电力系统不对称短路故障

合集下载

5(C-8)不对称故障分析 - 电力系统 湖南大学

5(C-8)不对称故障分析 - 电力系统 湖南大学



(b) 短路电压:短路两相V相等,为非短路相的1/2 且相位相反。 特别:
Zff(2) =Zff(1) then Vfa =Vf[0] & Vfb =Vfc = 1 Vf[0] 2
9
8-1 简单不对称短路的分析
三、两相接地短路: (1) 边界条件:
Vfa Vfb
Vfb Vfc I fa=0 Ifb I fc
I fa (1) I fa (2) I fa (0) 1 I fa 3
I fa(2)
I fa(0)
Zff(1) + V f [0 ]
V f a (1 )
Zff(2)
V fa (2 )
Zff(0)
Vfa(0)
-
I fa(1) I fa(2) I fa(0)
= Zff(1) + (Zff(2) + Zff(0) ) Zff(1) + Z(1) Δ 4
3 Vf[0]
3 Vf[0]
8-1 简单不对称短路的分析
一、单相接地短路: (5) 故障(短路)口的各相电压
Vfb = a 2Vfa(1) + aVfa(2) + Vfa(0) = -j 23 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) 2 3 Vfc = aVfa(1) + a Vfa(2) + Vfa(0) = -j 2 - 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) Vfa = 0
Ifc = aIfa(1) + a 2Ifa(2) + Ifa(0) = a Zff(2) + a 2Zff(0)

电力系统的不对称(故障)分析的对称分量法

电力系统的不对称(故障)分析的对称分量法

(*)
式 Ub Uc Z f Ib 可变换为
(a2Ua1 aUa2 Ua0 ) (aUa1 a2Ua2 Ua0 ) Z f (a2Ia1 aIa2 Ia0 )
将(#)式代入:(a2 a)Ua1 (a2 a)Ua2 Z f (a2 a)Ia1
a3 1
其中
1 T a 2
a
1 1 a 1 a 2 1
为对称分量变换矩阵
IP


IIba
Ic
为相电流向量
IS


Ia1 Ia 2

Ia0
为对称分量电流向量
对前式求逆,得 IS T 1IP ,其中
1 a a 2
电力系统的不对称(故障)分析的 对称分量法
在电力系统故障中,不对称故障发生的概率比三相对称故 障发生的概率大得多。例如某电力系统220kV线路故障中:
单相接地短路占91%; 两相短路占0.9%; 两相接地短路占5.9%; 三相短路占1.8%; 单相断线占0.4%。 基本分析方法:对称分量法
一、对称分量法
Ia1 Ia 0Ia 2
Uc 2
Ub 2
Ia
Uc 2
UC1
Uc 0 Uc
Ua Ua 2 Ua0
Ub 2 Ub1
Ub Ub0
2. 两相短路
短路点的电压电流(边 界条件):
Ia 0 Ib Ic
Ub Uc Z f Ib
a
k
b
c
Ua Ub Uc Ia 0
3X kk0 ]Ia1
Uc aUa1 a2Ua2 Ua0 j[(a a2 ) X kk2 (a 1) X kk0 ]Ia1

电力系统不对称故障分析与计算及其程序设计

电力系统不对称故障分析与计算及其程序设计

电力系统不对称故障分析与计算及其程序设计电力系统是现代社会不可或缺的组成部分。

在电力系统中,不对称故障是一种严重的故障,其影响可以导致电力系统的瘫痪。

因此,不对称故障分析与计算非常重要,是电力系统维护的基础工作之一。

本文将重点讨论电力系统不对称故障分析与计算及其程序设计。

1. 不对称故障的概念不对称故障是指在电力系统中,一侧电源与另一侧负载不对称导致的故障。

不对称故障通常包括短路故障和开路故障两种情况。

短路故障是指两个相之间或者相与地之间的短路,导致电路异常加热、设备损坏、电压降低等问题。

开路故障是指电路中出现的缺失和断路,导致电流无法正常流动,使电力系统无法正常运行。

2. 不对称故障分析与计算在出现不对称故障时,需要进行分析和计算。

基本的不对称故障分析和计算包括以下内容:(1)不对称故障电流的计算。

不对称故障电流是指出现不对称故障时电路中的电流。

不同类型的故障电流计算方法不同,需要根据具体情况进行计算。

不对称故障电流的计算非常关键,可以为后续的故障处理提供依据。

(2)故障影响分析。

不对称故障会对电力系统产生不同程度的影响,包括电压降低、设备故障、负荷损失等。

需要进行故障影响分析,为后续处理提供依据。

(3)电力系统稳态分析。

在不对称故障发生时,需要进行电力系统的稳态分析,分析电力系统受故障干扰后的运行情况,为后续处理提供可靠的指导。

3. 不对称故障计算程序设计对于电力系统不对称故障计算,可以设计相应的计算程序,以提高计算效率和准确性。

根据不同的故障情况和计算需求,可以设计不同的计算程序。

一般而言,不对称故障计算程序应包括以下部分:(1)输入信息。

输入信息主要包括电路图、电力系统参数、故障类型等。

输入信息的准确性对计算结果具有重要的影响。

(2)故障电流计算。

根据输入的电路图和电力系统参数,计算不对称故障电流。

不对称故障电流是不对称故障计算的基础。

(3)故障影响分析。

根据不对称故障电流,计算电力系统电压降低、设备故障等影响,预测故障对电力系统的影响程度。

电力系统不对称短路的分析与计算

电力系统不对称短路的分析与计算
第26页/共116页
本章内容
1 不对称短路的特征 2 对称分量法 3 不对称短路的计算原理 4 各元件的正序、负序、零序参数(阻抗、
导纳) 5 各种不对称短路的短路电流和短路电压的
计算方法
第27页/共116页3 不对称路的计算原理在任意某系统某点f 发生不对称短路时
特征:短路点元件参数不对称 (三相阻抗不等) 运行参量不对称
第43页/共116页
4.2 变压器的序参数及等值电路
注意:变压器的电阻一般较小,因此在短路 计算时常予忽略不计!
(1)正序电抗X(1)
定义:变压器通过正序电流时的电抗
Xm:值很大, 忽略不计。
正序单相等值电路
第44页/共116页
(2)负序电抗X(2)
定义:变压器通过负序电流时的电抗
由于:三相变压器为静止元件,改变相序并不改变各绕 组相互之间的互感和自身的漏感。
转子d轴,一会掠过转子q 轴,使励磁绕组和d轴阻尼 绕组中的磁链总要变动;
第40页/共116页
4)根据磁链守恒原则,励磁 绕组和阻尼绕组均要产生 感应电流,将负序磁链挤 出,使之通过漏磁路构成通 路;这与对称三相突然短路 时暂态过程开始的情况相似;
5)负序磁链通过d轴磁路时,负序电抗相当于 ; 负序磁链通过q轴磁路时,负序电抗相当于 ; 介于二者之间时,通常取二者的平均值:
负序电压波形图
AC B
相序:
A—>C—>B:1200
第11页/共116页
三相负序电压向量
理解:正序和负序时相对而言的!
若为发电机
如:取XX’绕组为A相,则必 取YY’绕组为B相,ZZ ’绕组 为C相,则转子逆时针旋转时 产生的电压、电流的相序为 A—>B—>C:1200 则:此时,若转子反转,产 生的电压和电流的相序为: A—>C—>B:1200

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。

然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。

因此,对电力系统不对称故障进行分析和计算是非常重要的。

本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。

2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。

其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。

不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。

2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。

正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。

3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。

3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。

这些参数将用于后续的计算。

3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。

常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。

3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。

通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。

3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。

3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。

通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。

4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)
信息工程学院
课程设计报告书
题目:不对称短路故障分析与计算
专 业:电气工程及其自动化
班 级:YYYYYYY班
学 号:YYYYYYYYY
学生姓名:YYY
指导教师:YYY老师
20XX年X月X日
电力系统分析课程设计
题目:不对称短路故障分析与计算(手算或计算机算)
一、原始资料
T4
T3
T2
T1
1、发电机参数已经给定。
4
短路点正序标幺值为:
短路点负序标幺值为:
短路点零序标幺值为:
不对称短路的短路电流正序分量标幺值:
短路电流的标幺值:
短路电流的幅值:
短路冲击电流幅值:
短路点非故障相对地电压:
5 结果分析
5.1
电力系统产生短路的主要原因是供电系统中的绝缘被破坏。在绝大多数情况下,电力系统的绝缘的破坏是由于未及时发现和消除设备中的缺陷和维护不当所成的。例如过电压、直接雷击、绝缘材料的老化、绝缘配合不当和机械损坏等,运行人员错误操作,如带负荷断开隔离开关或检修后未撤接地线就合断路器等;设备长期过负荷,使绝缘加速老化或破坏;小电流系统中一相接地,未能及时消除故障;在含有损坏绝缘的气体或固体物质地区。此外在电力系统中的某些事故也可能直接导致短路,如电杆倒塌、导线断线等也会造成短路。
短路对电力系统的正常运行和电气设备有很大的危害,引起的后果是破坏性的,具体表现在:(1)短路点的电弧有可能烧坏电气设备,同时很大的短路电流通过设备会使发热增加,当短路持续时间较长时,可能使设备过热而损坏;(2)很大的短路电流通过导体时,要引起导体间很大的机械应力,有可能使设备变形或遭到不同程度的破坏。(3)短路时,系统电压大幅度下降,对用户工作影响很大(4)发生接地短路时,会产生不平衡电流及磁通,将在领近的平行线路内感应出很大的电动势。(5)短路发生后,有可能使并列运行发电机组失去同步,破坏系统的稳定,使电力系统瓦解,引起大片地区的停电。

不对称短路的分析和计算

不对称短路的分析和计算

武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。

在电力系统运行过程中,时常会发生故障,且大多是短路故障。

短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。

其中三相短路为对称短路,后三者为不对称短路。

电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。

求解不对称短路,首先应该计算各原件的序参数和画出等值电路。

然后制定各序网络。

根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。

关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
短路电流 不突变
I m sin( ) I Pm sin( ) C
C iaP0 I m sin( ) I Pm sin( )
i I Pm sin(t ) [Im sin( ) I Pm sin( )]et /Ta
• 网络的简化
• 常用的网络简化主要有分裂电势源和分裂 短路点。
Zs
Z m
Z sc
0
0
Z Z
s
m
0 Z1 0 0 00Z 20
0
0
Z s
2Z m
0
0 Z0
V120 Zsc I120
Va1 Va2
Z 1 Ia1 Z 2 Ia2
Va0
Z 0 Ia0
结论:在三相参数对称的线性电路中,各序对称分量具有独 立性,因此,可以对正序、负序、零序分量分别进行计算。
➢ 对称分量法 ➢ 对称分量法在不对称故障分析计算中的应用 ➢ 电力系统元件序参数及系统的序网图 ➢ 简单不对称故障的分析计算
对称分量法
正序分量
负序分量
零序分量
合成
一、对称分量法
• 正序分量:三相量大小相等,互差1200,且与系 统正常运行相序相同。
• 负序分量:三相量大小相等,互差1200,且与系 统正常运行相序相反。
Fa 0
Fc
Fc1
Fc 2
Fc0
aFa1
a 2Fa2
Fa 0
• 三序量用三相量表示
1 1 1 T a2 a 1
a a2 1
Fa1 Fa2
Fa0
1 3
1 1 1
a a2 1
a2 a
FFba
1
Fc
F120 T -1Fabc
Fabc TF120
二、序阻抗的概念
• 静止的三相电路元件序阻抗
通常
三、短路容量
短路容量也称为短路功率,它等于短路电流有效 值与短路处的正常工作电压(一般用平均额定电 压)的乘积,即
SD 3VavI ''
用标幺值表示时
SD
3Vav I '' 3VB IB
I '' IB
It
短路容量主要用来校验开关的切断能力。
第三节不对称故障的分析计算
• 电力系统正常运行时,可以认为是三相对称的,即认 为各元件三相参数是相同的、三相电路中各点的三相 电压和电流是对称的,且具有正弦波形和正常相序。
• 异步电机的次暂态参数简化相量图。由图 可计算它的次暂态电势为

近似地用标量形式表示为
•短路前异步电动机的端电压、电流以及电压和电流间的相角差。
三相短路的暂态过程
图 简单三相电路短路
•短路前电路处于稳态:
e Em sin(t ) i Im sin(t )
Im
Em
( R R)2 2 ( L L)2
tg 1 (L L)
R R
假定t=0时刻发生短路 a相的微分方程式如下:
Ri
L
di dt
Em
sin(t
)
其解就是短路的全电流,它由两部分组成: 周期分量和非周期分量。
周期分量: 短路电流的强制分量, 并记为 iP
iP I Pm sin(t )
I Pm
Em
R 2 (L)2
tg 1 L
R
非周期电流 : 短路电流的自由分量,记为
t
iaP Ce pt Ce Ta
(C为由初始条件决定的积分常数)
p — 特征方程 R pL 0 的根。
pR L
Ta — 非周期分量电流衰减的时间常数
Ta
1 p
L R
积分常数的求解
短路的全电流可表示为:
短路前电流 i iP iaP IPm sin(t ) Cet /Ta i Im sin(t )
VVba
Vc
Z Z Z
aa ab ac
Z ab Z bb Z bc
Z Z Z
ac bc cc
IIba Ic
Vabc ZI abc V120 T 1ZTI120 Z sc I120
Zsc T 1ZT
称为序阻抗矩阵
• 当元件参数完全对称时 zaa zbb zcc zs zab zbc zca zm
• 近似地用标量的形式表示为
• (2)异步电动机。在正常运行情况下,异步电动机的转差率 很小(s一2%~5%),可以近似地当做同步速运行。根据短路 瞬间转子绕组链磁守恒的原则,异步电动机也可以用与转子绕 组的总磁链成正的次暂态电势以及相应的次暂态电抗来代表。 异步电机次暂态电抗的额定标么值为
• Ist——异步电机启动电流的标么值(以额定电流为基准),一般 为4~7,因此可近似地取X‘’=0.2。
• 一、起始次暂态电流(I“)的计算 • 1.确定系统各元件的次暂态参数 • (1)同步发电机。在突然短路瞬间,同步发电机的次暂态电
量保持着短路前瞬间的数值(E’’0=E’’101)。根据图所示简化相 量图,取同步发电机在短路前瞬间的端电压为U101,电流为 I101和功率因数角φ101,利用下式即可计算出次暂态电势值, 即
• 电力系统对称运行方式的破坏主要与故障有关,例如 发生不对称短路或个别地方一相或二相断线等等。
• 电力系统对称运行方式遭到破坏时,三相电压和电流 将不对称,而且波形也发生不同程度的畸变,即除基 波外,还含有一系列谐波分量。在暂态过程中谐波成 分更复杂,而且还会出现非周期分量。
• 我们分析电压和电流的基波(50Hz)分量,并且在暂态 过程的任一瞬间都当作正弦波形看待。采用相量法来 进行分析计算。由于只是个别地方发生不对称短路或 断线,导致系统局部的不对称,而系统其他各元件的 三相阻抗及三相之间互感仍然保持相等,所以一般不 使用直接求解复杂的三相不对称电路的方法,而采用 更简单的对称分量法进行分析计算。
二、短路冲击电流
•指短路电流最大可能的瞬时值,即称冲击电流,用iim
表示。其主要作用是校验电气设备的电动力稳定度。
在实用计算中,冲击电流近似计算为:
iimp Kimp 2I '' 2.55I ''
一般电力系统中,冲击系数主要取决于电路的衰减时
间常数和短路故障的时刻, 取1.8
1<Kimp <2
• 零序分量:三相量大小相等,相位一致。
逆时针旋转1200
Fb1 Fb2
a 2 Fa1 , Fc1 aFa2 , Fc2
aFa1 a 2 Fa2
Fb0 Fc0 Fa0
a e j120
• 三相量用三序量表示
Fa Fb
Fa1 Fb1
Fa 2 Fb2
Fa 0 Fb0
a 2Fa1
aFa 2
相关文档
最新文档