通信原理课程设计报告资料

合集下载

通信原理课程设计报告Stbc

通信原理课程设计报告Stbc

通信原理课程设计报告Stbc一、课程目标知识目标:1. 理解并掌握通信原理中空时编码的基本概念,特别是正交空时编码(Stbc)的原理;2. 学会分析并计算Stbc系统的误码率性能及分集增益;3. 掌握Stbc在多输入多输出(MIMO)系统中的应用及其优势。

技能目标:1. 能够运用Stbc编码技术设计简单的通信系统模型;2. 通过数学软件(如MATLAB)模拟Stbc通信过程,分析并优化系统性能;3. 培养解决复杂通信问题时的团队协作能力和实验操作能力。

情感态度价值观目标:1. 培养学生对于通信工程领域的兴趣和热情,激发其探索精神;2. 增强学生面对通信技术挑战时的自信心和解决问题的耐心;3. 通过小组合作,加强学生之间的沟通与协作,培养集体荣誉感和责任感。

课程性质分析:本课程为通信原理的高级课程,适合高年级本科生或研究生学习。

课程强调理论与实践相结合,注重培养学生的实际应用能力和科研素养。

学生特点分析:学生应具备扎实的通信原理基础,对数学和物理有一定的理解和应用能力。

他们通常对通信技术有较高的兴趣,但需要进一步引导以深化理解和提高实践技能。

教学要求:1. 结合教材内容,通过案例分析和实验模拟,深入浅出地讲解Stbc技术;2. 设计具有挑战性和实践性的课后作业和团队项目,促使学生将理论知识应用于实际问题的解决;3. 提供反馈和个别指导,帮助学生达到既定的学习成果,并持续跟踪学生进展以调整教学策略。

二、教学内容本课程教学内容围绕Stbc技术展开,依据课程目标,教学内容分为以下三个部分:1. 理论基础:- Stbc编码原理及其数学描述;- 空时编码与MIMO系统的关系;- Stbc系统的误码率性能分析及分集增益计算。

教学内容参考教材第四章“空时编码”相关内容,通过讲解和案例分析,使学生深入理解Stbc技术的基本原理。

2. 实践操作:- 使用MATLAB软件进行Stbc通信系统的建模与仿真;- 分析并优化Stbc系统在不同信道条件下的性能;- 探讨Stbc技术在其他通信系统中的应用。

通信原理大型实验课程设计实验报告

通信原理大型实验课程设计实验报告

通信原理⼤型实验课程设计实验报告通信原理⼤型实验课程设计实验报告实验⼀基于A律⼗三折和u律⼗五折的PCM编解码设计要求:1、掌握Matlab的使⽤,掌握Simulink中建⽴通信模型的⽅法。

2、了解PCM编码的原理及在Simulink中的具体实现模块。

3、掌握如何观察⽰波器,来分析仿真模型的误差实验内容:1、设计⼀个A律13折线近似的PCM编解码器模型,能够对取值在[-1;1] 内的归⼀化信号样值进⾏编码。

建⽴PCM串⾏传输模型,并在传输信道中加⼊指定错误概率的随机误码。

在解码端信道输出的码流经过串并转换后送⼊PCM解码,之后输出解码结果并显⽰波形。

仿真采样率必须是仿真模型中最⾼信号速率的整数倍,这⾥模型中信道传输速率最⾼,为64kbps,故设置仿真步进为1/64000 秒。

信道错误⽐特率设为0.01,以观察信道误码对PCM传输的影响。

仿真结果波形如图所⽰,传输信号为幅度是1,频率是200Hz正弦波,解码输出存在延迟。

2、设信道是⽆噪的。

压缩扩张⽅式为u 律的,参数u=255 。

试研究输⼊信号电平与PCM量化信噪⽐之间的关系。

以正弦波作为测试信号。

PCM解码输出信号与原信号相减得出量化噪声信号,采⽤⽅差统计模块统计输出量化噪声以及原信号的功率,计算出信噪⽐。

其中参数mu设置为255。

实验结果:1、PCM编解码的原理将模拟信号的抽样量化值变换成为代码称为脉冲编码调制(PCM)2、A律编码⽅式的原理⾮均匀量化等价为对输⼊信号进⾏动态范围压缩后再进⾏均匀量化。

PCM编码模块:PCM解码模块:仿真模型:主要参数设置:“Saturation”作为限幅器,将输⼊信号幅度值限制在PCM编码的定义范围内[-1,1];“Relay”模块的门限设置为0;零阶保持器采样时间间隔为1秒,量化器模块“Quantizer”的量化间隔为1。

可见,发送信号为常数18.6时,零阶保持器每隔1秒钟采样⼀次,量化器将采样输出结果进⾏四舍五⼊量化,得到整数值19,“Integer to Bit Converter”模块的转换⽐特数设置为8,进⾏8⽐特转换。

通信原理课程设计报告

通信原理课程设计报告

通信原理课程设计报告一、引言通信原理课程设计报告旨在总结和分析本次通信原理课程设计的过程和结果。

本报告将详细介绍课程设计的背景、目标、方法和结果,并对所得结果进行评估和讨论。

二、背景通信原理是电子信息类专业中的重要课程之一,旨在培养学生对通信原理的理论和实践应用能力。

本次课程设计以通信原理为基础,通过设计和实现一个通信系统,提高学生对通信原理的理解和应用能力。

三、目标本次课程设计的目标是设计和实现一个基于频分复用(FDM)技术的数字通信系统。

具体目标包括:1. 理解和掌握FDM技术的原理和应用;2. 设计和实现一个完整的通信系统,包括发送端、传输信道和接收端;3. 评估和分析通信系统的性能指标,如误码率、信噪比等。

四、方法本次课程设计采用以下步骤和方法:1. 确定通信系统的需求和参数,包括信号频率范围、带宽要求等;2. 设计发送端,包括信号源、调制器和功率放大器等模块;3. 设计传输信道,模拟真实通信环境,包括添加噪声、信道衰减等;4. 设计接收端,包括解调器、滤波器和信号恢复等模块;5. 实现通信系统,并进行调试和测试;6. 评估和分析通信系统的性能指标。

五、结果经过设计和实现,我们成功完成了一个基于FDM技术的数字通信系统。

以下是我们的主要结果:1. 发送端:我们设计了一个信号源,产生多个频率不同的信号,并通过调制器将这些信号转换为调制信号。

最后,我们使用功率放大器将调制信号放大到适当的功率水平。

2. 传输信道:我们模拟了真实的传输信道,并添加了噪声和信道衰减。

这样可以更好地评估通信系统在实际环境下的性能。

3. 接收端:我们设计了一个解调器,通过解调器将接收到的信号转换为原始信号。

然后,我们使用滤波器去除噪声,并对信号进行恢复和解码。

4. 性能评估:我们评估了通信系统的性能指标,包括误码率、信噪比等。

通过对这些指标的分析,我们可以判断通信系统的可靠性和稳定性。

六、讨论通过本次课程设计,我们对通信原理的理论知识有了更深入的理解,并且掌握了实际应用的能力。

通信原理课程设计报告信道

通信原理课程设计报告信道

通信原理课程设计报告信道一、课程目标知识目标:1. 让学生理解并掌握通信原理中信道的基本概念、分类及特性;2. 使学生了解信道编码、解码的基本原理,掌握常见的信道编码技术;3. 引导学生掌握信道容量、信道带宽等关键参数的计算方法。

技能目标:1. 培养学生运用通信原理知识分析实际信道问题的能力;2. 提高学生设计简单信道编码、解码方案的能力;3. 培养学生运用计算工具对信道参数进行计算和优化的能力。

情感态度价值观目标:1. 激发学生对通信原理学科的兴趣,培养良好的学习态度;2. 培养学生团队协作、沟通交流的能力,形成合作共赢的价值观;3. 引导学生关注通信技术在现实生活中的应用,认识到科技发展对社会的贡献。

课程性质分析:本课程为通信原理课程的实践环节,旨在帮助学生将理论知识与实际应用相结合,提高解决实际问题的能力。

学生特点分析:高二年级学生已具备一定的物理和数学基础,具备初步的分析问题和解决问题的能力,但对通信原理的实际应用尚不熟悉。

教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力;2. 采用案例分析、小组讨论等教学方法,引导学生主动参与、积极思考;3. 强调课程目标的可衡量性,便于教学设计和评估。

二、教学内容1. 信道概念及分类:介绍信道的定义、分类(如有线信道、无线信道、模拟信道、数字信道等)及特性;2. 信道编码与解码:讲解信道编码的基本原理,如卷积编码、汉明编码等,以及解码方法;3. 信道参数计算:阐述信道容量、信道带宽等关键参数的计算方法;4. 信道模型:介绍常见的信道模型,如AWGN信道、多径信道等;5. 信道仿真:利用相关软件进行信道仿真,分析不同信道特性对通信系统性能的影响;6. 实践环节:设计简单信道编码方案,进行编码、解码实验,观察实验结果,优化方案。

教学内容安排与进度:1. 第1周:信道概念及分类,信道特性;2. 第2周:信道编码与解码原理;3. 第3周:信道参数计算方法;4. 第4周:信道模型及仿真;5. 第5周:实践环节,设计、实验和优化信道编码方案。

通信原理课程设计报告摘要

通信原理课程设计报告摘要

通信原理课程设计报告摘要一、课程目标知识目标:1. 让学生理解并掌握通信原理的基本概念,包括信号、信道、噪声等;2. 使学生掌握调制解调技术、信号采样与恢复、信道编码与解码等基本通信技术;3. 引导学生了解各种通信系统的结构、原理及其在实际应用中的优缺点。

技能目标:1. 培养学生运用通信原理分析和解决实际通信问题的能力;2. 培养学生设计简单通信系统的能力,包括选择合适的调制解调技术、信道编码方案等;3. 提高学生运用通信原理相关软件进行仿真实验的能力。

情感态度价值观目标:1. 培养学生对通信原理的兴趣,激发他们学习通信相关领域的热情;2. 培养学生团队合作精神,使他们学会在团队中共同解决问题;3. 增强学生的国家使命感和社会责任感,让他们意识到通信技术在国家发展和社会进步中的重要作用。

本课程针对高中年级学生,结合通信原理的学科特点,注重理论与实践相结合。

在教学过程中,充分考虑学生的认知水平、兴趣和需求,以实际通信问题为切入点,引导学生主动探究、积极思考。

通过课程学习,使学生在掌握基本通信原理的基础上,能够将其应用于实际问题解决,同时培养他们的创新意识和实践能力。

二、教学内容1. 通信原理基本概念:信号与系统、信道、噪声;2. 信号分析与处理:傅里叶变换、信号采样与恢复;3. 调制解调技术:模拟调制、数字调制、解调技术;4. 信道编码与解码:汉明码、卷积码、Turbo码;5. 通信系统实例分析:电话通信系统、无线通信系统、光纤通信系统;6. 通信原理在实际应用中的案例分析:5G通信、物联网、卫星通信。

教学内容按照以下进度安排:第一周:通信原理基本概念;第二周:信号分析与处理;第三周:调制解调技术;第四周:信道编码与解码;第五周:通信系统实例分析;第六周:通信原理在实际应用中的案例分析。

本章节教学内容参考教材相关章节,结合课程目标,注重科学性和系统性。

在教学过程中,教师需引导学生掌握通信原理的基本知识和技能,通过实例分析,让学生了解通信技术在实际应用中的发展及其对社会的影响。

通信原理课程设计报告(FSK)

通信原理课程设计报告(FSK)

通信原理课程设计报告(FSK)第一篇:通信原理课程设计报告(FSK)2FSK系统的调制与解调(一)课程设计目的:1.培养自己综合运用理论知识解决问题的能力。

2.学会应用Matlab的Simulink工具对通信系统进行仿真。

3.培养学生的自主创新能力与创新思维。

4.让学生初步掌握如何撰写课程设计总结报告。

(二)设计要求与内容:1).设计内容:完成2FSK系统,调制方法为开关法,解调法为相干解调。

2).设计要求:(1)设计2FSK系统数字通信系统的原理图。

(2)根据通信原理,设计出各个模块的参数(包括低通滤波器、带通滤波器、基带信号、载波信号、高斯白噪声等)。

(3)观察仿真结果并进行波形分析(中间波形变化、眼图)。

(4)分析计算影响系统性能的因素。

(三)设计步骤1).2FSK系统原理图:2).各个模块具体参数:(1).正弦波发生器1:(2).正弦波发生器2:(3).高斯白噪声:(5)带通通滤波器2:4).带通通滤波器1:6).低通通滤波器1:(((7)带通滤波器2:(8).判决器:3).仿真结果及波形分析:(1)基带信号:(2)调制信号1:(3)调制信号2:(4)调制后信号:(5)加了噪声的信号:(6)经过带通滤波器1后:(7)经过带通滤波器2后:(8)经过低通滤波器1后:(9)经过低通滤波器2后:(10)解调后的信号:(11)经判决器解调后的信号:(12)眼图:(四)分析误码率:1r Pe=erfc()22r =A2σ22由A=1σ=0.05⇒ r =10 2pe=8.50036660252034*10-4(五)设计心得体会:从设计中检验我所学的理论知识到底有多少,巩固已经学会的,不断学习我们所遗漏的新知识,把这门课学的扎实。

第二篇:通信原理课程设计报告课题学院专业学生姓名学号班级指导教师通信原理课程设计报告基于MATLAB的2FSK仿真电子信息工程学院通信工程二〇一五年一月基于MATLAB的基带传输系统的研究与仿真——码型变换摘要HDB3码编码规则首先将消息代码变换成AMI码;然后检查AMI码中的连0情况,当无4个或4个以上的连0串时,则保持AMI的形式不变;若出现4个或4个以上连0串时,则将1后的第4个0变为与前一非0符号(+1或-1)同极性的符号,用V表示(+1记为+V,-1记为-V);最后检查相邻V符号间的非0符号的个数是否为偶数,若为偶数,则再将当前的V符号的前一非0符号后的第1个0变为+B或-B符号,且B的极性与前一非0符号的极性相反,并使后面的非0符号从V符号开始再交替变化关键词: HDB3码 MATLAB编码原则 V码 B码目一、背景知识二、MATLAB仿真软件介绍三、仿真的系统的模型框图四、使用MATLAB编程(m文件)完成系统的仿真五、仿真结果六、结果分析七、心得、参考文献录正文部分一、背景知识在实际的传输系统中,并不是所有的代码电气波形都可以信道中传输。

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。

画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。

,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。

具体程序及图形见附录1(或者直接放在这里,写如下。

)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。

具体参数,图形。

4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。

第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。

fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。

通信原理课设报告

通信原理课设报告

目录1 技术要求 (1)2 基本原理 (1)2.1 2FSK调制原理 (1)2.2 2FSK解调原理 (2)2.3 2FSK信号的表达式和波形图 (2)3 建立模型描述 (3)4 模块功能分析或源程序代码 (4)5 调试过程及结论 (9)6 心得体会 (12)7 参考文献 (12)2FSK通信系统设计1 技术要求设计一个2FSK数字调制系统,要求:(1)设计出规定的数字通信系统的结构;(2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等);(3)用Matlab或SystemView 实现该数字通信系统;(4)观察仿真并进行波形分析;(5)系统的性能评价。

2 基本原理2.1 2FSK调制原理二进制移频键控信号的产生,可以采用模拟调频电路来实现,也可以采用数字键控的方法来实现。

两种FSK信号的调制方法的差异在于:由直接调频法产生的2FSK信号在相邻码元之间的相位是连续变化的(这一类特殊的FSK,称为连续相位FSK(Continous-Phase FSK,CPFSK)),而键控法产生的2FSK信号,是由电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续。

图1是数字键控法实现二进制移频键控信号的原理图,图中两个振荡器的输出载波受输入的二进制基带信号控制,在一个码元Ts期间输出f1或f2两个载波之一。

图1 键控法产生2FSK信号的原理图振荡器1选通开关反相器振荡器2f2选通开关相加器基带信号e(t)2.2 2FSK 解调原理图2 2FSK 相干解调原理框图数字调频信号的解调方法很多,如相干检测法、包络检波法、过零检测法、差分检测法等。

下面就相干检测法进行介绍。

相干检测的具体解调电路是同步检波器,原理方框图如图2所示。

图中两个带通滤波器的作用同于包络检波法,起分路作用。

它们的输出分别与相应的同步相干载波相乘,再分别经低通滤波器滤掉二倍频信号,取出含基带数字信息的低频信号,抽样判决器在抽样脉冲到来时对两个低频信号的抽样值进行比较判决,即可还原出基带数字信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信工程与系统课程设计报告题目:搭建简单分组传输的(帧传输)的基带数字通信系统姓名学号专业班级指导教师2015年10 月10 日三、课程设计解决的主要问题:(1)尽可能的获得较小的误码率(2)选用何种信道码何种线路码(3)如何进行信道编码(4)如何进行线路编码(5)如何进行抽样和判决(6)如何进行线路编码译码四、设计内容1、整体设计方案(1)产生随机矩阵信号(2)对随机信号分帧对随机信号进行信道编码,采用汉明7-4码(3)对信号进行线路编码,采用双极性归零的差分曼彻斯特编码(4)在信道内填加高斯白噪声(5)对信号进行抽样判决(6)对信号进行抽样计算误码率输出检验前后的误码率对比五、结果与分析六、总结与心得:七、附件:源程序及注解1、子程序汉明码编码function y=enhanming(a,N) %a为编码序列,N为帧数%生成矩阵G=[1 0 0 0 1 1 1;0 1 0 0 1 1 0;0 0 1 0 1 0 1;0 0 0 1 0 1 1]; for k=1:Ncode=[a(4*k-3) a(4*k-2) a(4*k-1) a(4*k)]*G;for l=0:6y(7*k-l)=mod(code(7-l),2); %y为汉明码endend汉明码译码function y=dehanming(C,N,K)A=zeros(7*N,1);%编码后信号S=zeros(N,3); %校验子E=zeros(7*N,1);%错误图样I=zeros(7*N,1);%解调纠错后的矩阵NEW=zeros(K,1);%收到的信号%监督矩阵H=[1 1 1 0 1 0 0;1 1 0 1 0 1 0;1 0 1 1 0 0 1] ;for n=1:NM=7*n-6;Z=4*n-3;T=7*n-3;V=4*n;L=7*n;%s=C(M:L,1)'*H';s=C(1,M:L)*H';S(n,:)=mod(s,2);if S(n,:)==[0 0 0]E(M:L,1)=[0 0 0 0 0 0 0]';elseif S(n,:)==[0 0 1] E(M:L,1)=[0 0 0 0 0 0 1]';elseif S(n,:)==[0 1 0] E(M:L,1)=[0 0 0 0 0 1 0]';elseif S(n,:)==[0 1 1] E(M:L,1)=[0 0 0 0 1 0 0]';elseif S(n,:)==[1 0 0] E(M:L,1)=[0 0 0 1 0 0 0]';elseif S(n,:)==[1 0 1] E(M:L,1)=[0 0 1 0 0 0 0]';elseif S(n,:)==[1 1 0] E(M:L,1)=[0 1 0 0 0 0 0]';elseif S(n,:)==[1 1 1] E(M:L,1)=[1 0 0 0 0 0 0]';End曼彻斯特编码function y=dehanming(C,N,K)A=zeros(7*N,1);%编码后信号S=zeros(N,3); %校验子E=zeros(7*N,1);%错误图样I=zeros(7*N,1);%解调纠错后的矩阵NEW=zeros(K,1);%收到的信号%监督矩阵H=[1 1 1 0 1 0 0;1 1 0 1 0 1 0;1 0 1 1 0 0 1] ;for n=1:NM=7*n-6;Z=4*n-3;T=7*n-3;V=4*n;L=7*n;%s=C(M:L,1)'*H';s=C(1,M:L)*H';S(n,:)=mod(s,2);if S(n,:)==[0 0 0]E(M:L,1)=[0 0 0 0 0 0 0]';elseif S(n,:)==[0 0 1] E(M:L,1)=[0 0 0 0 0 0 1]'; elseif S(n,:)==[0 1 0] E(M:L,1)=[0 0 0 0 0 1 0]'; elseif S(n,:)==[0 1 1] E(M:L,1)=[0 0 0 0 1 0 0]'; elseif S(n,:)==[1 0 0] E(M:L,1)=[0 0 0 1 0 0 0]'; elseif S(n,:)==[1 0 1] E(M:L,1)=[0 0 1 0 0 0 0]'; elseif S(n,:)==[1 1 0] E(M:L,1)=[0 1 0 0 0 0 0]'; elseif S(n,:)==[1 1 1] E(M:L,1)=[1 0 0 0 0 0 0]'; end曼彻斯特译码function y=endiffmanchester(x)% diffmanchester ecoderlastcode=1; %设定初始值为1for i= 1:length(x)if (x(i)==1) %1跳变0不跳变if (lastcode==1)y(2*i-1)=-1;y(2*i)=1;lastcode=1;elsey(2*i-1)=1;y(2*i)=-1;lastcode=-1;endelseif (lastcode==1)y(2*i-1)=1;y(2*i)=-1;lastcode=-1;elsey(2*i-1)=-1;y(2*i)=1;lastcode=1;endendEnd抽样function y=chouyang(x,n)for i=1:n%av(i)=(x(6*i-5)+x(6*i-4)+x(6*i-3)+x(6*i-2)+x(6*i-1)+x(6*i))/6; %抽样av(i)=(x(4*i-3)+x(4*i-2)+x(4*i-1)+x(4*i))/4;if(av(i)>0)y(i)=1;elsey(i)=0;endendy;end2、总程序%% 产生随机信号N=1024; %512bit随机码a=randint(1,N,2);figure(1)subplot(311)stairs(a)axis([0 60 0 1.5])xlabel('码元')title('随机码')%%分帧for i=0:255msg1(i+1,(1:4))=a(1,(1+i*4:4+i*4)); i=i+1;endfor SNR=-5:1:5 %%信噪比t=SNR+6%%分帧传输for i=0:63 %%16bit一帧 msg=msg1((4*i+1):(4*i+4),1:4);%%汉明编码msgnew=enhanming(msg,4);subplot(312)stairs(msgnew)axis([1 28 0 1.5]);xlabel('码元');title('汉明编码');%%线路码——曼彻斯特p=length(msgnew);xn=msgnew(1,1:p);xl(1,1:2*p)=endiffmanchester(xn);subplot(313)stairs(xl)axis([1 56 -1.5 1.5]);xlabel('码元');title('曼彻斯特编码');%%一个码元4次采样值nn=length(xl);whole=caiyang(xl);%%加噪声zao=awgn(whole,SNR);figure(2)subplot(411)plot(zao)title('加高斯白噪声');axis([1 224 -1.5 1.5]);%%抽样判决wholenew=chouyang(zao,nn);nn1=length(a1);subplot(412)stairs(wholenew)title('抽样判决后编码');axis([1 56 -1.5 1.5]);%%曼彻斯特译码decode=dediffmanchester(wholenew);subplot(413)stairs(decode)title('曼彻斯特译码');axis([1 28 -1.5 1.5]);subplot(414)stairs(a)axis([1 28 -1.5 1.5]);xlabel('码元');title('随机码');%%汉明码译码纠错jiucuo=dehanming(decode,4,16);jiucuonew=reshape(jiucuo,4,4);finall((1+i*4):(4+4*i),1:4)=jiucuonew;end%%计算误码率final=zeros(1,1024);s=1;for i=1:256;for j=1:4;final(1,s)=finall(i,j); s=s+1;endendfinal;a1=endiffmanchester(a);a2=caiyang(a1);a3=awgn(a2,SNR);a4=chouyang(a3,nn1);a5=dediffmanchester(a4);zhong=mod(final+a,2);cuochu=find(zhong==1);geshu=length(cuochu);ber(1,t)=geshu/1024;zhong1=mod(a5+a,2);cuochu1=find(zhong1==1);geshu1=length(cuochu1);ber1(1,t)=(geshu1)/1024;endfigure(3)plot(-5:1:5,ber,'b-*')title('误比特率');xlabel('信噪比');ylabel('误比特率');set(gca,'xtick',-5:1:5);axis([-5 5 0 0.3])hold onplot(-5:1:5,ber1,'r-*')set(gca,'xtick',-5:1:5);axis([-5 5 0 0.3])八、指导老师评语及得分:。

相关文档
最新文档