一种双麦克风自适应语音降噪算法研究与实现

一种双麦克风自适应语音降噪算法研究与实现
一种双麦克风自适应语音降噪算法研究与实现

一种双麦克风自适应语音降噪算法研究与实现北京大学硕?论文龋枉自目版权声明任何收存和保管奉论文各种版本的单位和个人,未经本论文作者同意,不得将本论文转借他人,亦不得随意复制、抄录、拍照或以任何方式传播。否则,引起有碍作者著作权之问题,将可能承担法律责任。北京大学硕士论文摘要在现代社会中,语音信号处理(如语音增强、语音识别、语音编码、语音压缩、语音台成等)广泛应用在远程通信、车载电话、视频会议、办公自动化、人工智能系统等众多领域。由于传声器在拾取语音信号时不可避免地受到环境噪声、混响和其他说话人语音的影响,接收到的语音信号往往己被污染,因此消除语音中的噪声,以实现语音增强是语音技术的一个关键问题,多年来已经提出了大量的算法。双麦克风阵列具有尺寸小,装备灵活,可实现自适应噪声消除算法等优势,将在车载语音导航系统、机器人语音识别、视频会议及助听设各等场合获得广泛应用。本论文开展基于双麦克风阵列和自适应噪声消除(,,,,,,,,,,,,,,,,;,,,,,,,,:,,,)结构的语音降噪算法研究,完成的主要工作包括: ,)阅读了双麦克风,,,语音降噪技术国内外文献,较为全面地分析和研究了现有基于双通道麦克风阵列的,,,语音降噪技术,完成了相关技术文献综述。 ,)研究了基于取麦克风的,,,语音降噪方法,详细分析了,,,语音降噪的基本理论和算法实现,开展了基于,,机的,,,,,,算法仿真,验证了,,,语音降噪方法的有效性。 ,)分析了基于玻麦克风,,,语音降噪方法在存在串话条件下的局限性,基于双麦克风串话信号模型,开展基于双自适应滤波器的,,,噪声消除架构 (,,,—,,,)的语音降噪方法研究,推导了相应的自适应算法,利用基于,;机的,,,,,,仿真实验,验证了基于双麦克风,,,,,,,语音降噪方法的有效性。 ,)针对基于双麦克风,,,—,,,语音降噪方法在混响和串话同时存在的情况下性能不佳的问题,采用级联,(滤波器和自适应滤波器的自适应噪声消除架构 (,,,,,—,,,)实现语音降噪和去混响。论文推导

了相应的自适应算法,并开展了相关仿真研究租性能验证。 ,,采用,,,,,,,和,, ,,,平台以及双麦克风和摄像机等设备,设计实现了基于语音的音视频躁踪测试系统。该系统为在实际环境中开展语音声源定位的研究提供了实验平台。关键词:自适应噪声消除(,,,),语音增强,双麦克风,,,,,,,,,分析塑竖~~墼塑型 ,,,,, ,,, ,,,,,,,,,,, ,, ,,,,,,,, ,,,,, ,,,;,,,,,,,, ,, ,,,,;, ,,,,, ,, ,,, ,,;,,,,,,,, ,,,,,,,,,(,,,;,,,,,; ,;,,,;, ,,, ,,;,,,,,,,,,) ,,,,; ,,, ,, ,,,,,,, ,,, ,,,,,,;, ,, ,,, ,,,,, ,,;,,,, ,,,,;, ,,,,,, ,,,;,,,, ,,(。, ,,,,;, ,,,,,;,,,,,,,,,,;,,,;,,,,,,,,,,,,;, ;,,,,,,,,,;, ;,,,,, ,,,,,,,,,,;, ,,,,,,,,, ,,;),, ,,,,,,, ,,,,,,,,,,,, ,,,, ,,, ,,, ,,,,,,, ,,,,,;,,,,,, ,, ,,,, ,,,,,, ,,;, ,, ,,,,;,,,,,,;,,,,, ;,,,,,,,,,,,,,;, ,,,,,,;,,,,,,;, ,,,,,,,,,,,,,,,,,;,,, ,,,,,,,,,,;, ,,,,,, ,,,,,,,,,,,, ,,,,,,,,, ,, ,,, ,,,,,,,,,,

,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,, ,,, ,,,,, ,,,,,,,,,,,,,,,;, ,,,,; ,,(,,,,;, ,,,,,,, ,,,,,,

盯, ;,,,,,,,,,,, ,,,,,, ,,;,,,,, ,,,,,,,,,(,,,,, ;,,;,,,,,,,, ,,, ,,,,;, ,,,,,;,,,,, ,,;,,,, ,,, ,,,,,,, ,,,,,,, ,, ,,,,;,,,,,,, ,,,;,,,,,, ,,,, , ,,,, ,,, ,,,,,,, ,,,,,,, ,,,,,,,,, ,,,, ,,,, ,,,,,,,,, ,,,,, ,,,,,,,, ,, ,, ,,,,, ,,,,,,?,,,,,,, ,,,,,,,,,,, ,,, ,,, ,,,,,,,,,,,,,, ,, ,,,,, ,,,,,,,, ;,,;,,,,,,,, ,,,,,,,,,,,,,,, ,,;,,,,,,, ,,,,, ,,, ,,,, ,,,,,, ,,,,,,, ,, ,,,,;,,,,,,,,,,,,,, ,,,,;, ,,;,,,,,,,,,

,,,,,;,,,,,,,;,,,,,,,,, ,,,,,,,; ,,,,,,,,,, ,,;,,,,,,, ,,, ,,,,;, ,,,,,;,,,,, ,,,,, ,, , ,,,,,,;,,,,,,, ,,,,, ,,, ,,,,,,,, ,,,,,;,,;,,,,,, ,,(,,,),,,,,,,,,,,,, ,,, ,;,,,,,, ,,,, ,,;,,,,,:,),

,,,,,,,; ,,, ,,,, ,,,,,,,,, ,,,,,,, ,,

,,,, ,,,,,,,,,,, ,, ,,,—,,;,,,,,,,,,,,,,—

,,,,, ,,, ,,;,,,?,,,,,,,, ;,,,,,,,,,,,, ,,,,,,,, ,,, ,,,,,,;, ,,,, ,,, , ,, ,,, ,,,,,—,,,,,, ,,,—,,;,,,,,,,—

,,,,,,,,,,, ,,, ,,;,,,?,,, ,,, ,,,,,,,, ,,,,,, ,, ,;;,,,,,,,,,,),,,,,,; , ,, ,,,, ,, ,,,,,,,, ,,,,, ;,,;,,,,,,,,(,,,),,,,,, ,,,,, ,, ,,,,—,,;,,,,,,,,,,, ,,,,,,,, ,,,,,,,,;,, ,,,,,,,, ,, ,,, ,, ,,,,,,,, ,,, ,,, ,,,,,,,,, ,, ,,,,,,,,,,, ,,, ,,,,;,,,,,,,, ,, ,,, ,, ,,,,,,,, ,, , ,,,, ,,,,,, ,,,,,,,,, ,, ,, ,,,, ,,,,,, ,,,,,,,,~~~~~~~~~~~竺,、,,, ,,,,,,,,,, ,, ,,, ,,,,, ,, ,,,?,,;,,,,,,, ,,,,, ;,,,,,,,, ,,,,, ,,,,, ,, ,,,,,,,, ,,,,, ,, ,,,,,,;,,,,,,, ;,,,,,,,, ,,,,,, ,,,,,,,,,—,,,(,,, ,,,,,,,, ,,,,,,, ,,,),, ,,,,,,,,,,, ,,, ;,,,,,,,,,,,, ,,,,,,,, ,,,,,,,,, ,, ,,,,;,, ,,, ,,,,,,,,,, ,, ,,,, ,,,,,,,,, ,, ,; ,,,, ,,,,,, ,,,,,,, ,,, ;,,,,,,, ,,, ,,,,;,,,,,,,, ,,,,,,,,,,、,, ,,,,,,, ,,, ,,,,,, ,,,;, ,

, ,,,—,,, ,,,, ,,,,, ,,,,,, ,,,,,,,,,,,,, ,,, ;,,,,,,,,,,,,,—,,,(,,,,,,,, ,,,;,,,, ,,,,,,,, ,,,,,, ,,,),,,,,,;, ,,,,, ,, ,,,,,,,,,,,, ,,,,, ,,, ,,,—

,,, ,, ,,,,,,,, ,,, ,,,,,,,, ,,,,,,,, ,,,,,,,,, ,, ,,,,,,,,, ,, ,,,,;,,( ,,, ,,,,,,,, ,,,,,,,,,, ,,, ,,,,,,,,,;, ,,,,,,;,,,,, ,, ;,,,,,, ,,,,),,, ,;,,,,,,,, ,,,,,, ,,,,, ,,,,,—

,,;,,,,,,,?,,,,, ,,, ;,,,),,, ,,,,,,,,,,,, ,,, ,,, ,,,,,,,, ,, ,,,,,, ,, ,

陆, ,,,,,, ,, ,, ,,,,;,,,, ,,,, ,,,,,,,, ,,, ,,,,, ,,, ,,,,, ,,,,,, ,,,; ,,,,,, ,, ,,,, ,,,,,,,,,,, ,,, ,,,

,,, ,,,,, ,,,,,, ,,,,, ;,,,,,,,,;, ,,,

, ,,,,,,;,,,,,,, ,,,,;, ,,,,, ,,;,,,,,,,,, ,,, ,,,,;, ,,,,,;,,,,, ,, ,,,, ,,,,,,,,,,, ,,,,,,,,:,,,,,,,,,,,,,,,,;,,,,,,,,,,,,,;,,,,,,;,,,,,,,,,?,,;,,,,,

目录 ,,, ,,,,,,,,, ,,,,,,,, ,,北京太学硕士论文目,版权声明摘

要 ,,,,,,;, ?,目录第一章基于噪声清除的语音增强技术相关背景 , 噪声消除和语音增强技术发展历史 , 噪声消除和语音增强算法介绍 , 噪声消除和语音增强技术性能评价 , 本文研究内容本文结构第二章自适应噪声消除语音增强 , 自适应滤波算法 , , , , ,,,(,,,,,,,,, ,??)算

法, , , , ,,,,,,;,,,,,, ,;,,,,?,,,,,),法 , ,(, 基于双壹克风的自适应噪声消除语音增强 ,(,】基本原理 ,(, ,职麦克风,,,算法仿真 ,, ,(, 本章小结 ,, 第三章串话抑制自适应噪声消除语音增强 ,, ,,双麦克风串话抑制自适应噪声消除语音增强… ,,,双麦克风串扰模型 ,, , , , 基于双滤波器,,,噪声消除(,,,,,,,)架构的语音增强算法 ,, 双麦克风,,,(,,,算法仿真本章小结… ,, 第四章基于,,,,,,,,,分析的级联自适应滤波器的职麦克风语音增强 ,,,,,,,历史~~,~~~~~~

———————————————————————~~主 ,, ,, , ,,,,,,,,分析 ,, ,, , ,,,,,,,,用于谱分解 ,, ,, ,随机过程的白噪声表示 , , , 用周期图估计功率谱密度基于级联自适应滤波器和,,,,,,’方,圭的取麦克风语音增强,, 仿真实验本章小结… ,, 第五章在,,,,,,,和,,,,,平台上的系统实现 ,, 本系统关键技术 , , , 小麦克风阵列声源定位技术 , , , 基于音视频融合的实时说话人跟踪技术 ,, ,, ,单、双通道语音增强技术软硬件系统设计… ,, 系统实物与钡,试 ,, , , 本章小结 ,, 第六章工作总结与展望 (,, 附录参考文献… 学

习期间研究成果学位论文原创性声明和授权使用说明北京大学硕士论文第一章绪论,(, 基于噪声消除的语音增强技术相关背景语音是人们互相交流最有效和最方便的途径,在日常生活中扮演着不可缺少的角色。然而,我们生活的世界充满噪声,有用的语音信号往往被各种噪声所干扰,比如在计算机通信、电话通信、助听设各、录音等应用场合,语音信号会被环境噪声和设备的内部噪声所干扰,因此需要消除语音中的噪声分量(语音降噪),以实现带噪语音信号的增强,其目的在于提高语音的质量(?,,,,,,)和可懂度(,,,,,,,,,,,,,,,)〔,,,〕(该项技术在语音通信中(如机器人语音,,,,,,、声控设备、免提电话、移动电话、助听设备、远程会议等)有广泛应用。由于噪声类型、应用环境等因素的复杂性,噪声消除技术或者语音增强技术是一个复杂而具有挑战的问题,是长期受到人们重视并进行不懈探索的一个领域。自从上世纪,,年代开始,人们已经提出了大量的噪声消除和语音增强的算法和实现系统,井获得了实际应用。研究表明,采用单麦克风技术,噪声消除与语音失真是一对不可调和的矛盾,即消除噪声是以语音失真为代价。因此,基于单麦克风的噪声消除和语音增强技术虽然已经得到了广泛应用,但其性能受环境噪声的影响较大。为了进一步提高噪声消除和语音增强技术的性能,该技术向基于多麦克风阵列的波束形成技术方向发展。近年来的研究表明,基于麦克风阵列的噪声消除和语音增强技术性能随着麦克风数目的增加而提高,即采用麦克风阵列,可以在语音信息损失最小的条件下实现噪声抑制『,,,因此,基于麦克风阵列的噪声消除和语音增强技术逐渐成为人们研究的热点。目前,大多数的麦克风阵列噪声消除,语音增强系统都是基于大麦克风阵列(麦克风数目大于,,,仁,),其阵列孔径较大。例如,有的麦克风阵列甚至使用数百个麦克风,最典型的案例是,,,措建的用于噪声消除和语音增强的麦克风阵列使用了,,,,个麦克风,其阵列孔径有几米长。这样的技术噪声抑制性能很好,但因其较大的设备体积,而无法应用于许多场合,如手提电话、助听设备、智能录音、机器人语音识别等。特别是随

着移动通信的发展,移动电子设备体积越来越小,越来越节能(需要新的有效的可以植入移动电子设备的噪声消北京大学硕士论立绪论除和语音增强技术。所以展开基于小麦克风阵列的噪声消除和语音增强技术具有重要的研究价值和实用价值。 ,(,(,噪声消除和语音增强技术发展历史在过去的,,多年中,人们研究出了大量的噪声消除和语音增强算法『,(,,,虽然对各种噪声消除和语音增强方法有不同的分类标准,但根据麦克风数目,可以分为两类:单麦克风噪声消除语音增强技术以及麦克风阵列噪声消除语音增强技术。在噪声消除和语音增强技术研究的早期,人们主要研究单麦克风噪声消除和语音增强算法(典型的算法包括谱减法(,,,;,,,, ,,,,, ,,,,,,;,,,,)、维纳滤波算法(,,,,,, ,,,,,,,,,)、基于统计模型的噪声消除算法(,,,,,,,,;,,,,,,,,(,,,,,)等。进入八十年代,随着数字信号处理器的发展,之前出现的噪声消除和语音增强方法的数字实现的研究得到了迅速发展。到了上世纪最后十年,人们开始了基于多麦克风阵列的噪声消除和语音增强技术研究。各种基于麦克风阵列的算法层出不穷,如经典的延迟累加波束形成算法(,,,,, ,,, ,,, ,,,,,,,,,,,)、后置滤波算法(,,,,,,,,,,?颍椋睿纾 ?ぴ捶掷胨惴ǎǎ猓欤椋睿?,,,,;,, ,,,,,,,,,,)、广义奇异值分解算法(,,,,,,,,,,, ,,,,,,,,,,,,,,,;,,,,,,,,,,)、子带处理

(,,,,,,,, ,,,;,,,,,,)、广义旁瓣消除算法(,,,,,,,,

,,, ,,,,,,,, ;,,;,,,,,)、线性约束最小方差波束形成(,,,,,,;,,,,,,,, ,,,,,,, ,,,,,,;, ,,,,,,,,,,,)等。技术调研表明,在远程通信或移动电话网络的应用中(通常采用的是单麦克风的噪声消除和语音增强技术【,,,】,在助听设备、机器人语音识别等应用场合则选择采用基于麦克风阵列的噪声消除和语音增强技术。近些年,越来越多的高校和企业开展了基于小麦克风阵列的噪声消除和语音增强技术研究,将小麦克风阵列(,?,)应用在了各种各样的便携式设各上(如笔记本电脑、车载电话等)。另外,经过多年的探索,在信号处理领

域广泛使用的小波、子空间、神经网络等技术也同样被用在了单麦克风和多麦克风阵列噪声消除和语音增强技术的研究上。,(,(,噪声消除和语音增强算法介绍根据前面的介绍,本小节分别简述基于单麦克风与多麦克风阵列的噪声消除和语音增强的相关算法。~~室查兰堡主堡兰竺兰单麦克风噪声消除和语音增强算法单麦克风噪声消除和语音增强在该技术领域最先引起人们的研究兴趣,半个多世纪以来,人们提出了各种各样的单

,,,, ,,,;,通道算法,可主要分为如下几类:基于短时谱(,,,,,—

,,,)类算法、基于统计模型(,,,,,,,,;,, ,,,,,)类算法、基于听觉模型(,,,,,,, ,,,,,)类算法、基于语音产生模型(,,,,;, ,,,,,,,,,, ,,,,,)类算法、单通道语音分离(,,,,,,,;,,,,,, ,,,,;, ,,,,,,,,,,)算法、子空间(,,,,,,;,)类算法以及小波(,,,,,,,)类算法等。基于短时谱类算法又主要包括谱减法、改进型谱减法及维纳滤波等。由于短时谱类算法简单有效,在单通道语音增强方面占有重要地位,多年来得到了丰富的发展『,—,,,。,,,,年,,,,,提出了谱减法,其基本原理是:首先,对麦克风接收到的信号进行傅里叶变换,并计算功率谱,利用非语音段实现噪声功率谱的估计:其次,从带噪语音段估计得到带噪功率谱;再者,将带噪功率谱与噪声功率谱相减,则得到了噪声抑制后的信号功率谱的估计值;最后反推获得降噪后的语音时域信号。谱减法虽然简单有效,但由于谱减法中噪声功率谱的准确估计是一个难题,谱减法最大的缺点就是降噪后的语音存在所谓的“音乐噪声”,在听觉上会令人很不舒适,只有当语音部分的功率谱远大于噪声部分的功率谱时,“音乐噪声”产生的影响才会被忽略而不被人耳察觉到。再者,谱减法适用的噪声类型是稳态噪声,在非平稳噪声条件下,谱减法性能下蛑,这也限制了谱减法的适用范围。另外,由于谱减法需要将噪声段和语音段准确地区分开,所以需要准确的语音端点检测(,,,;, ,,,,,,,, ,,,,;,,,,,,,)技术,但这往往也是一个困难的技术,特别是在低信噪比条件下,,,的准确性下降,很难用,,,将类似语音的噪

声和有用的语音区分开,当,,,对噪声段的判断出现明显偏差时,谱减法的性能会大幅下降甚至失效。由于上述缺点,人们提出了大量改进型的谱减法【,】,如非线性谱减,?,,,,,,,, ,,,;,,,, ,,,,,,;,,,,)算法、多带(,,,,,,—,,,,)谱减算法、功率谱减(,,,,,,,,;,,,, ,,,,,,;,,,,)算法、迭代谱减(,,,,,,,,, ,,,;,,,, ,,,,,,;,,,,)算法、平均幅度谱(,,,,,,, ,,,,,,,,,)算法等。~堕~~~~~~ (———————曼坠一基于统计模型类算法主要包括最小均方差(,,,,,,, ,,,,,,?,,,, ,,,

,,)估计,,,】、最大似然(?,,)(,,呦(,,,,,,,,,,)估计以及后验(, ,,,,商,,)估计〔,’,,〕等?这类方法基于概率统计框架,对干净语音谱值进行概率估计。

基于听觉模型类算法利用了人耳听觉系统的掩蔽效应等性质对语音进行感知如在口,】中,基于掩蔽效应实现了噪声抑制和语音增强,在,, ,,,??,,使,了感知滤波器(,,,;,,,,,, ,,,,,,), 基于语音产生模型类算法是利用语音产生机理实现噪声消除和语音增强的一种有效方法。理论上,语音是通过声源信号激励线性时变滤波器产生的,在进行噪声消除和语音增强时,只需要实现对语音模型参数的估计〔,,〕。此外,基于盲源分离技术的噪声消除和语音增强是很具潜力的研究方向【,,,,,,,通常情况下实现盲源分离需要两个以上的麦克风,因此一般的盲源分离算法不能直接用在单麦克风情况。子空间类算法通过对带嗓语音进行特征值分解,将信号子空间和噪声子空间分离开,从而可以实现对语音信号的重建

〔,,(,,】。小波类方法〔,,,首先对带噪语音进行小波变换,根据语音和噪声不同的特性,舍去较小的系数以去掉噪声成分,然后通过小波逆变换得到干净语音。基于麦克风阵列的波束形成技术(空间滤波技术) 自从上个世纪九十年代开始,人们开始研究基于麦克风阵列的波束形成技术以实现噪声消除和语音增强。相对于单麦克风只提供时频信息,麦克风阵列还可以提供空间信息。理论上,使用的麦克风越多,达到的噪声消除和语音增强效果就会越好。目前,基于麦克风阵列的噪声消除

和语音增强技术主要包括:延迟累加波束形成算法、后置滤波算法、盲源分离算法、广义奇异值分解算法、子带处理、广义旁瓣消除算法、线性约束最小方差波束形成等。延迟累加方法〔,,】是最简单的一种波束彤成算法,原理简单,但算法有效性较低,即在噪声和语音完全不相关的条件下,需要,,,个以上的麦克风,才能达到,,,,的噪声消除水平,这在许多应用场合是不现实的。后置滤波算法〔,,〕是在延迟累加波束形成之后使用一个维纳滤波器以进一步削减噪声(一定程度上改善了单纯用延迟累加波束形成得到的语音增强效果。盲源分离算法『,,(,,,在语音和所,女?学??论, 绪论有噪声独立的条件下实现语音和噪声的分离,而不需要任何关于噪声和语音的先验知识。由于语音和噪声传播情况的复杂性,在盲源分离中混合矩阵(,,,,, ,,,,,,,的向量元素是时变的,往往很难找到所需的分离矩阵。广义奇异值分解算法通过奇异值的分解将语音增强问题转化为了最佳滤波器设计问题,虽然具有最好的噪声消除和语音增强效果(但其计算复杂度很高,且只适用于不相关的稳态噪声条件。子带处理算法将所有得到的带噪语音分解成一组子带信号,,,,,,,,,】,在每一个子带上,阵列信号都落在相对较窄的频带上,可以使用更精确的波束形成技术,用于噪声消除的自适应滤波器长度也可以更短,从而改善了处理速度,算法的整体复杂度得到了降低。广义旁瓣消除算法〔,,(,,〕是最重要的麦克风阵列波束形成算法之一,由一个固定波束形成器、一个块矩阵和一个自适应噪声消除器组成。其中,固定波束形成器用来消除不相关的噪声,而块矩阵和自适应噪声消除器则用来消除相关噪声。在实际环境中,噪声往往一部分是相关噪声,一部分是不相关噪声,因此广义旁瓣消除算法具有明显的实际应用价值,成为著名的噪声消除和语音增强方法。线性约束最小方差波束形成方法〔,,,,时利用了当前信号样本和延迟样本进行波束形成,噪声消除和语音增强效果优于延迟叠加波束形成算法。, , ,噪声消除和语音增强技术性能评价研究带噪

语音的噪声消除和语音增强算法,需要一个客观的算法性能评测标准。然而,噪声消除和语音增强的性能评价是一个困难的问题,很难找到一个统一全面且客观准确的评价标准,造成这个困难的一个原因是噪声类型的复杂性,另外一个原因是人耳听觉系统的复杂性。目前,对噪声消除和语音增强的评价主要包括客观评价和主观评价两个方面【,,,,,,,,,〕。客观评价最常用的是信

噪,,(,,,,,,,,,,,,,,,,酞,,,,,,)评价。由于信噪比评价具有一般性,在噪声消除和语音增强领域被广泛使用。常用的信噪比公式如下所不: (,)当纯净语音信号可知时,可采用如下评测性能~~~~~堡~~~—————(~~旦 ?,,(,) .

测试工作的一些心得体会

竭诚为您提供优质文档/双击可除测试工作的一些心得体会 篇一:软件测试心得 软件测试心得体会 软件测试工作是一个系统而复杂的工程,软件测试的目的就是确保软件的质量、确认软件以正确的方式做了你所期望的事情,所以工作的主要任务是发现软件的错误、有效定义和实现软件成分由底层到高层的组装过程、验证软件是否满足规格书要求和系统定义文档所规定的技术要求、为软件质量模型的建立提供依据。 而且软件的测试不仅是要确保软件的质量,还要给开发人员提供信息,以方便其为风险评估做相应的准备,以及为其提供分析依据,重要的是要贯穿在整个软件开发的过程中,保证整个软件开发的过程是高质量的。 软件测试对测试工程师来讲,要求具备较强的专业知识,严谨细心耐心的测试态度,良好的反向思维、发散思维能力、沟通能力等等。 以下是就自己的个人工作经历谈一些浅见:

1.标准文档的制定: 1.1.任何一个公司要让自己的产品面市,都要有自己的一 套完整的品质标准,这个标准一定是在符合国标及客户标准的基础上形成的企业标准,系统而全面地描述一款产品的功能、性能、可靠性、健壮性、安规要求等一系列的产品标准,并根据客户特定要求相应调整。 1.2.测试仪器的作业指导书(sop)及保养说明等。定义仪器 的使用步骤、操作指南和保养细则等。 2.测试资料的归档: 标准媒体文件、测试报告、bugLIsT库(电子类问题、结构 类问题、软件类问题:方案自存问题、品证测试问题、生产 测试问题、客户反馈问题、终端消费者反馈问题等)、认证测 试文档归纳总结(认证公司培训资料、认证过程中出现并 改善 的问题)、测试工程师经验分享、常见问题解答FAQ等。 3.功能测试:

视频压缩与MPEG降噪技术

视频压缩和MPEG 降噪技术 作者:Phuc-Tue Le Dinh and Jacques Patry, Algolith 理论上,数字电视(DTV)画面品质优于传统的模拟电视,没有鬼影、雪花、颤动和色彩失真等等问题。而且,模拟电视信号正如可以论证的那样,最大的缺陷就是画面斑点甚多,且因为对高频信号响应不足而导致画面不够细腻,简单地说,就是带宽不够。图像越细致,分辨率就越高,所需要的带宽就越大。 很久以前,美国官方就把可用频谱中的每6MHz 带宽分配给美国广播公司的每一个频道以提供模拟电视信号,这种对视频带宽的限制及其对应的显示标准(NTSC 制式),就决定了传统电视机的特征,并在几十年时间里决定了电视画面的质量。 随着数字电视的出现,广播公司看到了能更充分地利用其分配的带宽的机会。的确,从他们的角度来看,数字电视最突出的优点莫过于容许在同样的带宽内传输更多的频道,并且同样能支持后续的高清晰度电视节目(HDTV)。 冗长的数据 HDTV 对技术的要求非常高。传 统传播模拟信号的NTSC 信号在 一个频道6MHz 带宽内最低要使 用4.2MHz 的带宽,并以29.97Hz 的场频扫描525线。经过数字量 化和编码压缩之后,该信号可以 被记录在DVD 上,其位传输bit 率从2Mbits/s 到10Mbits/s (支 持自适应),平均为4Mbits/s 。 比较而言,典型的HDTV 具有5 倍于模拟TV 的分辨率。因此在同样条件下,传输数据率应该是模拟信号的5倍才能达到同样的性能。 无论是传统的空中广播(OTA)、有线电视公司的机顶盒,还是卫星电视,他们都在传输信号时受到带宽的制约,在受限的带宽上他们还要附加占用带宽的服务,包括互动广播、收费频道和电视节目表等等。 那么,怎样才能解决问题呢?采用压缩技术是一种办法。 数字视频压缩引起失真 目前最常用的数字视频压缩算法是MPEG-2。从现有的卫星电视传输、有线数字电视传输到空中数字广播,MPEG -2在各种应用中已经被国际上广为采用。 MPEG-2首先通过运动补偿去除时间冗余,然后将一帧图像分割成一个个8x8的相素点阵,在每个点阵内使用DCT (离散余弦变换)去除空间冗余。DCT 完成后通过量化和重组后压缩就完成了,然后进行可变长编码,最后进行霍夫曼编码。整个压缩过程极大的减少了比特率(>10:1压缩比)。 然而,比特率的减少也带来了问题,因为编码损失了一些原始的视频信息,有可能引起严重的负作用,所以,MPEG-2被称为有损编码。它丢弃了被认为视觉上较为次要的图像信息。压缩得越大,编码后的图像与原始图像的差异就越大。图像质量和逼真度现在取决于所选择的(或通常是施加的)压缩级别。因为它直接与可用带宽相关,我们必须问问自己,什么时候才不出现过度的视频压缩呢? 带宽的限制

一种双麦克风自适应语音降噪算法研究与实现

一种双麦克风自适应语音降噪算法研究与实现北京大学硕?论文龋枉自目版权声明任何收存和保管奉论文各种版本的单位和个人,未经本论文作者同意,不得将本论文转借他人,亦不得随意复制、抄录、拍照或以任何方式传播。否则,引起有碍作者著作权之问题,将可能承担法律责任。北京大学硕士论文摘要在现代社会中,语音信号处理(如语音增强、语音识别、语音编码、语音压缩、语音台成等)广泛应用在远程通信、车载电话、视频会议、办公自动化、人工智能系统等众多领域。由于传声器在拾取语音信号时不可避免地受到环境噪声、混响和其他说话人语音的影响,接收到的语音信号往往己被污染,因此消除语音中的噪声,以实现语音增强是语音技术的一个关键问题,多年来已经提出了大量的算法。双麦克风阵列具有尺寸小,装备灵活,可实现自适应噪声消除算法等优势,将在车载语音导航系统、机器人语音识别、视频会议及助听设各等场合获得广泛应用。本论文开展基于双麦克风阵列和自适应噪声消除(,,,,,,,,,,,,,,,,;,,,,,,,,:,,,)结构的语音降噪算法研究,完成的主要工作包括: ,)阅读了双麦克风,,,语音降噪技术国内外文献,较为全面地分析和研究了现有基于双通道麦克风阵列的,,,语音降噪技术,完成了相关技术文献综述。 ,)研究了基于取麦克风的,,,语音降噪方法,详细分析了,,,语音降噪的基本理论和算法实现,开展了基于,,机的,,,,,,算法仿真,验证了,,,语音降噪方法的有效性。 ,)分析了基于玻麦克风,,,语音降噪方法在存在串话条件下的局限性,基于双麦克风串话信号模型,开展基于双自适应滤波器的,,,噪声消除架构 (,,,—,,,)的语音降噪方法研究,推导了相应的自适应算法,利用基于,;机的,,,,,,仿真实验,验证了基于双麦克风,,,,,,,语音降噪方法的有效性。 ,)针对基于双麦克风,,,—,,,语音降噪方法在混响和串话同时存在的情况下性能不佳的问题,采用级联,(滤波器和自适应滤波器的自适应噪声消除架构 (,,,,,—,,,)实现语音降噪和去混响。论文推导

基于LMS算法的自适应组合滤波器中英文翻译

Combined Adaptive Filter with LMS-Based Algorithms ′ Abstract: A combined adaptive ?lter is proposed. It consists of parallel LMS-based adaptive FIR ?lters and an algorithm for choosing the better among them. As a criterion for comparison of the considere d algorithms in the proposed ?lter, we take the ratio between bias and variance of the weighting coef?cients. Simulations results con?rm the advantages of the proposed adaptive ?lter. Keywords: Adaptive ?lter, LMS algorithm, Combined algorithm,Bias and var iance trade-off 1.Introduction Adaptive ?lters have been applied in signal processing and control, as well as in many practical problems, [1, 2]. Performance of an adaptive ?lter depends mainly on the algorithm used for updating the ?lter weighting coef?ci ents. The most commonly used adaptive systems are those based on the Least Mean Square (LMS) adaptive algorithm and its modi?cations (LMS-based algorithms). The LMS is simple for implementation and robust in a number of applications [1–3]. However, since it does not always converge in an acceptable manner, there have been many attempts to improve its performance by the appropriate modi?cations: sign algorithm (SA) [8], geometric mean LMS (GLMS) [5], variable step-size LMS(VS LMS) [6, 7]. Each of the LMS-bas ed algorithms has at least one parameter that should be de?ned prior to the adaptation procedure (step for LMS and SA; step and smoothing coef?cients for GLMS; various parameters affecting the step for VS LMS). These parameters crucially in?uence the ?lter output during two adaptation phases:transient and steady state. Choice of these parameters is mostly based on some kind of trade-off between the quality of algorithm performance in the mentioned adaptation phases. We propose a possible approach for the LMS-based adaptive ?lter performance improvement. Namely, we make a combination of several LMS-based FIR ?lters with different parameters, and provide the criterion for choosing the most suitable algorithm for different adaptation phases. This method may be applied to all the

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

软件测试技术总结

软件测试技术总结 百度最近发表了一篇名为《软件测试技术总结》的范文,感觉很有用处,希望大家能有所收获。 篇一:软件测试技术总结公司面试手册最全的类面试题,包括:面试题面试题面试题面试题面试题面试题:面试题面试题#面试题数据库:数据库面试题面试题面试题面试题网络:网络技术面试题网络安全面试题开发:面试题开发面试题:面试题面试题软件测试:软件测试面试题其他类:英语面试外企面试面试题程序员面试更多面试题请访问:软件测试技术总结软件测试就是为了发现程序中的错误而分析和执行程序的过程。 ——概念+基本知识+软件开发过程-定义-计划-实现-稳定化-部署一、软件开发模型(四种典型的模型)、瀑布模型概述:包括计划,需求分析,设计,编码,测试,运行维护六个阶段。 六个阶段自上而下、相互衔接,以固定的次序进行。 特点:阶段的顺序性和依赖性;文档驱动;推迟实现的观点;质量保证。 缺点:不适合需求模糊的系统、原型模型概述:先建立一个能够反映用户需求的原型系统,使得用户和开发者可以对目标系统的概貌进行评价和判断,然后对原型系统进行反复的扩充、改进、求精,最终建立符合用户需求的目标系统。 特点:快速开发工具;循环;低成本。

分类:按照对原型的处理方式,可以分为渐进型和抛弃型。 、增量模型概述:在增量模型中每个阶段都生成软件的一个可发布版本,最全面的范文写作网站阶段交错进行,版本逐渐完善。 同原型模型的最大区别在于,在原型模型中每个阶段发布一个原型而在增量模型中则完成一个正式版本。 、螺旋模型概述:适用于大型软件的开发,它将瀑布模型和快速原型模型结合起来,并加入了风险分析。 特点:每个阶段都包括制定计划,风险分析,实施工程,评审四个阶段;开发过程迭代进行,每迭代一次螺旋线增一周,工程前进一个层次,系统生成一个新版本,投入新的时间成本,最终得到客户满意的版本。 -软件测试从需求开始:现代的软件测试将测试渗入到软件开发的各个阶段,即使瀑布模型,表面看测试工作是在测试阶段开始的,事实上,在计划、需求、设计阶段,测试人员便已经开始了他们的工作,如:了解软件需求,编写测试计划,搭建测试环境。 二、测试用例、三要素:前提条件和操作步骤、预期结果、实际结果。 、必须以需求为依据。 三、软件测试分类、是否关注软件结构和算法-黑盒测试:基于软件需求的测试方法。 -白盒测试:基于软件内部设计和程序实现的测试方法。

无线话筒实验报告

无线话筒—电子线路实验报告 一、实验目的 1、了解无线话筒内部构造和工作原理。 2、促进我们对于高频电路的理论知识的理解。 3、锻炼我们的实践能力,真正做到将理论知识转化为实际操作 二、实验要求 1、电路焊接符合要求,避免虚焊和错焊。 2、无线话筒抗干扰能力强,频率误差0.5MHZ。 3、可以使用普通调频收音机接收清晰的音频信号,有效发射距离为 5-10M。 三、实验资料 调频收音机的调频接受范围是8MHZ到108MHZ。因此,无线话筒应将声音调制到在这个范围。人的声音又称为音频信号,气频率在20HZ到20000HZ 范围内。当用无线电发射出去时,必须将音频信号放在载波上。这一过程称为无线调制,相对于载波而言,音频信号称为调制信号。调制有两种方式,即调幅和调频,所谓调幅即用调制信号去影响(或改变)在博得幅度,从而完成调制信号与载波的叠加形成无线电波。所谓调频,是用调制信号区影响(或改变)载波的频率,从而完成调制信号与载波的叠加,形成无线电波。 四、实验方案(电路仿真图)

仿真波形: 元器件:R1、R4、R8 2.2K欧 R2、R3、R6、R10 33欧 R5 1M欧 R7、R9 22K欧 C1、C2、C3、C13 104 C4、C11 681 C5、C7、C10、C12 30 C6、C8 10 C9 103 C14 33U Q1 9014 Q2、Q3 9018 L1 4.5T L2、L3 5.5T W1(可变电阻) 470K

五、电路原理分析 MIC先将自然界的声音信号变化为音频电信号,经C2耦合给Q的基极进行调试,当有声音信号的时候,三极管的结电容会发生变化最终产生震荡频率发生变化,完成频率调试,即调频。再经C8耦合给高频调谐放大电路对已调制的高频信号放大,再通过C12、L3和天线TX向外发射频率随声音信号变化而变化的高频电磁波。 其中R1为话筒MIC的偏置电阻,一般在2K-5.6K选取,R4为集电极电阻。R5为基极电阻,给Q1提供偏置电流。R6为发射极电阻,起稳定Q1直流工作点的作用:Q2、R7、R8、C4、C5、L1、C6、C7组成的高频震荡电路,R7给Q2基极提供偏流,C5和L1震荡回路,改变其值可以改变发射频率,C4为反馈电容,R8起稳定Q2直流工作点作用,C7隔直流通交流电容;Q3、R9、R10、L2、C10、C11组成的高频功率放大电路。R9给功率管Q3提供基极电流,C10和L2放大调谐回路,震荡回路C5和L1调谐在同一频点害死获得最大的输出功率,发射距离最远。 六、调试电路 先找来FM收音机,打开电源和音量,将频率调在100MHZ左右无电台的地方给无线话筒电路板上通上电源,对准收音机,用螺丝刀(有条件请用无感螺丝刀)调节振荡线圈L1的稀疏(线圈匝间的距离),知道收音机传出尖叫的声音。这时在慢慢移话筒和收音机的距离,同时适当调节收音机的音量、调谐旋钮,直到声音最清晰、距离最远为止。 如果手收音机仍收不到,请检查元件有木有装错,元件有木有损坏,电源是否正常。 注意事项: 1.陶瓷电容、电阻是不分正负极,但是必须注意的是电阻值和电容量。 2.实验的中的话筒室友正负极的,和铝制外壳相连的一极是负极,另一极 是正极。 3.元件的铜线制成的线圈,他的外面是有一层绝缘漆的,他是一个关键的 元件,调节线圈的间距可以改变发射频率和距离。 4.在焊接的时候一定要注意三极管的三个引脚。分清E、B、C三级。 5.由于此次实验为高频实验,在焊接的时候不能将邻近的导线焊接的太近, 尽量的远离彼此,可以避免彼此之间的相互干扰。能确保实验的成功率。 也会适当的减少噪声的产生。 七、实验结果 频率范围:80MHZ-100MHZ(改变线圈匝间距离会改变气发射频率) 工作电压:1.5V-9V 发射距离:取决于实际情况(电源电压3V、开阔的场地上、天线是50CM细长导线,此时发射距离至少100M)

基于麦克风阵列的语音增强算法概述

- 29 - 基于麦克风阵列的语音增强算法概述 丁 猛 (海军医学研究所,上海 200433) 【摘 要】麦克风阵列语音增强技术是将阵列信号处理与语音信号处理相结合,利用语音信号的空间相位信息对语音信号进行增强的一种技术。文章介绍了各种基于麦克风阵列的语音增强基本算法,概述了各算法的基本原理,并总结了各算法的特点及其所适用的声学环境特性。 【关键词】麦克风阵列;阵列信号处理;语音增强 【中图分类号】TN911.7 【文献标识码】A 【文章编号】1008-1151(2011)03-0029-02 (一)引言 在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。近年来,虽然数据通信得到了迅速发展,但是语音通信仍然是现阶段的主流,并在通信行业中占主导地位。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的语音不是纯净的原始语音,而是被噪声污染过的带噪声语音,严重影响了双方之间的交流。 应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。美国、德国、法国、意大利、日本、香港等国家和地区许多科学家都在开展这方面的研究工作,并且已经应用到一些实际的麦克风阵列系统中,这些应用包括视频会议、语音识别、车载声控系统、大型场所的记录会议和助听装置等。 文章将介绍各种麦克风阵列语音增强算法的基本原理,并总结各个算法的特点及存在的局限性。 (二)常见麦克风阵列语音增强方法 1.基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985年美国学者Flanagan 提出采用延时-相加(Delay-and-Sum)波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列(Differential Microphone Arrays)、超方向麦克风阵列(Superairective Microphone Arrays )和固定频率波束形成(Frequency-Invariant Beamformers) 技术也属于固定波束形成。 2.基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法是1972年由Frost 提出的线性约束最小方差(Linearly Constrained Minimum Variance,LCMV)自适应波束形成器。其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982年Griffiths 和Jim 提出了广义旁瓣消除器(Generalized Sidelobe Canceller, GSC),成为了许多算法的基本框架(图1)。 图1 广义旁瓣消除器的基本结构 广义旁瓣消除器是麦克风阵列语音增强应用最广泛的技术,即带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 如果噪声源的数目比麦克风数目少,自适应波束法能得到很好的性能。但是随着干扰数目的增加和混响的增强,自适应滤波器的降噪性能会逐渐降低。 3.基于后置滤波的麦克风阵列语音增强 1988年Zelinski 将维纳滤波器应用在麦克风阵列延时—相加波束形成的输出端,进一步提高了语音信号的降噪效果,提出了基于后置滤波的麦克风阵列语音增强方法(图2)。基于后置滤波的方法在对非相干噪声抑制方面,不仅具有良好的效果,还能够在一定程度上适应时变的声学环境。它的基本原理是:假设各麦克风接收到的目标信号相同,接收到的噪声信号独立同分布,信号和噪声不相关,根据噪声特性, 【收稿日期】2010-12-30 【作者简介】丁猛(1983-),男,海军医学研究所研究实习员。

LMS算法

自适应信号处理算法(LMS算法) 近来有许多同学想我询问LMS算法的仿真程序,这里提供一个从别处下载下来的,要验证。%自适应信号处理算法 clear all; hold off; sysorder=5; %抽头数 N=1000; %总采样次数 n1=randn(N,1);%产生高斯随机系列 n2=randn(N,1); [b,a]=butter(2,0.25); Gz=tf(b,a,-1); %逆变换函数 h=[0.0976;0.2873;0.3360;0.2210;0.0964;]; %信道特性向量 y = lsim(Gz,n1);%加入噪声 noise = n2 * std(y)/(10*std(n2));%噪声信号 d = y + noise;%期望输出信号 totallength=size(d,1);%步长 N=60 ; %60节点作为训练序列 %算法的开始 w = zeros ( sysorder , 1 ) ;%初始化 for n = sysorder : N u = inp(n:-1:n-sysorder+1) ;% u的矩阵 y(n)= w' * u;%系统输出 e(n) = d(n) - y(n) ;%误差 if n < 20 mu=0.32; else mu=0.15; end

w = w + mu * u * e(n) ;%迭代方程end %检验结果 for n = N+1 : totallength u = inp(n:-1:n-sysorder+1) ; y(n) = w' * u ; e(n) = d(n) - y(n) ;%误差 end hold on plot(d) plot(y,'r'); title('系统输出') ; xlabel('样本') ylabel('实际输出') figure semilogy((abs(e))) ;% e的绝对值坐标title('误差曲线') ; xlabel('样本') ylabel('误差矢量') figure%作图 plot(h, 'k+') hold on plot(w, 'r*') legend('实际权矢量','估计权矢量') title('比较实际和估计权矢量') ;

点云数据去噪光顺的基本原理

点云数据去噪光顺的基本原理 近几年来三维模型获取的软硬件技术正不断深入,人们可以通过多种数据采样方法来获取现实物体的计算机表示,并对之进行预处理,加工,分析和应用。在获取数据的过程中,因为人为的扰动或者扫描仪本身的缺陷使得生成三维数据往往带有噪声,从而使所获得的测量数据与实物存在一定的偏差,因此在对实测三维数据进行相关数字几何处理和应用之前必须对其进行去噪光顺。点云的去噪光顺是三维数据预处理和建模的重要环节,目的是有效剔除噪声点、使重建表面模型光顺平滑,并保持采样表面原有的拓扑和几何特征不变。 一、点云的概念和分类 点云就是使用各种三维数据采集仪采集得到的数据,它记录了有限体表面在离散点上的各种物理参量。根据点云中点的分布特点(如排列方式、密度等)将点云可分为: a.散乱点云:测量点没有明显的几何分布特征,呈散乱无序状态。随机扫描方式下的CMM、 激光点测量等系统的点云呈现散乱状态。 b.扫描线点云:点云由一组组扫描线组成,扫描线上的所有点位于扫描平面内。CMM、激光 点三角测量系统沿直线扫描的测量数据和线结构光扫描测量数据呈现该特征。 c.网格化点云:点云中所有点都与参数域中一个均匀网格的顶点对应。将CMM、激光扫描系 统、投影光栅测量系统及立体视差法获得的数据经过网格化插值后得到的点云即为网格化点云。 d.多边形点云:测量点分布在一系列平行平面内,用小线段将同一平面内距离最小的若干 相邻点依次连接可形成一组有嵌套的平面多边形。莫尔等高线测量、工业CT、层切法、磁共振成像等系统的测量点云呈现多边形特征。 此外,测量点云按点的分布密度可分为高密度和低密度点云。CMM的测量点云为低密度点云,通常在几十到几千个点。而测量速度及自动化程度较高的光学法和断层测量法获得的测量数据为高密度点云,一般可达几百万点。 二、异常点的剔除 在曲面造型中,数据中的“跳点”和“坏点”对曲线的光顺性影响较大。“跳点”也叫做失真点,通常是由于测量设备的标定参数发生改变和测量环境突然变化造成的。因此测量数据的预处理首先是从数据点集中找出可能存在的“跳点”。如果在同一截面的数据扫描中,存在一个点与其相邻的点偏距较大,可以认为这样的点是“跳点”,判断“跳点”的方法有以下3种。 a.直观观察法:通过图形终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕 上的孤点剔除。这种方法适合于数据的初步检查,可以从数据点集中筛选出一些偏差比较大的异常点。 b.曲线检查法。通过截面的首末数据点, 用最小二乘法拟合得到一条样条曲线, 曲线的阶 次可根据曲面截面的形状决定, 通常为3 ~ 4 阶, 然后分别计算中间数据点P i到样条曲线的距离‖e‖,如果‖e‖≥[ε]([ε] 为给定的允差),则认为P i是坏点,应予以剔除(见图1)。

数字麦克风测试指南

RS TECH 数字麦克风测试指南 TrustSystem Gordon 2008‐12‐2

目录 1. 简介 (3) 2. 系统测试原理 (4) 3. 软件设置及功能介绍 (5) 3.1 硬件设置 (5) 3.2 信号源的选择 (5) 3.3 标准麦克风校准 (6) 3.4 人工嘴校准 (6) 3.5 对标准样品进行补偿 (7) 3.6 上下限的设定 (8) 3.7 数据保存 (10) 3.8 生成报告 (11) 4. 测试项目展示 (13) 4.1 频响及灵敏度 (13) 4.2 相位 (13) 4.3 失真 (14) 4.4 电流测试 (15) 4.5 动态范围(Dynamic Range) (15) 4.6 信噪比(S/N) (16) 4.7 本底噪声(self noise) (16) 附件1:RST3000测量放大器 (17) 附件 2:RST4000测量传声器 (20) 附件3:AM1000型人工嘴 (22)

1.简介 TrustSystem是功能强大、操作便捷的测试系统,充分降低初期成本的投入和维护费用。软件的不断升级,声卡和PC计算机的不断优化,使系统永远符合生产规格的新要求,充分体现其实用价值。 TrustSystem系统为客户提供宽广的平台,不同的模块组合可以应用不同的领域,满足了多项目,多任务于一体的测试要求。基于TrustSystem的数字麦克风测试,快捷方便,生产效率高。TrustSystem是全数字测试系统,无需经过D/A转换即可完成测试。 TrustSystem具有高效、强大的分析和处理能力,根据相应的标准要求能够同时一次完成数字麦克风各参数指标的测试: ″频率响应 ″灵敏度 ″相位及其极性 ″麦克风电流 ″信噪比 ″延时 ″总谐波失真 系统还可以根据客户的需求添加一些特定的模块,进而可以满足客户特殊的要求,系统的功能可以扩展和延伸。 TrustSystem测试结束后,简洁直观的显示出Pass/Fail,自动判断良品和不良品,极大的提高了测试效率。 TrustSystem可为产品提供分档,方便的进行灵敏度分档,相位匹配。并可同时测试两支麦克风,并显示其差异。

智能音箱硬件结构总结

首先说明一下,本人并没做过智能音箱类结构,至于为什么会写有关智能音箱相关的内容,主要原因是想通过自己总结下智能音箱类硬件结构的共性点以及注意点,以便日后能用得上,在写本篇之前,本人也拆解过自己的音箱,但是为了寻找共性,通过网上查询不少资料,由于资料太杂太泛,看过后也容易忘记,故想亲自一个一个字敲下来加深印象,同时也加强理解。 智能音箱,相信很多人都有,也都用过,加上节前公司抽奖抽中的,本人已经有两个了,实际上两个音箱功能上并没有多大差别,就像不同手机一样,功能都差不多,主要差别在于配置的不同导致的体验不一样。比如说,语音方案不一样,可能就体现在唤醒成功率、语音识别、语义理解、拾音距离、降噪能力等的不同;扬声器的排布以及质量不同,所表现出来的音效、音质就不同;当然还有内容的不同,比如这一家的音箱音乐合作方是QQ音乐,另外一家音箱的合作方是网易云音乐,你让它播放同一首歌,两个音箱可能听到的不是同一个人唱的。 在智能音箱之前,已经出现过蓝牙音箱了,然而现在的智能音箱跟以前的蓝牙音箱有什么区别呢?以下是网上的回答: 1、首先是连接方式不同,蓝牙音箱内置蓝牙芯片,以蓝牙连接取代传统线材连接的音响设备,通过与手机平板电脑和笔记本等蓝牙播放设备连接,达到方便快捷的目的。而智能音箱主要是通过WI-FI连接相关设备,也就是说要通过网络联接相关设备。 2、功能上不一样,蓝牙音箱采用的是我们非常熟悉的蓝牙无线连接方式,它在使用中需要手机+音箱才能实现音频播放,一旦脱离手机等将无法独立使用。比如蓝牙音箱与手机对连后,就接管了手机的音频播放,手机的所有声音都会由蓝牙音箱发出来。而智能音箱采用的是WI-FI网络连接方式,可完全脱离手机、平板等智能设备后自主播放各种影音,无需依附于任何外在设备,这也是它与蓝牙音箱在使用上最大不同。此外联上网的智能音箱,可以放歌、听新闻,查询天气,配合其它一些设备,它还可以实现家电的控制,一句话概括就是,智能音箱未来将有无限可能。 所以智能音箱就是一种具备语音交互,可提供内容服务、互联网服务,以及场景化智能家居控制能力的设备。 由于智能音箱有很大的想象空间,所以国内外巨头都争相进去这个行业卡位。 智能音箱跟蓝牙音箱在结构上的最大差别就是多了语音模块,由于语音模块的硬件结构要求,导致了目前智能音箱的结构形态的差别不大。以下是我个人通过脑图的方式

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

matlab音频降噪课程设计报告.doc

燕山大学 医学软件课程设计说明书 题目:基于MATLAB巴特沃斯滤波器的音频去噪的GUI设计 学院(系):电气工程学院 年级专业: 13级生物医学工程 2 班 学号: 130103040041 学生姓名:魏鑫 指导教师:许全盛

目录 一、设计目的意义 (1) 1.1绪论 (1) 1.2设计目的 (1) 1.3意义 (1) 二、设计内容 (2) 2.1 设计原理 (2) 2.2 设计内容 (2) 三、设计过程及结果分析 (3) 3.1 设计步骤 (3) 3.2 MATLAB程序及结果 (3) 3.3 结果分析 (8) 四、总结 (9) 五、参考文献 (10)

一、设计目的意义 1.1 绪论 语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。随着社会文化的进步和科学技术的发展,人类开始进入了信息化时代,用现代手段研究语音处理技术,使人们能更加有效地产生、传输、存储、和获取语音信息,这对于促进社会的发展具有十分重要的意义,因此,语音信号处理正越来越受到人们的关注和广泛的研究。 1.2 设计目的 (1)掌握数字信号处理的基本概念,基本理论和基本方法。 (2)熟悉离散信号和系统的时域特性。 (3)掌握序列快速傅里叶变换方法。 (4)学会MATLAB的使用,掌握MATLAB的程序设计方法。 (5)掌握利用MATLAB对语音信号进行频谱分析。 (6)掌握滤波器的网络结构。 (7)掌握MATLAB设计IIR、FIR数字滤波器的方法和对信号进行滤波的方法。 1.3 意义 语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。通过语言相互传递信息是人类最重要的基本功能之一。语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。

麦克风基本知识汇总

实际人声频率 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 录音时各频率效果: 男歌声 150Hz~600Hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。 女歌声 1.6~3.6KHz影响音色的明亮度,提升此段频率可以使音色鲜明通透。 语音 800Hz是“危险”频率,过于提升会使音色发“硬”、发“楞” 沙哑声提升64Hz~261Hz会使音色得到改善。 喉音重衰减600Hz~800Hz会使音色得到改善 鼻音重衰减60Hz~260Hz,提升1~2.4KHz可以改善音色。 齿音重 6KHz过高会产生严重齿音。 咳音重 4KHz过高会产生咳音严重现象(电台频率偏离时的音色) 二、频率响应frequency response 频率响应又称带宽(frequency range),是指麦克风感应声波频率的范围,并将声波能量忠实的转换为电子讯号的能力。麦克风接受到不同频率声音时,输出信号会随着频率的变化而发生放大或衰减。一般以频率响应曲线图标之。 三、灵敏度( Sensitivity) 灵敏度代表麦克风将声音能量转换成电压后所产生的输出讯号强度,是在麦克风单位声压激励下输出电压与输入声压的比值。当输入信号固定时(1kHz),输出讯号越强,代表麦克风灵敏度越高。 测试麦克风的灵敏度是将1kHz的讯号在94dB的音压电平位准( SPL)下量测开路的麦克风,取得的毫伏特( millivolt )值,单位为mV / Pa。 四、等效噪音电平( Equivalent noise level) 等效噪音电平又称内部噪声( self noise)。麦克风的内部噪声在无声音讯号输入状态时可来自若干个方面: 1.供给麦克风电源的电压波动(偏置电压)引起的电子噪音

相关文档
最新文档