长春工业大学物理答案光静电场c

合集下载

长春工业大学物理答案光稳恒磁场c8-11

长春工业大学物理答案光稳恒磁场c8-11

练习八 电流的磁场(一)1.一无限长直导线abcde 弯成图8-1所示的形状,中部bcd 是半径为R 、对圆心O 张角为1200的圆弧,当通以电流I 时,O 处磁感应强度的在大小B=RI06336μππ+-,方向为垂直纸面向里2.如图8-2所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。

3.(2)两个载有相等电流I的圆圈,半径均为R,一个水平放置,另一个竖直放置,如图8-3所示,则圆心处磁感应强度的大小为:4.(4)如图8-4所示,在无限长载流导线附近作一球形闭合曲面S,当面S向长直导线靠近的过程中,穿过S的磁通量Φ及面上任一点P的磁感应强度大小B的变化为:(1)Φ增大,B增大;(2)Φ不变,B不变;(3)Φ增大,B不变;(4)Φ不变,B增大。

5.(1)磁场的高斯定理说明了下面的哪些叙述是正确的?a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(1)ad ; (2)ac ; (3)cd ; (4)ab 。

6.真空中的两根无限长直载流通导线L 1和L 2相互平行放置,I 1=20A ,I 2=10A ,如图所示,A 、B 两点与两导线共面,a=0.05m 。

求:(1)A 、B 两点处的磁感应强度B 1和B 2;(2)磁感应强度为零的位置。

解:以×为正,(1)7042010104102.122--⨯=⨯⨯=+=πμπμπμT a I a I B A T aI a I B B 520101033.1232-⨯=-⋅=πμπμ (2)经过分析,磁感应强度为零的点应该在L 2的下方,假设到L 2的距离为xma x xI a x I 1.022)2(202010==++⋅-=πμπμ7.两平行长直导线相距d=40cm,通过导线的电流I1=I2=20A,电流流向如图所示。

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。

求它们之间的斥力。

题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。

题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。

证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。

题7.2分析:根据题意将电子作为经典粒子处理。

电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。

点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。

证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。

为方便计算可以利用晶格的对称性求氯离子所受的合力。

解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。

大学物理物理c答案

大学物理物理c答案

大学物理答案及评分标准(C 卷)一、填空题:1、2m/s -6m/s2、是:保守力做功跟路径无关。

3、ωJ 和221ωJ 4、导体内场强处处为零 5、取向极化和位移极化 6、304r r l Id B d ⨯⋅=μπ 7、M RT 2和M RT 38、R 25和R 23 9、开尔文表述是:不可能从单一的热源吸收热量使之完全变成有用功而不引起其他的变化。

10、频率相同、振动方向相同、位相差恒定。

二、选择题:1、(B )2、(D )3、(B )4、(A )5(A )三、判断题:1.(×) 2.(×) 3. (×) 4. (×) 5. (×) 6. (√) 7. (×) 8. (×) 9. (×)10. (√)四、解答题:1. 解:(1)根据题意:Kv a -=, 所以Kv dt dv -=,分离变量后,Kdt vdv -=,.................................(1分) 积分得,⎰⎰-=t v v Kdt v dv 00,所以有Kt e v t v -=0)(;....................... (3分) 同理,可以求得)1(00Kt e K v x x ---=。

......................................... (1分) (2)根据题意,Kx a =所以, dx Kx dx dtdv ⋅=⋅,积分得⎰⎰=x x v v Kxdx vdv 00;............. (1分) 所以有:)(202202x x K v v -+=.............................................(4分)2. 解:设导体平板的面积为S , 各面的电荷面密度分别为1σ、 2σ、3σ、4σ,根据电荷守恒的条件:A Q S S =+21σσ (1)B Q S S =+43σσ(2)---------------------------- (2分)在金属板内取如图所示的高斯面,根据高斯定理有:032=+σσ (3)---------------------------- (3分)根据场强叠加原理,金属板内某点P 的场强为零:40302012222εσεσεσεσ-+=p E -----------------(3分) 联立求解得:SQ Q B A 241+==σσ SQ Q B A 232-=-=σσ----------------------(2分) 3. 解:由于同轴电缆导体内的电流均匀分布,其磁场轴对称分布。

大学物理静电场考试题及答案

大学物理静电场考试题及答案

大学物理静电场考试题及答案5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r rq εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-= 代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1xθe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2。

大学物理第五章 静电场部分的习题及答案

大学物理第五章 静电场部分的习题及答案

第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。

长春工业大学物理答案光光学16-20

长春工业大学物理答案光光学16-20

长春⼯业⼤学物理答案光光学16-20练习⼗六光的⼲涉(⼀)1.如图16-1所⽰,在杨⽒双缝实验中,⼊射光波长为600nm ,屏幕上的P 点为第3级明纹位置。

则双缝到达P 点的波程差为1800nm 。

在P 点叠加的两光振动的相位差为 6π。

解:λk x Dd =为明纹 2.如图16-2所⽰,在杨⽒双缝实验中,把两缝中的⼀条狭缝s 2遮住,并在两缝的垂直平分线上放⼀块平⾯反射镜。

则屏幕上的⼲涉将如何变化?镜下⽅⽆条纹,镜上⽅明暗条纹分布状况与上⼀次恰好相反。

3.( 2 )在杨⽒双缝实验中,欲使⼲涉条纹间距变宽,应怎样调整:(1)增加双缝的间距;(2)增加⼊射光的波长;(3)减⼩双缝⾄光屏之间的距离;(4)⼲涉级数K 愈⼤,则条纹愈宽。

λλdD x k x D d =?= 4.( 1 )在杨⽒双缝实验中,原来缝s 到达两缝s 1和s 2的距离是相等的,如图18-3所⽰,现将s 向下移动⼀微⼩距离,则屏幕上⼲涉条纹将如何变化:(1)⼲涉条纹向上平移;(2)⼲涉条纹向下平移;(3)⼲涉条纹不移动。

5.( 1 )在双缝装置中,⽤⼀折射率为n 的薄云母⽚覆盖其中⼀条缝,这时屏幕上的第7级明条纹恰好移到屏幕中央原零级明条纹的位置,如果⼊射光的波长为λ,则这云母⽚的厚度为:(1)17-n λ(2)λ7(3)n λ7 (4)λ71-n1770-==-+?+=-++n e BO EO DE n CD BO EO DE CD λλ所以:有云母⽚:⽆云母⽚:6.在杨⽒双缝实验中,双缝间距为0.5毫⽶,双缝⾄屏的距离为1.0⽶,在屏上可见到两组⼲涉条纹,⼀组由波长为480nm 的光产⽣,另⼀组由波长为600nm 的光产⽣,问在屏上两组⼲涉条纹在第3级⼲涉明条纹的距离是多少?mm x mmx k nm mm x k nm k x Dd 72.060.3'3,600'88.23,480=?======时,当=时,当λλλ7.杨⽒双缝实验中,若两缝间距为0.2mm ,屏与缝间距为100cm 。

长春工业大学物理答案光导体电介质c5-7

长春工业大学物理答案光导体电介质c5-7

练习五 静电场中导体和电介质(一)1. 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d 。

今使A 板带电量为A q ,B 板带电量为B q ,且A q >B q ,则A 板内侧带电量为 ;两板间电势差AB U = 。

2.把一块两表面电荷面密之和为σ0的无限大导体平板置于均匀电场E 0中,E 0与板面垂直,如图5-2所示,则导体左侧表面电荷面密度σ1= ,在左侧表面外附近的场强E= 。

3.(2)一金属球壳的内外半径分别为R 1和R 2,其中心放一点电荷q ,则金属球壳的电势为:(1)104R qπε (2)204R q πε(3)218πεR q R q + (4))(4210R R q+πε4.(1)带电体外套一个导体球壳,则下列说法中正确的是:(1)壳外电场不影响壳内电场,但壳内电场要影响壳外电场;(2)壳内电场不影响壳外电场,但壳外电场要影响壳内电场;(3)壳内、外电场互不影响; (4)壳内、外电场仍互相影响。

5(4)在静电场中,下列说法中哪一个是正确的: (1)带正电荷的导体,其电势一定是正值; (2)等势面上各点的场强一定相等; (3)场强为零处,电势也一定为零;(4)场强相等处,电势梯度矢量一定相等。

6.(4)在静电场中,下面说法正确的是: (1) 带正电荷的导体,其电势一定是正值; (2) 等势面上各点的场强一定相等; (3) 在导体表面附近处的场强,是由该表面上的电荷产生的,与空间其它地方的电荷无关; (4) 一个孤立的带电导体,表面的曲率半径愈大处,电荷密度愈小。

7.半径为R 的导体球外面,同心地罩一内外半径分别为R 1和R 2的导体球壳,若球和球壳分别带有电荷q 和Q ,试求:(1)球和球壳的电势,以及它们的电势差。

(2)若将球壳接地,求它们的电势差。

(3)若用导线将球和球壳连接,其电势差又多少?)11(41444r 4444)1(1020*********R R V V U R qQ R q Q r qqV R q Q R q R qV -=-=+=++-+++-+πεπεπεπεπεπεπεπε球壳球球壳球==UR R V V U r qq V R qR q V =-=-==-+-+)11(41'''04r 4'44')2(1000100πεπεπεπεπε球壳球球壳球==(3)0=U (等势体)8.三块平行金属板A 、B 、C ,面积均为200cm 2,A 、B 间距4cm ,A 、C 间距2cm ,B 、C 两板都接地,如图5-8所示,A 板带正电荷3⨯10-7c ,(不计边缘效应)求:(1)B 、C 板上的感应电荷。

长春工业大学物理答案光光学16

长春工业大学物理答案光光学16

长春工业大学物理答案光光学16练习十六光的干涉1.如图16-1所示,在杨氏双缝实验中,入射光波长为600nm,屏幕上的P点为第3级明纹位置。

则双缝到达P点的波程差为1800nm。

在P点叠加的两光振动的相位差为6π 。

dx?k?为明纹解:D2.如图16-2所示,在杨氏双缝实验中,把两缝中的一条狭缝s2遮住,并在两缝的垂直平分线上放一块平面反射镜。

则屏幕上的干涉将如何变化?镜下方无条纹,镜上方明暗条纹分布状况与上一次恰好相反。

3.在杨氏双缝实验中,欲使干涉条纹间距变宽,应怎样调整:增加双缝的间距;增加入射光的波长;减小双缝至光屏之间的距离;干涉级数K愈大,则条纹愈宽。

dx?k?D?x?D? d4.在杨氏双缝实验中,原来缝s到达两缝s1和s2的距离是相等的,如图18-3所示,现将s向下移动一微小距离,则屏幕上干涉条纹将如何变化:干涉条纹向上平移;干涉条纹向下平移;干涉条纹不移动。

1 5.在双缝装置中,用一折射率为n的薄云母片覆盖其中一条缝,这时屏幕上的第7级明条纹恰好移到屏幕中央原零级明条纹的位置,如果入射光的波长为?,则这云母片的厚度为:7?7?n?1? 7? n?1n7 无云母片:CD?DE?EO?BO?0有云母片:CD?n?DE?EO?BO?7? 所以:e?7?n?1 6.在杨氏双缝实验中,双缝间距为毫米,双缝至屏的距离为米,在屏上可见到两组干涉条纹,一组波长为480nm的光产生,另一组波长为600nm的光产生,问在屏上两组干涉条纹在第3级干涉明条纹的距离是多少?dx?k?D当??480nm,k?3时,x=当?’?600nm,k?3时,x’=?x? 7.杨氏双缝实验中,若两缝间距为,屏与缝间距为100cm。

从第一明纹到同侧第四明纹之间的距离为,求单色光的波长;若入射光的波长为600nm,求相邻两明纹之间的距离。

d解:x?k?Dd(x4?x1)?3?????10?7mDD(2)?x????10?3m? 2 练习十七光的干涉1.空气中有一透明薄膜,其折射率为n,用波长为?的平行单色光垂直照射该薄膜,欲使反射光得到加强,薄膜的最小厚度应为?/4n,为使透射光得到加强,薄膜的最小厚度应为?/2n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春工业大学物理答案
光静电场c
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
练习一 静电场(一)
1.如图1-1所示,细绳悬挂一质量为m
的点电荷-q ,无外电场时,-q 静止于A
点,加一水平外电场时,-q 静止于B
点,则外电场的方向为水平向左,外电
场在B 点的场强大小为q
mg tan 2.如图1-2所示,在相距为a 的两点电
荷-q 和+4q 产生的电场中,场强大小为
零的坐标x= 2a 。

3.如图1-3所示,A 、B 为真空中两块平
行无限大带电平面,已知两平面间的电
场强度大小为0E ,两平面外侧电场强度
大小都是0E /3,则A 、B 两平面上的电
荷面密度分别为 和 。

4.(3)一点电荷q 在电场中某点受到
的电场力,f 很大,则该点场强E 的大
小:
(1)一定很大;(2)一定很小;
f/。

(3)其大小决定于比值q
5.(2)有一带正电金属球。

在附近某点的场强为E,若在该点处放一带正电的点电荷q测得所受电场力为f,则:(1)E=f/q (2)E>f/q (3)E<f/q
6.两个电量都是+q的点电荷,相距2a 连线中点为o,求连线中垂线上和。

相距为r的P点的场强为E,r为多少时P 点的场强最大
解:经过分析,E x=0
7.长L=15cm直线AB上,均匀分布电荷线密度=10-9c/m的正电荷,求导线的延长线上与导线B端相距d=5.0cm的P点的场强。

练习二静电场(二)
1.场强为E 的均匀电场与半径为R 的半
球面的轴线平行,则通过半球面的电通
量e =
E R 02επ 2.边长为L 的正方形盒的表面分别平行
于坐标面XY 、YZ 、ZX ,设均匀电场
j i E 65+=,则通过各面电场强度通量
的绝对值
3.如用高斯定理计算:(1)无限长均
匀带电直线外一点P 的场强(图2-3
(a ));(2)两均匀带电同心球面之
间任一点P 的场强(图2-3(b )),就
必须选择高斯面。

请在图中画出相应的
高斯面。

4.(4)如图2-4所示,闭合曲面S 内
有一电荷q ,P 为S 面上任一点,S 面外
另有一点电荷q ,设通过S 面的电通量
为,P 点的场强为E p ,则当q 从A 点移
到B 点时:
(1)改变,E p 不变; (2)、E p 都
不变;
(3)、E p 都要改变; (4)不
变,E p 改变。

5.(4)在边长为a 的正立方体中心有
一个电量为q 的点电荷,则通过该立方
体任一面的电场强度通量为:
(1) q /0 ; (2) q /20 ;
(3) q /40 ; (4) q /60。

6.两个无限长同轴圆柱面,半径分别为
R 1、R 2,R 1>R 2,带有等量异种电荷,每
单位长度的电量为,试分别求出离轴线
为r 处的电场强度:
(1)r <R 2; (2)r >R 1和R 2<r <R 1 。

7.设电量为Q 均分布在半径为R 的半圆
周上,(如图2-7),求圆心处的电场
强度E 。

解:经过分析,0 y E
练习三 静电场(三)
1.如图所示,a 点有点电荷q 1,b 点有
点电荷-q 2,ab 相距为R 0。

则a 、b 连线
中点的电势U =0
0212R q q πε-,此系统的电势能W =002
14R q q πε-
2.如图3-2所示半径均为R 的两个球体相交,球心距离o 1o 2=d ,不重叠部分均
带电,电荷密度左侧为+,右侧为-。

则距离o 2为r 处P 点电势
U p =
r
d r d R r r d R )(3)11(43/40303+=-+ερπεπ 3.(1)当负电荷在电场中沿着电力线方向运动时,其电势能将:
(1)增加; (2)不变;
(3)减少。

* 电场力作负功,电势能增加
4.(4)电荷分布在有限空间内,则任意两点P1、P2之间的电势差取决于(1)从P1移到P2的试探电荷电量的大小;
(2)P1和P2处电场强度的大小;(3)试探电荷由P1移到P2的路径;(4)由P1移到P2电场力对单位正电荷所作的功。

5.(4)关于静电场中某点电势值的正负,下列说法中正确的是:
1)电势值的正负取决于置于该点的试验电荷的正负;
2)电势值的正负取决于电场力对试验电荷作功的正负
3)电势值的正负取决于产生电场的电荷的正负;
4)电势值的正负取决于电势零点的选取。

6.电量q 均匀地分布在长为L 的细棒上,如图3-5所示,求:
(1)棒的延长线上距右端为r 的P 点电势。

(2)把电量q 0的点电荷从P 移至棒的
延长线上离右端3r 的Q 点时,电场力作功多少电场能的增量是多少
7. 如图所示,点电荷q 的电场中,取半径为R 的圆形平面。

设点电荷q 在垂直于平面并通过圆心O 的轴线上A 点处,A 点与圆心的距离为d 。

试计算通
过此平面的E 通量。

练习四 静电场(四)
1.一无限长均匀带电直导线沿Z 轴放置,线外某区域的电势表达式为
)ln(22y x A U +=式中A 为常量。

则该区域内场强的三个分量
222y
x Ax E x +-=;222y x Ay E y +-=;0=z E 。

2.空间某区域的三个等势面如图4-2所
示,已知电势V1>V2>V3,试在图中标
出,A、B两点电场强度的方向,设两点
场强大小分别为E A和E B,则
E A > E B(填< = >)。

3.(3)设无穷远处电势为零,则半径
为R,均匀带电球体产生电场的电势分
布规律为:(图4-3中U0和b皆为常
量)。

4.(2)电势沿x轴的变化如图4-4所
示,则在区间(-6,-4)内和区间(-
2,4)内的场强E x分别为:
(1)6v/m, -3v/m ; (2)-6v/m, 3v/m ;
(3)6v/m, 3v/m ; (4)-6v/m, -3v/m 。

5.一无限大平面,开有一半径为R的圆
孔,设平面的其余部分均匀带电,电荷
面密度为。

求圆孔轴线上离孔中心为x 处的电场强度。

6.如图4-6所示,无限长的均匀带电导线与长为L的均匀带电导线共面,相互垂直放置,a端离无限长直导线距离为R,电荷线密度均为,求它们之间相互作用力的大小和方向。

相关文档
最新文档