微分中值定理(怎样构造辅助函数)
几类中值定理辅助函数构造方法

, 这 式 一 变 于 个子 下得 是
没有 悬 念 了.
b , 得 F( = , )使 ) 0 即 , ) g 厂()一 ( ) 一 ( ) ) 0 ( g( ) ( , a g( ) g b f( = ,
g ( ≠O ) ,
・
. .
◎邹 莉 ( 藏大学理学院数学 系 西
【 关键 词】 中值定理 ; 辅助函数; 构造方法
p= f 0型 ( 中 P为 常数 或 的 函 数 ) 引 进 u )=e , 其 可 ( 则 构 造 出 辅 助 函 数 , )= e ( f
辅 助 函数 是 解 决 很 多 数 学 问 题 的 有 效 工 具 , 别 是 在 特
1 .把 结 论 中 由 区 间 端 点 函 数 值构 成 的 部分 分 离 出 来 并 改 写成 柯 西 中值 定理 或拉 格 朗 日的 结 论 中相 应 的 标 准 往 往 就 找 到 了解 决 问题 的 钥 匙 例 3 设0 <2 < 7 2 … 一 孵 ) [ ,2可 导 , 明在 (1 2 至 在 ] 证 , ) … 一
条件存在 ∈ ac使 F( = , () 厂 ,) , ) o即厂 一 _
D 一 Ⅱ
= o
,
即得 证 .
二 、 证 式 与 区 间 端点 函数 值 有 关 的微 分 中值 命 题 所
④ 移 项 使 等 式 一 边 为 0 则 另 一 边 即为 所 求 辅 助 函数 . , 例 1 若 , , ( 在 [ ,] 可 导 , g ) ( g ) a b 上 ) 且 ( ≠0, 存 则 在 一个 洲 分析 ) 使 = .
1 .原 函 数 法
利 用 微 分 中 值 定 理 求 介 值 或 零 点 问 题 时 , 证 明 的 结 要
【最新精选】辅助函数法的构造及应用

浅析辅助函数的构造及应用陈小亘(湛江师范学院信息科学与技术学院 广东 湛江524048)摘要:本文阐述了辅助函数的基本特征与构造辅助函数的原则,并介绍几种较为典型的构造辅助函数的方法应用.关键词:辅助函数;原函数法;参数变易法;常数k 值法中图分类号:O13;O17;O172;O174;O174.4 文献标识码: A1 引言辅助函数法是数学证明中经常使用的一种非常有用的方法,是数学解题中构造的辅助问题的一种.它是依据数学问题所提供的信息而构造的函数,再利用这个函数的特性进行求解.构造辅助函数是将原来的数学间题转化为容易解决的辅助函数问题.这就要求我们在所掌握的数学知识基础上,全面把握数学问题所提供的信息即问题本身的特点、背景以及与其它问题之间的关系,运用基本的数学思想,经过认真的观察,深入的思考,才能构造出所需要的辅助函数.这个构造过程是一个从特殊到一般的过程,而运用辅助函数返回去解决原数学问题又是一个从一般到特殊的过程.这是一种创造性的思维过程,具有较大的灵活性,需要技巧.如何才能找到合适的辅助函数?这是教学过程中的难点之一,教师难教,学生难学.许多教科书和教学参考书中常常是直接给出辅助函数,使学生感到突然,遇到难题无从下手.2 辅助函数的基本特点及构造原则所谓构造法,就是按一定方式,经有限步骤能够实现的方法,在解题时常表现的是不对问题本身求解,而是构造一个与问题有关的辅助函数问题进行求解.它具有两个显著的特征:直观性和可行性.正是这两个特性,在数学解题中经常运用它,但是如何构造辅助函数,始终是一个难点,因此应重视这种思想方法的引导和渗透,多做归纳总结.辅助函数有许多基本特点.首先,辅助函数题设中没有,结论中也没有,仅是解题中间过程中构造出来的,类似于平面几何中的辅助线,起辅助解题的作用.其次,同一个命题可构造多个辅助函数用于解题.再次,构造辅助函数的思想较宽广. 然而,不同的辅助函数直接关系到解题的难易,因此构造最恰当的辅助函数是关键.如何构造辅助函数?事实上,我们在构造辅助函数时,必须遵循一定的原则.这是因为辅助函数的构造是有一定规律的,当某些数学问题使用通常办法按定势思维去考虑很难奏效时,可根据题设条件和结论的特征、性质展开联想,进而构造出解决问题的特殊模式.构造辅助函数的第一原则是:将未知化为已知.在一元微积分学中许多定理的证明都是在分析所给命题的条件、结论的基础上构造一个函数,将要证的问题转化为可利用的已知结论来完成. 其次,将复杂化为简单.一些命题较为复杂,直接构造辅助函数往往较困难,可通过恒等变形,由复杂转化为简单,从中探索辅助函数的构造,以达到解决问题的目的.再次,利用几何特征.在许多教科书中,微分中值定理的证明是利用对几何图形的分析,探索辅助函数的构造,然后加以证明.本文给出几种常用构造辅助函数的方法应用. 3 几种构造辅助函数的方法应用3.1 原函数法 (亦称积分法或逆推法)原函数法是指从所要证明的结论出发,如欲证0)(='ξF ,则可通过倒推,分析了原函数)(x F 的形式,从而构造出辅助函数的方法.这一方法适用于“证明至少存在一点ξ,使得 关于ξ及其函数的代数式成立”这类命题的证明.构造辅助函数的步骤:第一步:将命题中的ξ换成x ;第二步:通过恒等变形将结论化为易消除导数符号的形式;第三步:用观察法或积分法求出原函数,为方便积分常数常常取为零;第四步:移项使等式一边为零,则另一边即是所求辅助函数)(x F .例3.1 设函数)(),(x g x f 在],[b a 上二阶可导,且0)()()()(====b g a g b f a f ,0)(≠x g ,0)(≠''x g ,证明:至少存在一点),(b a ∈ξ,使得)()()()(ξξξξg f g f ''''=. 分析:令x =ξ,则)()()()(ξξξξg f g f ''''=⇒)()()()(x g x f x g x f ''''= ⇒)()()()(x f x g x g x f ''=''⇒dt t g t f dt t g t f xx o ⎰⎰''=''0)()()()(⇒dt t g t f x g x f dt t g t f x g x f xx o ⎰⎰''-'=''-'0)()()()()()()()( ⇒)()()()(x g x f x g x f '='⇒0)()()()(='-'x g x f x g x f .证明:令x =ξ,=)(x F )()()()(x g x f x g x f '-',依条件,)(x F 在],[b a 上连续,在),(b a 内可导,且0)()(==b F a F ,由罗尔中值定理可知,至少存在一点),(b a ∈ξ,使得0)(='ξF ,即 0)()()()(='-'ξξξξg f g f . 由于0)(≠ξg ,0)(≠''ξg ,故)()()()(ξξξξg f g f ''''=. 如下的命题也可以用这一方法来证明: 如果函数)(),(x g x f 在],[b a 上可导,且0)(≠'x g ,则至少存在一点),(b a ∈ξ,使得)()()()()()(ξξξξg f b g g f a f ''=--.3.2 参数变易法参数变易法是指把命题中的某个参数“变易”为变量x ,从而构造出相应的辅助函数的方法. 命题的证明思路:第一步:将命题中的某一参数(a 或b )换成x ;第二步:移项使等式一边为零,则另一边即是所求辅助函数)(x F ;第三步:根据有关定理完成命题的证明.例3.2 设)(),(t g t f 是在],[b a 上连续增加函数,0,>b a ,证明:⎰⎰⎰-≤b ab a ba dt t g t f ab dt t g dt t f )()()()()( 证明:把上式中的b 换成x ,移项,然后作辅助函数 ⎰⎰⎰--=x ax a xa dt t g t f a x dt t g dt t f x F )()()()()()(. 由于)()()()()()()()()()(x g x f a x dt t g t f dt t f x g dt t g x f x F x a x a x a ---+='⎰⎰⎰ ))()()()()()()()(⎰⎰⎰⎰--+=xa x a x ax a dt x g x f dt t g t f dt t f x g dt t g x f ⎰---=xa dt t g x g t f x f )]()()][()([. 又)(),(t g t f 均为连续增加函数,因此,0)(<'x F ,)(x F 为减少函数.0)()(=≤a Fb F . 即0)()()()()(≤--⎰⎰⎰ba b a ba dt t g t f ab dt t g dt t f . 所以⎰⎰⎰-≤b ab a ba dt t g t f ab dt t g dt t f )()()()()(. 如下的命题也可以用这一方法来证明: 如果)(x f 是在],[b a 上连续函数,且0)(>x f ,则2)()(1)(a b dx x f dx x f b a b a -≥⎰⎰. 3.3 泰勒公式法泰勒公式法是指利用泰勒公式来构造辅助函数的方法. 这一方法适用于“含有被积函数)(x f 有二阶或二阶以上连续导数”这类命题的证明.命题的证明思路:第一步:令辅助函数⎰=xa dt t f x F )()(;第二步:将)(x F 在所需点处进行泰勒展开;第三步:对泰勒余项作适当处理(可考虑用介值定理).例 3.3设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得⎰ba dx x f )(=)2()(b a f a b +-+()(2413f a b ''-ξ) 证明:令⎰=xa dt t f x F )()(,则有0)(=a F ,)()(x f x F =',)()(x f x F '='',)()(x f x F ''=''',)(x F 在0x 2b a +=处的二阶泰勒公式为 2)2)(2(!21)2)(2()2()(b a x b a F b a x b a F b a F x F +-+''++-+'++=+3)2)((!31b a x F +-'''ξ F =)2(b a ++f )2(b a +-x (2b a +)f '+!21)2(b a +-x (2b a +2)+)(!31ξf ''-x (2b a +3) 其中ξ在x 与2b a +之间. 分别将b x =,a x =代入上式,并相减,则得 2)()()(241)2()()()(213ξξf f a b b a f a b a F b F +''-++-=-, 其中1ξ,2ξ分别在2b a +与b ,a 与2b a +之间. 不妨设)()(21ξξf f ''≤'',则2)()()(211ξξξf f f ''+''≤'')(2ξf ''≤,考虑到)(x f ''的连续性及介值定理,可知在1ξ,2ξ之间至少存在一个),(b a ∈ξ使2)()()(21ξξξf f f ''+''=''. 故 )()()(a F b F dx x f ba -=⎰=)2()(b a f a b +-+()(2413f a b ''-ξ). 3.4常数k 值法在要证明的命题中,把常数分离,然后用以下步骤求辅助函数:第一步:将常数部分记作k ;第二步:恒等变形,使等式一端为a 的代数式,另一端为b 的代数式;第三步:分析关于端点的表达式是否为对称式,若果是,只要把端点a 改成x ,则换变量后的端点表达式就是所求的辅助函数.这样的方法就是常数k 值法.例3.4 设)(x f ''在],[b a 上存在,b c a <<,证明:至少存在一点),(b a ∈ξ,使得)(21))(()())(()())(()(ξf b c a c c f c b a b b f c a b a a f ''=--+--+--. 分析:令k b c a c c f c b a b b f c a b a a f =--+--+--))(()())(()())(()(. ⇒))()(()()()()()()(c b c a b a k c f b a b f a c a f c b ---=-+-+-,这是关于端点c b a ,,的轮换对称式,令x b =(可以令x a =或x c =),于是))()(()()()()()()()(c x c a x a k c f x a x f a c a f c x x F -----+-+-=.证明:令))()(()()()()()()()(c x c a x a k c f x a x f a c a f c x x F -----+-+-=,则)(x F 在],[],,[b c c a 上满足罗尔定理,于是分别存在),(),,(21b c c a ∈∈ξξ使得0)()(21='='ξξF F ,又))(())(()()()()()(c a x a k c x c a k x f a c c f a f x F -----+'-+-='.)(2)()()(c a k x f a c x F -+''-=''. 由罗尔中值定理,至少存在),(),(21b a ⊂∈ξξξ,使得0)(=''ξF ,即0)(2)()(=-+''-c a k f a c ξ. 从而)(21ξf k ''=. 命题得证. 3.5 微分方程法微分方程法是指通过求一个常微分方程的通解而构造辅助函数的方法.构造出辅助函数的步骤:第一步:将命题中的ξ换成x ;第二步:移项使等式一边为零,得一个常微分方程;第三步:求得常微分方程的通解,在通解中的常数令为零可得辅助函数.例3.5 设函数)(x f 在]1,0[上可导,且满足关系 )1()(2210f dx x xf ⎰=. 证明:至少存在一点)1,0(∈ξ,使得 0)()(=+'ξξξf f .分析:令x =ξ,0)()(=+'ξξξf f ⇒0)()(=+'x x f x f ⇒xx f x f 1)()(-=',积分得c x x f ln ln )(ln +-=⇒xc x f =)(⇒c x xf =)(. (令0=c ). 令)()(x xf x F =. 证明:由条件知)()(x xf x F =在]1,0[上连续,在)1,0(可导. 于是由积分中值定理,至少存在一点),0(21∈η,使得 )()(2)(2)1(210210ηηηηf dx f dx x xf f ⎰⎰===.可见)()()1()1(ηηηf F f F ===. 对)()(x xf x F =,由罗尔中值定理,至少存在一点)1,(ηξ∈,使得0)(=ξF ,即0)()(='+ξξξf f . 也就是0)()(=+'ξξξf f .总之,构造辅助函数有许多方法(见[1],[2],[3],[4],[5],[6]). 对于不同的命题,我们必须根据实际情况灵活地选择不同的构造辅助函数的方法. 有时,对于一个命题,可以同时利用不同的方法来完成命题的证明.这就要求我们在教与学的过程中不断去探索新的方法.参考文献:[1 ] 同济大学. 高等数学(第五版) [M ]. 北京: 高等教育出版社, 2002.[2 ] 刘玉琏,付沛仁. 数学分析讲义[M]. 北京: 高等教育出版社, 1997.[3 ] 龚冬保. 高等数学典型题解法、技巧、注释[M ]. 西安:西安交通大学出版社, 2000.[4 ] 陈文灯. 考研数复习指南[M] . 北京: 世界图书出版公司,2009.[5 ] 李君士. 两个微分中值定理证明中辅助函数的多种作法[ J ]. 数学的实践与认识, 2004, 34 (10) : 165 - 169.[6 ] 郭乔. 如何作辅助函数解题[J ]. 高等数学研究, 2002, 3 (5) , 48- 49.A Brief of the Construct Method and Its Application for Auxiliary FunctionChen Xiaogen(School of Information Science and Technology , Zhanjiang Normal College Zhanjiang Guangdong 524048) Abstract: This paper elaborate the basic characteristic of the auxiliary function and the principle of coustructing the auxiliary function, meanwhile, introduce the several typical applications of methods for coustructing the auxiliary function.Key words: Auxiliary function; Primary function mothod; the method of variation of parameters; Constant -k- value methnod附加公文一篇,不需要的朋友可以下载后编辑删除,谢谢(关于进一步加快精准扶贫工作意)为认真贯彻落实省委、市委扶贫工作文件精神,根据《关于扎实推进扶贫攻坚工作的实施意见》和《关于进一步加快精准扶贫工作的意见》文件精神,结合我乡实际情况,经乡党委、政府研究确定,特提出如下意见:一、工作目标总体目标:“立下愚公志,打好攻坚战”,从今年起决战三年,实现全乡基本消除农村绝对贫困现象,实现有劳动能力的扶贫对象全面脱贫、无劳动能力的扶贫对象全面保障,不让一个贫困群众在全面建成小康社会进程中掉队。
微分中值定理及其应用

微分中值定理的应用4 微分中值定理的应用 4.1 证明有关等式在证明一些出现导数的等式时,进行适当的变形后,考虑应用微分中值定理加以证明.还有,就是我们在证明一些与中值定理有关的题目时,构造辅助函数是解决问题的关键.在证明题中巧妙选用和构造辅助函数,进行系统分析和阐述,从而证明相关结论.例 4.1.1[5]()f x 是定义在实数集R 上的函数,若对任意,x y R ∈,有2()()()f x f y M x y -≤-,其中M 是常数,则()f x 是常值函数.证明 对任意x R ∈,x 的改变量为x ∆,由条件有2()()()f x x f x M x +∆-≤∆,即()()f x x f x M x x+∆-≤∆∆,两边关于0x ∆→取极限得()()0limlim 0x x f x x f x M x x∆→∆→+∆-≤≤∆=∆所以()0f x '=.由中值定理()(0)()0f x f f x ξ'-==,即()(0)f x f =, 故在R 上()f x 是常值函数.思路总结 要想证明一个函数()f x 在某区间上恒为常数一般只需证明该函数的导函数()f x '在同一区间上恒为零即可.例4.1.2[2] 设()f x =112112321343x x x x x x ------,证明:存在(0,1)ξ∈,使得()0f ξ'=.证明 由于()f x 在[0,1]上连续,在(0,1)内可导,111(0)1220133f --=--=--,11(1)111121f =--0= .符合罗尔中值定理的条件,故存在ξ(0,1)∈,使()0f ξ'=例4.1.3 若()f x 在[0,1]上有三阶导数,且(0)(1)f f =0=,设3()()F x x f x =,试证在(0,1)内至少存在一个ξ,使()0F ξ'''=.证明 由题设可知()F x ,()F x ',()F x '',()F x '''在[0,1]上存在,又(0)(1)F F =,由罗尔中值定理,∃1ξ(0,1)∈使1()0F ξ'=,又23(0)[3()()]|0x F x f x x f x =''=+=可知()F x '在上1[0,]ξ满足罗尔中值定理,于是21(0,)ξξ∃∈,使得2()0F ξ''=,又23(0)[6()6()()]|0x F xf x x f x x f x ='''''=++=对()F x ''存在21(0,)(0,)(0,1)ξξξ∈⊂⊂,使 ()0F ξ'''=.例4.1.4[4](达布定理的推论) 若函数()f x 在[,]a b 内有有限导数,且()()0f a f b +-''< ,则至少存在(,)c a b ∈,使得()0f c '=.证明 ()()0f a f b +-''<,不妨设()0f a +'<,()0f b -'>,因为()lim [()()]/()0x af a f x f a x a ++→'=--<由极限的局部保号性可知,∃1δ0>,当1(,)x a a δ∈+时,()()0f x f a -<,即()()f x f a <.同样∃20δ>,当2(,)x b b δ∈-时,()()0f x f b -<,即()()f x f b <.取12m in{,,}2b a δδδ-=,于是在(,)a a δ+,(,)b b δ-中,分别有()()f x f a <和()()f x f b <.故()f a ,()f b 均不是()f x 在[,]a b 中的最小值,最小值一定是在内部的一点处取得,设为c 由费马定理可知,()0f c '=.小结 证明导函数方程()()0n f x =的根的存在性的证明方法有如下几种:①验证函数()f x 在[,]a b 上满足罗尔中值定理的三个条件,由此可直接证明()0f ξ'=.②在大多数情况下,要构造辅助函数()F x ,验证在[,]a b 上满足罗尔中值定理的三个条件,证明()0F ξ'=,进而达到证明问题的目的.③验证x ξ=为函数的极值点,应用费马定理达到证明问题的目的. 例 4.1.5 设()f x 在[,]a b 上连续,在(,)a b 内可导,0a b <<,试证:,(,)a b ξη∃∈使()()2a b f f ξηη+''=.证明 由于0a b <<,2(),()f x g x x =,()20g x x '=≠,(,)x a b ∈由于(),()f x g x 在[,]a b 上满足柯西中值定理 ,所以(,)a b η∃∈使22()()()2f f b f a b aηη'-=-()()()()()2f f b f a b a f b aηξη'-'⇒+==-,(,)a b ξ∈由上面二式可得,(,)a b ξη∃∈使得:()()2a b f f ξηη+''=.例4.1.6 设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==.试证:对任意给定的正数,a b 在(0,1)内不同的ξ,η使()()a b a bf f ξη+=+''.证明 由于,0a b >所以01a a b<<+.又由于()f x 在[0,1]上连续且(0)0,(1)1f f ==.由介值性定理,(0,1)τ∃∈使得()a f a bτ=+,()f x 在[0,],[,1]ττ上分别用拉格朗日中值定理有()(0)(),(0,)f f f ττξξτ'-=∈即()(),(0,)f f ττξξτ'=∈ (1)()(1)(),(,1)f f f ττηητ'-=-∈即1()(1)(),(,1)f f ττηητ'-=-∈于是由上面两式有1()1()()()f b f a b f ττηη--==''+()()()()f a f a b f ττξξ==''+将两式相加得1()()()()a b a b f a b f ξη=+''++即()()a b a bf f ξη+=+''.小结 大体上说,证明在某区间内存在,ξη满足某种等式的方法是:①用两次拉格朗日中值定理.②用一次拉格朗日中值定理,一次罗尔中值定理. ③两次柯西中值定理.④用一次拉格朗日中值定理,一次柯西中值定理. 4.2 证明不等式在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例4.2.1[3] 设 ⑴(),()f x f x '在[,]a b 上连续;⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b ==⑷在(,)a b 内存在点c ,使得()0;f c >求证在(,)a b 内存在ξ,使()0f ξ''<.证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以1()0f x '=.由泰勒公式:211111()()()()()(),(,)2!f f a f x f x a x a x a x ξξ'''-=-+-∈.所以()0f ξ''<.例4.2.2 设0b a <≤,证明lna b a a b abb--≤≤.证明 显然等式当且仅当0a b =>时成立. 下证 当0b a <<时,有lna b a a b ab b--<< ①作辅助函数()ln f x x =,则()f x 在[,]b a 上满足拉格朗日中值定理,则(,)b a ξ∃∈使ln ln 1a b a bξ-=- ②由于0b aξ<<<,所以111a bξ<<③由②③有1ln ln 1a b aa bb-<<-,即lna b a a b ab b--<<.小结 一般证明方法有两种①利用泰勒定理把函数()f x 在特殊点展开,结论即可得证. ②利用拉格朗日中值定理证明不等式,其步骤为:第一步 根据待证不等式构造一个合适的函数()f x ,使不等式的一边是这个函数在区间[,]a b 上的增量()()f b f a -;第二步 验证()f x 在[,]a b 上满足拉格朗日中值定理的条件,并运用定理,使得等式的另一边转化为()()f b a ξ'-; 第三步 把()f ξ'适当放大或缩小.4.3 利用微分中值定理求极限及证明相关问题例4.3.1 设函数在0x x =点的某一邻域内可导,且其导数()f x '在0x 连续,而0nn x αβ<<当n →∞时00,n n x x αβ→→,求 ()()limn n n n nf f βαβα→∞--.解 设00{},{}()nn u x αβ⊂,则由拉格朗日中值定理有()()(),()n n n n n n n nf f f βαξαξββα-'=<<-. 已知0()nx n ξ→→∞,又()f x '在0x 连续,即00()lim ()x x f x f x →''=,所以0()()limlim ()lim ()()n n n n n x x n nf f f f x f x βαξβα→∞→∞→--'''===.例4.3.2 若()f x 在(,)a +∞内可导,且lim[()()]0x f x f x →∞'+=,求lim ()x f x →∞.分析 由式[()()][()]xxf x f x e f x e ''+=,引进辅助函数()(),()xxF x f x e g x e==,显然()0g x '≠.解 由lim[()()]0x f x f x →∞'+=,知0ε∀>,0X ∃>当x X >时()()f x f x ε'+<,令()()xF x f x e=,()xg x e =对x X>,在[,]X x 上利用柯西中值定理有()()()()()()F x F X F g x g X g ξξ'-='-,(,)X x ξ∈即()()[()()]xXxXf x e f X ef f ee eeξξξξ'-+=-,亦有[()()]()()1X xX xf x f X ef f eξξ---'=+-,或|()||()||()()|(1)X xX xf x f X ef f e ξξ--'≤+++由于lim0X xx e-→+∞=,所以1,x X ∃>当1x x >时有X xeε-<和1X xe-<,于是1x x ∀>,使|()||()|2f x f X εε≤+即lim ()x f x →∞=.小结方法1 选择适当的函数和区间利用拉格朗日中值定理并结合导函数的特点及极限的迫敛性求的最终结果.方法2 选择适当的函数和区间利用柯西中值定理结合具体题意求的最终结果.4.4 证明零点存在性在证明方程根的存在性时,出现满足中值定理的相关条件时,可以考虑运用微分中值定理加以解决.从某种意义来说,微分中值定理为证明方程根的存在性提供了一种方法.例4.4.1 设iaR ∈且满足120 (02)31n a a a a n ++++=+,证明方程12012...0nn a a x a x a x ++++=在(0,1)内至少有一个实根.证明 引进辅助函数23112() (2)31n nxxxF x ax a a a n +=+++++,显然(0)(1)0F F ==,()F x 又是多项式函数在[0,1]上连续,在(0,1)可导,()F x 满足罗尔中值定理的条件,故存在(0,1)ξ∈使()0F ξ'=而1212()...nnF x a a x a x a x '=++++故方程1212...0nna a x a x a x ++++=在(0,1)内至少有一个实根ξ.注 本题构造()F x 的依据是使()F x 得导数恰好是所证方程的左边. 例4.4.2 证明:方程510x x +-=有唯一正根. 证明 (存在性)令5()1f x x x =+-,显然()f x 是连续函数,取区间[0,]N 则()f x 在[0,]N 上连续,在(0,)N 内可导,且4()510f x x '=+>,由连续函数的零点定理,知存在0x (0,)N ∈使0()0f x =即方程有正根(0)N >.(唯一性)下面用反证法证明正根的唯一性,设处0x 外还有一个10x >不妨设01x x <使1()0f x =则()f x 在01[,]x x 上满足罗尔中值定理条件,于是存在01(,)x x ξ∈使()0f ξ'=这与上面的4()510f x x '=+>矛盾.所以,方程有唯一的正根.例 4.4.3 设(),(),()f x g x h x 在[,]a b 上连续,在(,)a b 内可导,证明(,)a b ξ∃∈使()()()()()()0()()()f ag ah a f b g b h b f g h ξξξ='''并由此说明拉格朗日中值定理和柯西中值定理都是它的特例.证明 作辅助函数()()()()()()()()()()f ag ah a F x f b g b h b f x g x h x =由于()()0F a F b ==,由罗尔中值定理知(,)a b ξ∃∈使()()()0()()()()()()()f ag ah a F f b g b h b f g h ξξξξ'==''',①若令()1h x =,则由①式有()()10()()()1()()f ag a F f b g b f g ξξξ'=='',②由②式可得()()()()()()f b f a fg b g a g ξξ'-='-此即柯西中值定理.若令()1h x =,()g x x =由①式有()10()()1()1f a aF f b bf ξξ'==',③由③可得()()()f b f a f b aξ-'=-此即为拉格朗日中值定理.此类型题的一般解题方法小结 证明根的存在性有以下两种方法(1)构造恰当的函数()F x ,使()()F x f x '=;对()F x 使用洛尔定理即可证得结论存在ξ,使得()0f ξ=;(2)对连续函数()f x 使用介值定理;证明根的唯一性一般用反证法,结合题意得出矛盾,进而结论得证.4.5 函数的单调性例4.5.1[6] 证明:若函数()f x 在[0,)a 可导,()f x '单调增加,且(0)0f =,则函数()f x x在(0,)a 也单调增加.证明 对任意12,(0,)x x a ∈,且12x x <,则()f x 在1[0,]x 与12[,]x x 均满足拉格朗日中值定理条件,于是分别存在11212(0,),(,)c x c x x ∈∈,使111()(0)()0f x f f c x -'=-, 21221()()()f x f x f c x x -'=-,由于()f x '单调增加,且(0)0f =,所以121121()()()f x f x f x x x x -≤-,从而1212()()f x f x x x ≤,即函数()f x x在(0,)a 也单调增加.4.6 导数的中值估计例4.6.1[7] 设()f x 在[,]a b 上二次可微, ()()0f a f b ''==,则至少存在一点(,)a b ξ∈,使得22()()()()f f b f a b a ξ''≥--.证明 因为函数()f x 在[,]2a b a +与[,]2a b b +上可导,所以由中值定理有11()()2(),(,),22a bf f a a b f c c a a b a +-+'=∈+- (1)22()()2(),(,),22a bf b f a b f c c b a b b +-+'=∈+-(2)(1)(2)+,并整理得212()()[()()]f c f c f b f a b a''+=--,(3)又()()0f a f b ''==,且()f x 在[,]a b 上二次可微,则分别在1(,)a c 与2(,)c b 内至少存在1ξ与2ξ,使11111()(),(,),f c f a c c aξξ'''=∈-(4)22222()(),(,),f c f c b c bξξ'''=∈-(5) (4)(5)+,并整理得211122()()()()()(),f c f c f c a fc b ξξ''''''+=-+-(6) 将(6)式代入(3)式得11222()()()()()()f b f a f c a f c b b aξξ''''-=-+--令12()max{(),()}f f f ξξξ''''''=,则11222()()()()f b f a f c a f c b b aξξ''''-≤-+--()f b aξ''≤-即22()()()()f f b f a b a ξ''≥--,(,)a b ξ∈.解题方法小结选择适当的区间分别利用拉格朗日中值定理并进行适当处理,再结合具体题目采用适当的手段最终证得所求结论. 4.7 证明函数在区间上的一致连续例4.7.1 设函数()f x 在(0,1]内连续且可导,有0lim ()0x x f x +→'=,证明:()f x 在(0,1]内一致连续.证明 由函数极限的局部有界性知,存在0M >和(0,1)c ∈,使(),(0,]x f x M x c '≤∈于是12,(0,]x xc ∀∈,且12x x ≠不妨设12xx <由柯西中值定理,12(,)x x ξ∃∈,有2121()()()2()1/(2)f x f x f f x x ξξξξ'-'==-即221212212x x x x x x x -=+-≤-故0,ε∀>2m in{(),}2c Mεδ∃=,当12,(0,]x x c ∈,且21x x δ-<时,由上面两式得到212121()()22f x f x M x x M x x ε-≤-≤-<于是知()f x 在(0,]c 上一致连续,由于()f x 在(0,1]上连续,所以()f x 在[,1]c 上一致连续, 由定理知()f x 在(0,1]内一致连续.证明函数在区间上的一致连续解题小结:利用一致连续的定义并结合有关一致连续的定理即可证得结论成立. 4.8 用来判定级数的敛散性例 4.8.1 设函数()f x 在点0x =的某邻域内有二阶连续导数,且()limx f x x→=,证11()n f n ∞=∑绝对收敛. 证明 由0()limx f x x→=且()f x 在0x =可导,知(0)0,(0)0f f '==故()f x 在点x =处的一阶泰勒公式为:2211()(0)(0)()()2!2!f x f f x f x f x ξξ'''''=++=,(0,)x ξ∈因()f x M''≤,故221()()2!2M f x f x xξ''=≤.取1x n=有211()()2M f n n≤ 由于211()2n Mn∞=∑收敛,由比较判别知11()n f n∞=∑绝对收敛. 定理[8] 已知()f x 为定义在[1,)+∞上的减函数,()F x 为定义在[1,)+∞上的连续函数,且()()0F x f x '=>,(1,)x ∈+∞. ⑴当极限l i m ()n F n →∞存在时,正项级数1()n f n ∞=∑收敛,设其和为a,则lim ()(1)lim ()(1)(1)n n F n F a F n F f →∞→∞-≤≤-+;⑵当极限lim ()n F n →∞=∞时,正项级数1()n f n ∞=∑发散.证明 下面只证定理的前半部分.因为函数()F x 在区间[,1]k k +上满足中值定理的条件(其中1k ≥),所以在(,1)k k +内至少存在ξ使得(1)()()F k F k f ξ+-=成立,又()f x 为减函数,故有(1)(1)()(),1,2,,f k F k F k f k k n +<+-<=⋅⋅⋅.将上述n 个不等式相加得(2)(3)...(1)(1)(1)(1)(2)...()f f f n F n F f f f n ++++<+-<+++. 令(1)(2)...()nS f f f n =+++, 则(1)(1)(1)(1)nnS f f n F n F S -++<+-<,(1)第10页 因极限lim ()n F n →∞存在,()f x 为减函数,从而数列{()}F n 有界,(1)(1)f n f +<,所以数列{}nS 单调递增且有上界,故极限lim nn S →∞存在,即级数1()n f n ∞=∑收敛.从而lim()0n f n →∞=,由(1)可得1lim ()(1)()lim ()(1)(1)n n n F n F f n F n F f ∞→∞→∞=-≤≤-+∑.例4.8.2 判定级数21nn n e∞=∑是否收敛?若收敛,请估计其和.解 令2()xf x x e -=,2()(22)xF x x x e -=-++,则()()F x f x '=,()(2)xf x x x e -'=-,故当2x ≥时,()0f x '≤,此时()f x 为减函数,又lim ()n F n →∞0=,由定理知级数21nn n e∞=∑收敛,且22lim ()(2)lim ()(2)(2)nn n n n F n F F n F f e∞→∞→∞=-≤≤-+∑,所以210(2)(1)0(2)(2)(1)nn n F f F f f e∞=-+≤≤-++∑即2212111014nn n eeeee∞----=+≤≤+∑.判定级数的敛散性的一般解题方法方法一 一般先运用泰勒定理并结合题意,再运用比较判别法即可得到所要证明的结论;方法二 先验证级数满足相关定理的条件,即可得到相应结论;。
微分中值定理

定理证明
总结词
柯西中值定理的证明涉及到了微分学中的一 些基本概念和性质,如导数的定义、导数的 几何意义等。
Hale Waihona Puke 详细描述证明柯西中值定理,首先需要理解导数的定 义和性质,然后利用拉格朗日中值定理,再 结合闭区间上连续函数的性质,逐步推导, 最终得出结论。
定理应用
总结词
柯西中值定理在微分学中有广泛的应用,它可以用于研 究函数的单调性、极值等问题,还可以用于求解一些复 杂的微分方程。
详细描述
柯西中值定理的应用主要体现在两个方面,一是利用该 定理研究函数的单调性和极值问题,二是利用该定理求 解一些复杂的微分方程。通过柯西中值定理的应用,我 们可以更好地理解函数的性质,并且能够求解一些复杂 的数学问题。
06
罗尔中值定理
定理内容
总结词
罗尔中值定理是微分学中的基本定理之一,它指出如 果一个函数在闭区间上连续,在开区间上可导,并且 在区间的两端取值相等,那么在这个区间内至少存在 一点,使得函数在该点的导数为零。
定理应用
01
洛必达法则可以用于求极限,特别是当极限的形式为0/0或 者∞/∞时,可以通过洛必达法则求得极限值。
02
洛必达法则还可以用于判断函数的单调性,如果函数在某区间 的导数大于0,则函数在此区间单调递增;如果导数小于0,则
函数在此区间单调递减。
03
此外,洛必达法则还可以用于求函数极值,如果函数在某 点的导数等于0,则该点可能是函数的极值点。
定理应用
总结词
罗尔中值定理在微分学中有广泛的应 用,它可以用于证明其他中值定理、 研究函数的单调性、解决一些微分方 程问题等。
2. 研究函数的单调性
通过罗尔中值定理可以推导出一些关 于函数单调性的结论,例如如果函数 在区间上单调增加或减少,那么其导 数在该区间上非负或非正。
微分中值定理的应用.1pdf

234).$() : Q< 6A 4 R9K <@9 I=BA<GFI<6=B => 4;;G=;G64<9 4FS6564GK >FBI<6=B 6B ;G=P6BL A=E9 E4<@9E4<6I45 ;G=T59EA G959P4B< <=
<@9 E94B P45F9 <@9=G9E $ N@6A ;4;9G, T4A9C =B A=E9 C6>>9G9B< I@4G4I<9G6A<6IA => <@9 ;G=T59EA, ;G=;=A9A A9P9G45 E9<@=CA => 4FS6564GK >FBI<6=B <= ;G=P9 <@9E$
第 !) 卷" 第 ! 期 #’’) 年" " . 月
信阳农业高等专科学校学报 Y=FGB45 => J6BK4BL *LG6IF5<FG45 D=559L9
M=5$ !) 1=$ ! ?4G$ #’’)
微分中值定理的应用
张娅莉! , 吴 " 炜#
( !$ 信阳职业技术学院 数学与计算机科学系, 河南 信阳 %&%’’’ ; #$ 信阳建筑工程质量监督站, 河南 信阳 %&%’’’ )
定理的基本方法是广泛使用辅助函数, 本文就如何在 ( L 4) ) ( > S)
!" 中值定理
罗尔中值定理 " 如果函数 ( > S) 在闭区间 [ 4, T]
使得 XV ( !)U (( > T )W ( > 4) ) LV ( ! )W (L ( T )W L 上连续, 在 ( 4, T) 内可导, 且在区间端点处的函数值 ( 4) ) >V ( !)U ’ 相等, 即( > 4)U( > T) , 那么至少存在一点 ! $ ( 4, T) , 即有 (( > T)W( > 4) ) ( L !)U (( L T)W ( L 4) ) >V ( !) 拉格朗日中值定理 " 如果函数 ( > S) 在闭区间 柯西中值定理 " 如果函数 ( > S) 、 L ( S) 在闭区间 [ 4, T] 连续, 在 ( 4, T) 可导, 那么至少存在一点 ! $ [ 4, T] 上连续, 在 ( 4, T) 内 可 导, 且 %S $ ( 4, T) , 有 ( > 4) > T)W( ( 4, T) , 使 >V ( !)U 。 ( L S) 则在 ( 4, T )内 至 少 存 在 一 点 !, 使得 T W4 & ’, ( > T)W( > 4) >V ( !) U 。 #" 中值定理的应用 ( L T)W ( L 4) LV ( !) 如果去掉条件%S$ ( 4, T) , 有L ( S) 则得到 89 :; 一些题目可直接从结论出发, 分析要证明的结 &’ , 如下结论: 推论: 如果函数 ( > S) 、 L ( S) 在闭区间 [ 4, T] 上连 续, 在 ( 4, T) 内可导, 则在 ( 4, T) 内至少存在一点 !, 使
微分中值定理的证明以及应用

微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。
微分中值定理和洛必达法则证明及应用浅析

微分中值定理和洛必达法则证明及应用浅析龚睿微分中值定理概述微分中值定理充当了沟通函数与导数之间的联系纽带,可以用来计算,判定和证明等。
在应用过程中比较灵活。
但是微分中值定理同时存在理论性较强,内容抽象等特点,所以在学习过程中会难于理解和应用。
微分中值定理,是研究函数的有力工具,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理。
关于微分中值定理的证明费马引理在证明微分中值定理前,我们首先引进费马引理,对于费马定理通过证明函数的每一个极值都是驻点(函数的导数在该点为零),该定理给出了一个求出可微函数的最大值和最小值的方法。
定义:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x ∈U(ξ),都有f(x)<=f(ξ)(或f(x)>=f(x)),那么f’(ξ)=0。
证明:设f(x)在ξ处最大,故不论Δx是正数还是负数,我们总会得到:之后我们假设Δx>0,那么可以得到:因此,通过极限的保号性我们可以得到:1)而当时,由此可以得到:2)由(1),(2)两式及f'(ξ)存在知,那么一定会存在:证明f(x)在ξ处最小的情况与上面的相似。
罗尔定理定义:如果R上的函数f(x)满足以下条件:1)在闭区间[a,b]上连续,2)在开区间(a,b)内可导,3)f(a)=f(b),则至少存在一个ξ∈(a,b),使得f’(ξ)=0。
证明:因为函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)。
所以存在最大值与最小值,不妨设为M与m,分两种情况讨论:(1)M=m,则函数f(x)在[a,b]上必为常函数,则恒有(2)若M>m,不妨设,由可导条件知,,,又由极限存在定理知左右极限均为0,则。
综上所述如果R上的函数f(x)满足以下条件:拉格朗日中值定理回到家,我身上的衣服都干了,在家院前我仰头看着刚刚下过太阳雨的田野远处,看到一条圆弧形的彩虹,晶亮地横过天际,天空中干净清朗,没有一丝杂质。
罗尔定理中辅助函数的构造法

一绪论 微分中值定理建立了导数的局部性与函数整体性的联 系"有着非常重要的应用价值# 罗尔定理虽是微分中值定理 中最基础的一个"但其应用最为广泛"是处理微分中值定理 的证明问题时最常见的方法# 该类证明题的普遍难点在于 辅助函数的构造"一旦确定了辅助函数"那么后续的证明步 骤也就水到渠成了# 可见"辅助函数的构造是求证微分中值 问题的关键"也是方程问题考查的重难点# 近日"石丽娜等 引入了待定系数法%$& "张军等%)& 利用微分方程求通解的方法 用于构造辅助函数# 辅助函数的构造虽然千变万化"但并非 毫无规律可循# *特征结论变形+ 和* 还原+ 是罗尔定理证明 题涉及的两种构造辅助函数的常用技巧"本文在常见辅助函 数构造法的基础上"借助逆向思维法"结合经典例题分类梳 理辅助函数的构造方法# 罗尔定理%(& 若函数 3' +( 满足!!3' +( 在闭区间 [ -".] 上 连续)"3' +( 在开区间( -".) 上可导)#3' -( f3' .( 成立)则 在开区间( -".) 内至少存在一点 "满足 34' (f%# 这里"我们称 为中值"称微分方程 34' ( f% 为特征结 论# 此类证 明 通 常 以 * 至 少 存 在 一 点 * ( -".) " 使 5 ' " 3 ' ( "34' ( "0"3'!( ' ( ( f% 成立+ 的形式出现# 中值定理证 明题的特征结论多种多样"但都可以通过等价变换改写成* 5 ' (f%+ 的形式"其中 5' +( 通常由 +"3' +( "34' +( 等经过四则 运算构成# 证明方法是"从结论中的等式出发"通过等价变 换将其化简"构造满定理条件的函数 ' +( "其中 4' +( f5 '+"3' +( "34' +( "0"3'!(' +( ( # 接下来我们探讨常见辅助函数 的构造方法# 二凑微分法 观察罗尔定理的条件#"如果能构造一个函数 ' +( "使 得 4' +(f5' +( "且 ' -( f' .( "就可以由罗尔定理得出 5 ' +( 在开区间' -".( 内存在零点# 由等式 4' +(f5' +( 解出 ' +( "这是一个求原函数的过程"因此求不定积分可以作为构 造辅助函数的一种方法# 为了突出构造法的中* 凑+ 巧妙"习 惯上我们将这种方法称为凑微分法# 凑微分法构造辅助函 数的要点在于* 凑+ "具体步骤如下!! 将 特 征 结 论 中 的 中 值 改写成 +)"经移项$去分母等恒等变换"将特征结论整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面
介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生
有所帮助。
先看这一题,已知f(x)连续,且f(a)=f(b)=0,求证在(a,b)中存在
ε使f’(ε)=f(ε)
证明过程: f’(ε)=f(ε), 所以f’(x)=f(x), 让f(x)=y,
所以 ydxdy,即dxdyy1,所以对两边简单积分,即dxdyy11,所以
解出来(真的是不定积分的话后面还要加个常数C,但这只是我的经
验方法,所以不加)就是xyln,也就是xey,这里就到了最关键
的一步,要使等式一边为1!,所以把xe除下来,就是1xey,所以左
边就是构造函数,也就是xey,而y就是f(x),所以构造函数就是
xexf
)(
,你用罗尔定理带进去看是不是。再给大家举几个例子。
二、已知f(x)连续,且f(a)=f(b)=0,求证:
在(a,b)中存在ε使f’(ε)+2εf(ε)=0
证:一样的,xydxdy2,把x,y移到两边,就是xdxdyy21,所以积
分出来就是2lnxy,注意y一定要单独出来,不能带ln,所以就是
y
2
xe
,移出1就是,12xye所以构造函数就是2)(xexf,再用罗尔定理
就出来了。
三、已知f(x)连续,且f(a)=f(-a),求证在(-a,a)中存在ε使f’(ε) ε
+2f(ε)=0.
证:02yxdxdy,移项就是dxxdyy121,所以xyln2ln,所以就是
2
1
x
y
,移项就是12xy,所以构造的函数就是2)(xxf,再用罗尔定
理就可以了。
注:这种方法不是万能的,
结合下面例题尝试做下。
微分中值定理的证明题
1. 若()fx在[,]ab上连续,在(,)ab上可导,()()0fafb,证明:
R
,(,)ab使得:()()0ff。
证:构造函数()()xFxfxe,则()Fx在[,]ab上连续,在(,)ab内可导,
且()()0FaFb,由罗尔中值定理知:,)ab(,使()0F
即:[()()]0ffe,而0e,故()()0ff。
经典题型二:
思路分析:
实战分析:
设,0ab,证明:(,)ab,使得(1)()baaebeeab。
证:将上等式变形得:1111111111(1)()baeeebaba
作辅助函数1()xfxxe,则()fx在11[,]ba上连续,在11(,)ba内可导,
由拉格朗日定理得:
11
()()1()11ffbafba
1
11
(,)ba
,
即 11111(1)11baeebaeba 111(,)ba ,
即:ae(1)(,)bebeeab (,)ab。
经典题型三
设()fx在(0,1)内有二阶导数,且(1)0f,有2()()Fxxfx证明:在(0,1) 内
至少存在一点,使得:()0F。
证:显然()Fx在[0,1]上连续,在(0,1)内可导,又(0)(1)0FF,故由罗尔
定理知:0(0,1)x,使得0()0Fx
又2()2()()Fxxfxxfx,故(0)0F, 于是()Fx在0[0]x,上满足罗尔
定理条件,故存在0(0,)x, 使得:()0F,而0(0,)x(0,1),即证