带你全面认识磁盘阵列柜性能
最全面的服务器的RAID详解

最全面的服务器的RAID详解磁盘阵列(Redundant Arrays of Independent Disks,RAID),全称独立磁盘冗余阵列。
磁盘阵列是由很多廉价的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
利用同位检查(ParityCheck)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
相同的数据存储在多个硬盘的不同的地方的方法。
通过把数据放在多个硬盘上(冗余),输入输出操作能以平衡的方式交叠,改良性能。
因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。
分类:一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件实现。
RAID实现的方式:RAID 0,RAID 1,RAID2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 01,RAID 10,RAID50,RAID 53。
常见的有:RAID 0,RAID 1,RAID 5,RAID 6,RAID 01,RAID 10。
原理剖析:RAID 0:RAID 0又称为Stripe或Striping,中文称之为条带化存储,它代表了所有RAID级别中最高的存储性能。
原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
磁盘空间= 磁盘总量= 100%需要的磁盘数≥2读写性能= 优秀= 磁盘个数(n)*I/O速度= n*100%块大小= 每次写入的块大小= 2的n次方= 一般为2~512KB优点:1、充分利用I/O总线性能使其带宽翻倍,读/写速度翻倍。
2、充分利用磁盘空间,利用率为100%。
缺点:1、不提供数据冗余。
储存(磁盘阵列柜)基础知识培训.pptx

储存(磁盘阵列柜)基础知识培训
磁盘阵列柜概述
▪ 磁盘阵列简称RAID(Redundant Arrays of Inexpensive Disks),有 “价格便宜且多余的磁盘阵列”之意。其原理是利用数组方式来作 磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列 主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提 出改善方法。磁盘阵列是由很多便宜、容量较小、稳定性较高、速 度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所 产生的加成效果来提升整个磁盘系统的效能。同时,在储存数据时 ,利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上 。 磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任 一颗硬盘故障时,仍可读出数据,在数据重构时,将故障硬盘内的 数据,经计算后重新置入新硬盘中。而磁盘阵列柜就是装配了众多 硬盘的外置的RAID 。
7
DAS:直接附加存储
▪ 的DAS(Driect Attached Storage—直接附件存储)是指将存储设备 通过SAS线缆或光纤通道直接连接到服务器上。
8
DAS:直接附加存储
▪ 存储直接连接到一台服务器上 • SCSI, SAS, iSCSI, FC • 块级别 I/O
▪ 内部磁盘 • 具备/不具备RAID保护
▪ 外部磁盘 • 存储系统 • 基于控制器的RAID引擎
9
内部 DAS
Application Server
Motherboard
Application Server
Motherboard SW
Application Server
了解电脑硬盘阵列(RAID)如何提升数据存储性能与冗余性

了解电脑硬盘阵列(RAID)如何提升数据存储性能与冗余性电脑硬盘阵列(RAID)是一种通过将多个硬盘组合起来工作来提升数据存储性能和提供数据冗余性的技术。
本文将详细介绍RAID的各种级别和其工作原理,以及它如何在数据存储方面发挥作用。
一、RAID的概述RAID,全称为“Redundant Array of Independent Disks”,即独立磁盘冗余阵列。
它旨在通过同时使用多个硬盘来提升数据存储性能和增强数据的容错能力。
RAID可以通过数据分布和冗余化来提高系统性能和可靠性。
二、RAID的级别RAID有多种级别,每个级别都有其独特的特点和适用场景。
下面将介绍几个常见的RAID级别:1. RAID 0RAID 0是最简单的RAID级别,它通过将数据分块地存储到多个硬盘上来提升读写速度。
RAID 0具有良好的性能,但没有冗余功能,一旦某个硬盘出现故障,所有数据将会丢失。
2. RAID 1RAID 1是一种镜像级别的RAID,它要求至少使用两个硬盘。
RAID 1通过将数据同时写入两个硬盘来实现数据冗余,从而提供更高的可靠性。
当其中一个硬盘出现故障时,系统可以自动切换到另一个硬盘继续工作。
3. RAID 5RAID 5通过将数据和校验信息分布存储在多个硬盘上来实现数据冗余和性能提升。
RAID 5至少需要三个硬盘。
当其中一个硬盘出现故障时,RAID 5可以根据校验信息恢复数据。
RAID 5是一种性能和冗余兼顾的RAID级别。
4. RAID 10RAID 10是RAID 1和RAID 0的结合,需要至少四个硬盘。
RAID 10将数据同时写入多对镜像硬盘,然后再将镜像硬盘组合成一个RAID 0阵列。
RAID 10提供了优秀的性能和较高的冗余性。
三、RAID的工作原理RAID使用不同的技术和算法来实现数据的分布和冗余。
下面将介绍几种常见的RAID技术:1. 块级分布在RAID中,数据被分成固定大小的块,然后分布存储在不同的硬盘上。
磁盘阵列的不同级别及其特点

磁盘阵列的不同级别及其特点磁盘阵列(RAID,Redundant Array of Independent Disks)技术是一种将多个物理硬盘组合在一起,以提高数据存储和处理的性能、可靠性和容错性的技术。
磁盘阵列通过分割、复制和分布数据,以实现数据的并行读写和冗余备份。
不同的磁盘阵列级别提供了不同的数据保护和性能方案,适用于不同的应用场景。
本文将针对不同级别的磁盘阵列,分别介绍其特点和适用场景。
1. RAID 0RAID 0级别使用条带化的数据分布方式(striping),将数据分散存储在多个硬盘上,提供了更快的读写性能。
数据被拆分成固定大小的块,然后块按照顺序分布在不同的硬盘上。
由于数据同时存储在多个硬盘上,RAID 0可以实现并行读写,从而提高了整体的数据传输速度。
然而,RAID 0并不提供冗余备份和容错能力。
任一硬盘的故障都会导致整个阵列不可用,并且无法恢复数据。
因此,RAID 0通常用于对性能需求较高而对数据可靠性没有特别要求的场景,如视频编辑和游戏开发等。
2. RAID 1RAID 1级别通过镜像数据的方式提供冗余备份。
每个数据块都被复制到至少两个硬盘上,确保在其中一个硬盘故障时仍然可以通过另一个硬盘访问数据。
RAID 1具有很高的数据可靠性和容错性,但相比RAID 0,写入性能有所降低。
RAID 1适用于对数据保护较为重视的场景,如企业级存储和数据库服务器。
但需要注意的是,RAID 1并不能提供增加存储空间的功能,因为每个数据块都需要镜像存储。
3. RAID 5RAID 5级别结合了条带化和分布式奇偶校验(parity)的方式实现数据的分布存储和冗余备份。
RAID 5需要至少三个硬盘,并将奇偶校验信息按照轮换的方式存储在不同的硬盘上,以保证阵列中同时容忍一次硬盘故障。
当读取数据时,RAID 5可以通过奇偶校验信息恢复任何一个硬盘上的数据。
而在硬盘故障时,阵列可以通过奇偶校验信息实现数据的重建和恢复。
磁盘RAID简介及性能分析

磁盘RAID简介及性能分析
最近在分析一些计算机的基础数据,刚好有两台空闲的PC服务器,所以做了一下磁盘RAID的测试,采用了ORION测的,把测试结果与理论计算公式做了一个分享。
关于RAID级别的介绍网上有很多资料,所以前半部份只是用图形的方式表示各种RAID级别的存储,接着整理了一下各种RAID级别的理论数据。
最后展示了RAID5 VS RAID10及RAID10各种stripe size(条带)的测试数据。
总体来说,在OLTP数据库应用中RAID10还是优先选择,RAID5一般还是用于备份文件或一些历史数据表空间文件。
关于stripe size的测试结果也很明显,一般RAID默认是64K,但是256K不管是在IOPS还是MBPS上都表现出更好的性能,有些网上的文章说普通数据库应用stripe size应该小点比较好,如32K,64K。
这个值也许在2000年时是正确的,随着硬盘的性能提高,带宽从10年前的50MB到现在的160MB,64KB的stripe size明显发挥不出多个磁盘并发的优势,所以建议大家做RAID时设置大一些的stripe size。
本文仅是我个人环境的测试数据,仅供大家参考,也欢迎大家一起探讨注:本文的知识不适合SSD硬盘。
以下是RAID3和RAID4的示意图,RAID3与RAID4的区别是RAID4采用块处理。
以下数据中数字表示可以发挥几块盘的作用。
磁盘阵列详解

DD PPaarriittyy BB22 CC22 DD33
RAID各级别特点
内部公开▲
RAID级* 容错性 冗余类型 热备盘选项
RAID-0 没有 没有 没有
RAID-1 有
复制 有
RAID-4 有
奇偶位 有
RAID-5 有
奇偶位 有
RAID-6 有
双奇偶位 有
需要的磁盘数 1个或多个 只需2个 3个或更多 3个或更多 4个或更多
NAS
LAN SAN
SAN
DAS:Direct Access Storage,直接访问存储 NAS:Network Attached Storage,网络附加存储 SAN:Storage Area Network,存储区域网络
存储架构原理
DAS
LAN
NAS
LAN
服
应用
务
器
文件系统
磁盘
磁盘阵列
服
务
应用
磁阵
目录
• RAID技术 • 存储架构 • 现网磁阵与相关技术 • 磁阵与ZXFS
引言
内部公开▲
目前常见的磁盘,一般有IDE磁盘,SATA磁盘, SCSI磁盘。这些磁盘在性能和可靠性上面差别很大。
衡量磁盘的性能,一般从可靠性、转速以及内部工艺 3个方面衡量。
IDE
SATA
SCSI
平均故障间隔时间 20%工作负载下300K小 20%工作负载下500K 100%工作负载下
CM 负责控制 RAID group、RAID cache和 LUN
BBU用途是外部电源停电时,提供电能以保存cache 中的数据
DE就是JBOD,只有15块硬盘
《磁盘阵列讲解》课件

磁盘阵列的发展趋势
容量增大
随着磁盘数量的增加、技术不断提高,磁盘阵 列的总容量将会越来越大。
性能提高
随着新技术的应用,磁盘阵列的读写速度将会 更快,同时也会变得更加智能化。
结论和展望
结论
磁盘阵列作为数据存储的重要方案,将会继续得 到盘阵列也将在这 一领域发挥越来越重要的作用。
《磁盘阵列讲解》
本课件将深入讲解磁盘阵列的各种技术,帮助你深入了解这一重要的数据存 储方案。
什么是磁盘阵列?
定义
磁盘阵列是利用多个磁盘组合成的存储系统,提供数据备份、容错、加速等功能。
分类
磁盘阵列可以按照多种因素分类,如运作模式、RAID级别、总线结构等。
磁盘阵列常用技术
RAID控制器
RAID控制器是磁盘阵列的重要组成部分,根据 RAID级别来管理磁盘的读写、纠错、协调等过 程。
磁盘阵列的成本较高,还需要较强的技术支持才能保证其正常运行。
磁盘阵列的应用领域
1
服务器存储
磁盘阵列在服务器存储中得到广泛应用,能够保证大量数据的高效存储和访问。
2
网络存储
磁盘阵列可以构建网络存储系统,为分布式的数据存储提供了强有力的支持。
3
大数据处理
磁盘阵列在大数据处理方面也有广泛的使用,能够满足容错、高速读写的需求。
光纤通道技术
光纤通道技术是一种快速,可靠的数据传输技 术,其速度和距离远高于传统的SCSI接口。
固态硬盘
固态硬盘具有更高的读写速度和更小的体积, 因此能够大大提高磁盘阵列的性能。
磁盘阵列的优缺点
1 优点
磁盘阵列能够提供更快速,更稳定的数据存储和访问能力,同时在发生磁盘故障时不会 导致数据丢失。
2 缺点
磁盘阵列RAID原理、种类及性能优缺点对比

磁盘阵列RAID原理、种类及性能优缺点对比磁盘阵列(Redundant Arrays of Independent Disks,RAID)1. 存储的数据一定分片;2. 分基于软件的软RAID(如mdadm)和基于硬件的硬RAID (如RAID卡);3. RAID卡如同网卡一样有集成板载的也有独立的(PCI-e),一般独立RAID卡性能相对较好,淘宝一搜便可看到他们的原形;4. 现在基本上服务器都原生硬件支持几种常用的RAID;5. 当然还有更加高大上的专用于存储的磁盘阵列柜产品,有专用存储技术,规格有如12/24/48盘一柜等,盘可选机械/固态,3.5/2.5寸等。
近来想建立一个私有云系统,涉及到安装使用一台网络存储服务器。
对于服务器中硬盘的连接,选用哪种RAID模式能准确满足需求收集了资料,简单整理后记录如下:一、RAID模式优缺点的简要介绍目前被运用较多的RAID模式其优缺点大致是这样的:1、RAID0模式优点:在RAID 0状态下,存储数据被分割成两部分,分别存储在两块硬盘上,此时移动硬盘的理论存储速度是单块硬盘的2倍,实际容量等于两块硬盘中较小一块硬盘的容量的2倍。
缺点:任何一块硬盘发生故障,整个RAID上的数据将不可恢复。
备注:存储高清电影比较适合。
2、RAID1模式优点:此模式下,两块硬盘互为镜像。
当一个硬盘受损时,换上一块全新硬盘(大于或等于原硬盘容量)替代原硬盘即可自动恢复资料和继续使用,移动硬盘的实际容量等于较小一块硬盘的容量,存储速度与单块硬盘相同。
RAID 1的优势在于任何一块硬盘出现故障是,所存储的数据都不会丢失。
缺点:该模式可使用的硬盘实际容量比较小,仅仅为两颗硬盘中最小硬盘的容量。
备注:非常重要的资料,如数据库,个人资料,是万无一失的存储方案。
3、RAID 0 1模式RAID 0 1是磁盘分段及镜像的结合,采用2组RAID0的磁盘阵列互为镜像,它们之间又成为一个RAID1的阵列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带你全面认识磁盘阵列柜性能ChinaITLab 收集整理 2006-1-5 保存本文推荐给好友 QQ上看本站收藏本站-------------------------------------------------------------------------------- 一个SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。
但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。
构建一个磁盘阵列储存系统,可靠度远比速度来的重要。
因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。
因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。
所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手! 磁盘阵列柜的设计挑战 由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。
一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供: 稳定、高容量、容错的电源供应系统 可靠、高性能、容错的冷却系统 能够克服震动的机械结构 支持SCA2 热抽换接头之被动背板 一体成型、无主动组件之磁盘载盒 数组柜环境监控与警示功能 直接热抽换且方便的维护操作功能 最佳的空间利用 以下我们就针对这些规格和功能,提供一些建议。
稳定、高容量、容错的电源供应系统 如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的3 倍;磁盘驱动器在SEEK 时,需要很大的瞬间电流〈约2.1A〉,约为读写时〈约0.66A〉之 3 倍。
因此,电源供应系统必须能提供足够、稳定之瞬间电流,否则会造成磁盘驱动器无法启动,甚至造成数据写入错误〈此为导致 RAID 磁盘驱动器被 RAID 控制器判定为Down,但磁盘驱动器送回原厂测试却无故障之原因〉。
当磁盘驱动器转速越来越快,SEEK 速度也越来越快时,电源供应器必须提供足够的容量,以因应将来扩充的需求。
具备容错,热抽换、负载分享之双电源供应器,是不可或缺的,更重要的是,如果电源供应器发生故障,要能不必下螺丝就能热抽换电源供应〈使用螺丝起子解螺丝会造成震动及摇摆,会损害工作中之磁盘驱动器〉。
有了双电源供应器,更要具备两组电源输入,一个接到市电,一个接到UPS。
如此,无论突然断电,或UPS 故障,都不会造成RAID 当机。
好的电源供应系统,还须具备交流电压与频率自动选择及调整,以适用不同电压及频率,更重要的是,要能克服电压及频率不稳之状况。
在用电尖峰时段,市电电压可能降到100伏特以下,而在非用电尖峰时段,市电电压可能升到120伏特以上,因此电源供应系统必须能够容忍这些电压变化,提供磁盘驱动器稳定的电压和电流,否则可能造成磁盘驱动器故障,甚至数据写入错误。
磁盘阵列柜的电源供应系统,最好能够提供从85到260伏特无段自动调整,如此,无论插到哪种插座,市电品质如何变化,都不会影响磁盘阵列的功能。
可靠、高性能、容错的冷却系统 在许多案例中,我们发现冷却系统设计不完善的磁盘阵列柜,只能装设7200转的磁盘驱动器,若使用10,000 转的磁盘驱动器,系统就会过热。
现在,Seagate 已经推出15,0000转的磁盘驱动器了,如何挑选一个具备可靠、高性能、容错之冷却系统的磁盘阵列柜,就更显得重要了。
一般磁盘阵列柜之设计,在每个磁盘驱动器载具上加装小风扇,整个系统再装数个大风扇,用边吸边吹的方式散热,不但散热效果不好,而且是产生磁盘驱动器故障的潜在因素:它带来的危害有以下这些: 产生大量气流将粉尘吹入系统,污染磁盘驱动器及风扇本身造成故障。
采用一般PC用小风扇,且数量多〈转动机械零件越多,故障机率越高〉,系统可靠度因而巨幅降低?/li> 一旦有一个小风扇故障,相关磁盘驱动器便无法获得足够散热而故障。
一个优质磁盘阵列柜之冷却系统的设计,必须完全符合热力学理论之全方位冷却:热传导、热对流及热辐射之三相散热方式,才能更有效率、可靠度更高: 磁盘驱动器载盒必须采用黑色、高导热系数之金属〈如铝合金〉,并与载盒紧密接触固定,如此可以最快最有效地将磁盘驱动器之热能传导至整个载盒,然后以最大辐射面积与最佳辐射颜色〈黑色〉,将热能辐射至机体内空气中,再以中央系统涡轮抽风机将热空气以对流方式排出 磁盘驱动器载盒不能使用风扇,及其它任何主动组件,以免本身故障而损及磁盘驱动器 系统采用中央抽风排热设计,须使用两个以上之工业用涡轮抽风机〈不可用一般PC用风扇〉,以提高可靠度与排热效率。
由于工业用涡轮抽风机本身可以防止轴承被粉尘污染,且抽气效率极高,可将机体内热空气抽出,并在机体内产生很大的相对低压,冷空气便可由经过精密设计之对流孔,均匀地进入机体内,达到最佳对流散热效果。
中央系统涡轮抽风机必须具备热抽换功能,且能够自动温控转速,以达到最佳之排热性能与能源使用效率只需一部涡轮抽风机就足以维持系统散热之最低限度。
工业用涡轮抽风机之出气口面积只有一般PC用风扇1/10,因此即使有任何风扇因故停止运转,也不致影响整个系统之热对流结构。
防震机械结构 由于磁盘阵列的特性,当存取阵列中的数据时,阵列中所有的磁盘驱动器的磁头,都几乎在同时,往同一个方向SEEK,又几乎同时在相同的位置煞车,其惯性动量非常之大。
因此造成很大的震动问题。
如果磁盘阵列柜的机械结构不能克服这些震动问题,轻则造成Re-Seek,严重的话,会导致碟面受损,数据遗失。
一个好的磁盘阵列柜的机械结构设计,必须克服上述震动问题: 磁盘驱动器以刚性方式固定于磁盘驱动器载盒〈不使用任何塑料或其它韧性支柱〉:塑料或其它韧性支柱会变成震动的放大器,让磁盘驱动器震得更厉害。
刚性方式固定,可以透过经由模态分析〈Model Analysis〉设计之阵列柜,避开自然共振频率〈Natural Resonance Frequency〉以及强迫共振频率〈Forced Resonance Frequency〉,将系统震动降至最低,得到最佳性能,不会因震动造成磁头偏移而需重新寻轨定位 (re-seek)。
磁盘驱动器载盒必须为一体成型之刚性合金制造,且紧密稳固地固定在机箱内。
如果是以卡榫或螺丝方式接合,其防震效果可想而知,非常不理想。
支持SCA2接口的被动背板 前面提到,磁盘阵列系统最重要的是可靠度,因此所有具备主动组件〈包含电子组件和机械组件〉都必须安装在可热抽换的模块上,以便发生故障时可以随时更换。
一般来说,被动组件是不会坏的,除非暴力相向。
磁盘阵列柜中,除了背板〈Backplane〉之外,其它所有模块都可以是可热抽换的。
因此,背板上不可以有任何主动组件,以免有任一组件发生故障,必须停机更换,而且,一般来说,使用者是无法自行更换背板的。
磁盘阵列柜背板的另一个重要规格,是必须使用SCA2 接头,以支持热抽换〈Hot-Swap〉。
我们都知道,把磁盘驱动器从系统中拔出或插入,会造成很大的突波讯号,可能影响正在工作的Bus,甚至损坏磁盘驱动器接口组件,因此必须要有特殊的设计,来降低并防止突波可能造成的损害。
SCA2 接头的设计,是采用长、中、短等不同长度的接脚,将前期电源和地线、主电源、总线信号线等,依照先后顺序接触〈插入时〉或分离〈拔出时〉,如此可以将磁盘驱动器线路缓慢充电,将其电位提升以降低其与总线间之电位差,以减低突波讯号,保护电子接口组件以及避免干扰工作中的总线。
一体成型,无主动元件的磁盘载盒 在实际的案例中,我们常发现用户把磁盘载盒送修,因为磁盘载盒蜂鸣器一直叫、风扇卡住不转了...,当然,磁盘驱动器也可能因此而毁了〈因为风扇不转而造成磁盘驱动器过热,唉,水能载舟,亦能覆舟〉。
这就是磁盘载盒设计不良所造成的。
一个好的磁盘载盒设计,必须没有使用任何可动机械或主动电子组件,亦即,不要有小风扇,也不要任何控制线路。
如此,磁盘载盒本身就是金刚不坏之身,不会造成故障,更不会成为磁盘驱动器杀手。
同时,磁盘驱动器的固定方式,也是一门学问。
除了前述要将磁盘驱动器直接且紧密地固定在磁盘载盒上,以达到热传导散热之外,磁盘驱动器最好是倒挂式固定。
如果采取一般正面式固定,则磁盘驱动器所产生的热,传导至磁盘载盒之后,又辐射出来产生热空气,再往上升,刚好用来烤磁盘驱动器的线路板和组件〈本是同根生,相煎何太急?〉,会加速组件的老化。
如果采取倒挂式固定,则传导到磁盘载盒的热,会辐射到磁盘驱动器上部空间,由对流气流带走,不会烘烤到磁盘驱动器线路组件。
为求达到最佳热辐射散热效果,磁盘驱动器载盒之表面,最好漆上黑色,因为黑色是最容易吸收热能,也是最容易辐射出热能的颜色。
磁盘驱动器载盒的材质,必须具备高导热系数的特性,如铝合金辨识理想的材料,导热系数高,加工也方便。
而如前述,磁盘驱动器载盒必须是一体成型的刚性金属合金制造,以达到最佳震动克服性能。
我们非常不建议采用组合式磁盘载盒,一般这些组合式磁盘载盒,都是由一个架子和一个盒子组成;架子上有风扇和热抽换控制电路,固定在机壳上,再接Cable;磁盘驱动器则装在盒子,透过转接接头连到架子上。
如此,不但造成前述震动问题,而且一旦架子的风扇或电子组件故障,就必须停机更换。
阵列柜环境监控与示警功能 磁盘阵列柜中所有主动组件或机械组件,以及内部环境温度,都必须能够监控且有适当的警示和通报功能: 阵列控制器必须能支持S.M.A.R.T.,以便预测可能发生的磁盘驱动器故障。
妥善利用S.M.A.R.T. 功能,能够预先准备好备用磁盘驱动器,以便在第一时间把不稳的磁盘驱动器更换掉,如此可以把风险系数降至最低。
环境状态监控器必须能随时监视机柜内部温度,以及控制排设装置转速,以达到最佳冷却及能源利用效率。
同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。
电源供应器的输入与输出,也必须随时监控。
同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。
另外,非常重要的一点是,环境监视控制器本身也是主动组件,也可能发生故障,因此,磁盘阵列柜的环境监控器,必须能够支持热抽换功能。
直接热拔插且方便的维护操作功能 在磁盘阵列柜中,所有可能发生故障的组件,包括主动电子组件、可动机械组件,都必须能够支持热抽换功能。