,试证存在(,)a b ξ∈,使()'()ln ()()()f b f b a f a f ξξ=-. 证明:设()ln ()()f b M b a f a =-,令()()ln ()()f x x M x a f a ϕ=--容易验证()x ϕ在[,]a b 上满足罗尔定理条件,由罗尔定理,存在(,)a b ξ∈使'()0ϕξ=,解得'()()f M f ξξ=,故()'()ln()()()f b f b a f a f ξξ=-. 例13:设函数()f x 在[,]a b 上连续,在(,)a b 内可导,则在(,)a b 内至少存在一点ξ使222[()()]()'()f b f a b a f ξξ-=-.证明:将所证等式看作22'()()()()2f f b f a b a ξξ-=-,设22()()()f b f a M b a -=-,令22()()()()x f x f a M x a ϕ=---,则()x ϕ满足罗尔定理条件,由罗尔定理得,存在一点(,)a b ξ∈,使'()0ϕξ=,即'()2f M ξξ=,若ξ=0,则'()0f ξ=,结论成立;若0ξ≠,则'()2f M ξξ=,从而有222[()()]()()f b f a f b a ξξ-=-. 例14:设120x x <<,则存在12(,)x x ξ∈使211212(1)()x x x e x e e x x ξξ-=--.分析:对于此题设211212()x x x e x e M x x -=-作函数11()x x x x e xe ϕ=-1()M x x --.应用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即110x x e e M ξ-+=,从而11x M e x e ξ=-,这样并不能证明原结论,遇到这种情况,说明所作的辅助函数不合适,则需要将所证明的等式变形,重新构造辅助函数. 证明:将所证等式变形为21212111(1)()x x e e e x x x x ξξ-=--,设2121x x e e x x -=2111()M x x -,令11()x x e e x x x ϕ=-111()M x x --,则()x ϕ满足罗尔定理条件,用罗尔定理可得存在12(,)x x ξ∈,使'()0ϕξ=,即2210e e M ξξξξξ-+=,于是(1)M e ξξ=-,故211212(1)()x x x e x e e x x ξξ-=--.总之,证明微分中值命题的技巧在于:一是要仔细观察,适当变换待证式子;二是要认真分析,巧妙构造辅助函数.抓住这两点,即可顺利完成证明.。

相关文档
最新文档