优化原理与方法14现代仿生算法
现代优化计算方法

决策变量
t = 1,",T
(1.12)
xit=1表示第t时段加工产品i 、T:时段数
组合优化问题的表示形式
• 组合优化问题通常可以用整数规划模型 的形式表示,如例1.1.1和1.1.2
• 有些组合优化问题用IP模型表示则比较 复杂且不易被理解,不如对问题采用直 接叙述更易理解,如例1.1.2,1.1.4和1.1.5
例1.1.2的非对称距离TSP问题耗时
• 可以用另一个方法来表示它的可行解: 用n个城市的—个排列表示商人按这个排 列序推销并返回起点
• 若固定一个城市为起终点,则需要 (n—1)!个枚举
• 设计算机1秒可以完成24个城市所有路径 枚举为单位
枚举时城市数与计算时间的关系
城市数 24 25 26 27 28 29 30 31 计算时间 1s 24 s 10m 4.3h 4.9d 136d 10a 325a
max cT x
s.t.Ax = b
x ≥ 0, x ∈ Z n
c为n维列向量,A为m×n矩阵、b为m 维列向量,x 为n维决策变量,Zn表示n 维整数向量的集合 系数A、b和c的元素都是整数
• 例1.1.2和1.1.3的数学模型都具有(IP) 的形式 •一些组合优化问题可以写成整数线 性规划问题 •IP与LP形式非常相似,不同之处是 前者的决策变量部分或全部取整数
(1.5) (1.6)
(1.7) (1.8)
共n×(n-1)个决策变量 D={0,1}n× (n-1)
一条回路是由k(1≤k ≤ n)个城市和k条弧 组成,因此,(1.7)约束旅行者在任何一 个城市真子集中不形成回路,其中|S|表 示集合S中元素个数
例1.1.3 整数线性规划 (integer linear programming)
数学建模算法大全现代优化算法简介

第二十三章 现代优化算法简介§1 现代优化算法简介现代优化算法是80年代初兴起的启发式算法。
这些算法包括禁忌搜索(tabu search ),模拟退火(simulated annealing ),遗传算法(genetic algorithms ),人工神经网络(neural networks )。
它们主要用于解决大量的实际应用问题。
目前,这些算法在理论和实际应用方面得到了较大的发展。
无论这些算法是怎样产生的,它们有一个共同的目标-求NP-hard 组合优化问题的全局最优解。
虽然有这些目标,但NP-hard 理论限制它们只能以启发式的算法去求解实际问题。
启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms )。
有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。
现代优化算法解决组合优化问题,如TSP (Traveling Salesman Problem )问题,QAP (Quadratic Assignment Problem )问题,JSP (Job-shop Scheduling Problem )问题等效果很好。
本章我们只介绍模拟退火算法,初步介绍一下蚁群算法,其它优化算法可以参看相关的参考资料。
§2 模拟退火算法2.1 算法简介模拟退火算法得益于材料的统计力学的研究成果。
统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。
在高温条件下,粒子的能量较高,可以自由运动和重新排列。
在低温条件下,粒子能量较低。
如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。
当系统完全被冷却时,最终形成处于低能状态的晶体。
如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。
假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律:(1)如果)()(i E j E ≤,接受该状态被转换。
现代优化方法

通过控制参数的变化,使得解在寻优过程中不断逼近最优解。
概率突跳策略
在寻优过程中,通过引入一定的随机性,使得算法有可能跳出局部最优解,从而寻找到更好的全局最优解。
模拟退火算法的实现步骤
• 初始化:设定初始解、初始温度、降温系数、终止条件等参数。 • 评估解:计算当前解的目标函数值,以及与最优解的距离。 • 判断是否满足终止条件:如果满足,则终止算法并输出最优解;否则,继续下一步。 • 产生新解:根据当前解和目标函数的梯度信息,产生一个新的可能解。 • 判断是否接受新解:根据新解的目标函数值和当前解的目标函数值进行比较,如果新解更好,则接受新解
明确目标
了解约束
首先需要明确优化的目标,如成本最低化、 时间最短化等。目标不同,选择的优化方法 也会不同。
在选择优化方法时,需要了解各种方法的约 束条件,如变量范围、目标函数的性质等。
考虑问题的复杂性
方法的可行性
根据问题的复杂性和规模,选择合适的优化 方法。对于大规模问题,选择高效的优化方 法更为合适。
遗传算法的应用案例
函数优化问题
如求解一元函数的最小值或多元函数的极值点。
调度优化问题
如作业车间调度、排班优化等。
组合优化问题
如旅行商问题、背包问题等。
图像处理问题
如图像分割、特征提取等。
04
模拟退火算法
模拟退火算法的基本原理
基于固体的退火过程的模拟
将优化问题与固体的退火过程进行类比,将问题的解看作是固体中的粒子,通过控制温度和冷却速度,使得粒子在高温下能 够自由运动,并在冷却过程中达到最平衡的状态。
选择的优化方法应具有可实现性和可操作性 ,同时需要考虑计算时间和计算资源的限制 。
现代智能优化算法

式中 cmin 为 f x 的最小估计值。
c f x f x cmax 若目标函数为最小化问题,则: Fit f x max otherwise 0
第十章
现代智能优化算法简介
引言
现代优化算法包括禁忌搜索(Tabu search)、模拟退火(Simulated annealing)、遗传算法(Genetic algorithms)等,这些算法涉及生物进 化、人工智能、数学和物理科学、神经系统和统计力学等概念,都是以一 定的直观基础而构造的算法,我们称之为启发式算法。启发式算法的兴起 与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂 问题时,现代智能优化算法开始体现其作用。现代智能优化算法自八十年 代初兴起,至今发展迅速,这些算法同人工智能、计算机科学和运筹学迅 速融合,促进了复杂优化问题的分析和解决。下面我们就简要介绍这些算 法的基本理论以及MATLAB实现。
遗传算法
适应度函数的确定
解析性质:连续、非负 合理性:要求适应度函数设计应尽可能简单 近似量小:适应度函数对某一类具体问题,应尽可能通用。
目标函数的处理方法
(1) 直接将待求解的目标函数转化为适应度函数, 若目标函数为最大化问题, 即: 则: Fit f x f x ;若目标函数为最小化问题,则: Fit f x f x (2) 将待求解的目标函数做适当处理后再转化为适应度函数
遗传算法
初始群体的设定
遗传算法是群体型操作,这样必须为遗传操作准备一个由若干初始解组成的初 始群体。初始种群的好坏对于遗传算法的计算结果的优劣和算法的效率有着重要影 响。产生初始种群通常有两种方法。一种是完全随机的产生方法,它适用于对待求 解问题的解无任何先验知识的情况;另一种是把某些先验知识转化为必须满足的一 组要求,然后在满足这些要求的解中随机的选取。这种选择初始种群的方法可以使 遗传算法较快地达到最优解。初始群体也称做进化的初始代,即第一代(first generation)。
现代优化算法简介PPT课件

混合优化算法
将传统优化算法与启发式 优化算法相结合,以提高 效率和精度。
02
常见优化算法介绍
梯度下降法
总结词
基本、直观、易实现
详细描述
梯度下降法是最基础的优化算法之一,它通过不断沿着函数梯度的反方向进行 搜索,以寻找最小值点。由于其简单直观且易于实现,梯度下降法在许多领域 都有广泛应用。
牛顿法
优化算法的重要性
优化算法是解决复杂问题的关键,能 够提高效率和精度,降低成本和风险 。
随着大数据和人工智能的快速发展, 优化算法在解决实际问题中扮演着越 来越重要的角色。
现代优化算法的发展历程
01
02
03
传统的优化算法
如梯度下降法、牛顿法等, 适用于简单问题。
启发式优化算法
如遗传算法、模拟退火算 法等,适用于复杂问题。
多目标优化问题
总结词
多目标优化问题是指同时追求多个目标函数 的优化问题,如多目标决策、多目标规划等 。
详细描述
多目标优化问题需要同时考虑多个相互冲突 的目标函数,找到一个平衡的解。现代优化 算法如遗传算法、粒子群算法等在多目标优 化问题中广泛应用,能够找到一组非支配解
,满足不同目标的权衡和折衷。
04
指算法在处理大规模数据集时的性能表现。
详细描述
随着数据规模的增大,算法的可扩展性变得越来越重 要。现代优化算法需要能够高效地处理大规模数据集 ,同时保持较高的计算效率和精度。这需要算法设计 时充分考虑计算资源的利用和优化。
算法的理论支撑
总结词
指算法的理论基础和数学证明。
详细描述
现代优化算法需要有坚实的理论基础 和数学证明,以确保其有效性和正确 性。这需要算法设计者具备深厚的数 学功底和理论素养,以确保算法的可 靠性和稳定性。
智能优化算法的原理

智能优化算法的原理
智能优化算法的原理
智能优化算法是一种新兴的计算机技术,它可以帮助我们更有效地解
决复杂的问题。
它使用机器学习技术,以及各种优化技术,来自动调
整系统参数,从而获得更好的性能。
智能优化算法的主要原理是运用搜索算法,尤其是模拟退火算法,和
遗传算法,来求解最优解。
搜索算法是一种基于随机搜索的算法,其
中改变参数,以期找到最优解。
模拟退火算法是一种搜索算法,它具
有自适应性,可以根据实际情况自动调节参数。
而遗传算法则是一种
基于遗传进化的算法,它使用“基因”来表示参数,并通过“交叉”
和“变异”等进化算法,来求解最优解。
智能优化算法在实际应用中,可以帮助自动调整系统参数,使其可以
获得最佳性能。
它的主要优势在于可以在短时间内获得满足条件的解,而且不需要过多的人工干预。
此外,它还可以自动调整参数,从而实
现自适应优化,使其能够在不同的环境中获得良好的性能。
总之,智能优化算法是一种新兴的计算机技术,它的主要原理是运用
搜索算法,以及遗传算法,来自动调整系统参数,从而获得更好的性能。
它在实际应用中,可以帮助自动调整系统参数,使其可以获得最
佳性能,具有很高的应用价值。
现代优化算法

s.t. g(x) 0,xD 其中x1, x2, …, xnΩ(即问题的可行域,代表问题参 数的选择范围),即minf (X),其中XΩ(矢量形 式)。f(x)是决策问题的数学模型,也是决策问题的 目标函数,g(x) 0是决策问题的约束条件,D是决 策问题的定义域(可行域)。问题归结为求极值。 极值点非常多,需要找到全局最小点。 注:求问题的最大和最小是同一个问题,算法完全 一样。
(三)变异:变异首先在群体中随机选择一个个体,对于 选中的个体以一定的概率随机地改变串结构数据中某个串 的值。同生物界一样,GA中变异发生的概率很低,通常取 值在0.001~0.01之间。遗传算法导入变异的目的有两个: 一是使遗传算法具有局部的随机搜索能力。二是使遗传算 法可维持群体的多样性,以预防出现群体未成熟收敛现象。 变异算子的基本内容是对群体中的个体串的某些基因座上 的基因值作变动。就基因字符{0,1}的二进制码串而言,变 异操作就是把某些基因座上的基因值取反,一般来说具有 以下两个步骤:在群体中所有个体的码串范围内随机的确 定基因座;以事先设定的变异概率来对这些基因座的基因 值进行变异。
设群体的大小为n,其中个体i的适应度值为 f i ,则i
Hale Waihona Puke 被选择的概率为pi f i
f
j 1
n
j
显然,概率 pi 反映个体i的适应度在总和中所占的 比例,个体的适应度越大,其被选择的概率就越 高,反之亦然,计算出群体中各个个体的选择概 率后,就可以决定那些个体可以被选出。
(2)最佳个体保存方法(elitise model) 该方法的思想是把群体中适应度最高的个体不进行配对而 直接复制到下一代中,此种选择操作又称复制(copy)。 其定义如下: a* (t ) 为最佳个体。又设 设到时刻t(第t代),群体A(t)中 * * A(t+1)为新一代群体,若A(t+1)中不存在 a (t ) ,则把 a (t ) 作 为A(t+1)中的第n+1个个体(其中,n为群体大小)。 此方法的优点是,进化过程中某一代的最优解可不被交叉 和变异操作所破坏。这也隐含了一种危机,即局部最优个 体的基因会急速增加而使进化有可能限于局部解,也就是 说该方法全局搜索能力差,它更适合单峰性质的搜索空间 搜索,而不是多峰性质的空间搜索。所以此方法都与其他 选择方法结合使用。
现代优化算法

参数〔即初始温度、降温策略、温度终值准那么、Markov链长〕,怎样实现模拟退火算法的并行运
算,怎样进一步改进模拟退火算法等。
这些改进主要包括:选取适宜的初始温度、最优保存策略、与部分搜索相结合、回火退火法等。需 要说明,文献中的部分搜索法本质上仍然是随机搜索,只是仅承受优化解,不承受恶化解。
近些年来,不少学者对于模拟退火算法进展了深化的研究和改进。
包括:讨论模拟退火与传统部分优化算法如单纯形法、Powell方法等的结合[7],研究邻域构
造与选取状态转移随机步长方法以及相应的降温方案,如何采取适宜的退火终止条件等。
16
模拟退火算法 Markov链长
计算 冷却进度表
根本算法〔PASCAL伪码〕:
Procedure SIMULATED ANNEALING;
禁忌,就是制止重复前面的工作。为了回避部分邻域搜索陷入部分最优的主要缺乏,采用一个禁忌 表记录已经到达过的部分最优点,在下一次搜索中,利用禁忌表中的信息不再或者有选择地搜索这 些点,以此来跳出部分最优点。
Tabu算法由几个根本要素的组合:邻域,Tabu表及评价函数。邻域与一般优化技术中的定义一致; Tabu表是一个或数个数据序列,是对先前的数步搜索所作的记录,记录的方式有很多,记录的长度 也是可变的,选取的好坏直接影响算法的效率;评价函数通常就是问题的目的函数或它的某种变换 形式,用于对一个挪动作出评价。由Tabu表和评价函数可以构造一种Tabu条件,假设新点满足 Tabu条件那么承受,否那么回绝,直至迭代终止。
模拟退火算法〔simulated annealing algorithm, SAA〕是一种重要的全局性启发式概率搜索算法,其 物理背景是固体的退火过程。
历史上,两个人物对于SAA的开展起了关键性的作用,他们分别是N. Metropolis和S. Kirkpatrick。