大学物理静电场作业题.
大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
3大学物理习题-静电场

3大学物理习题-静电场静电场一、选择题1.一带电体可作为点电荷处理的条件是(A)电荷必须呈球形分布;(B)带电体的线度很小;(C)带电体的线度与其它有关长度相比可忽略不计;(D)电量很小。
2.真空中有两个点电荷M、N,相互间作用力为F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变;(B)大小改变,方向不变;(C)大小和方向都不变;(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;F(C)场强方向可由E定义给出,其中q为试验电荷的电量,q可正、可负,F为试验q电荷所受的电场力;(D)以上说法都不正确。
4.一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A)F0,M0;(B)F0,M0;(C)F0,M0;(D)F0,M0。
5.一电场强度为E的均匀电场,E的方向与某轴正向平行,如图所示,则通过图中一半径为R的半球面的电场强度通量为(A)R2E;(B)O第题图1R2E;(C)2R2E;(D)0。
2E某6.如图所示,一个带电量为q的点电荷位于立方体的度通量等于:(A)A角上,则通过侧面abcd的电场强12060A·qb图2404807.下列说法正确的是c(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
8.电场中高斯面上各点的电场强度是由:(A)分布在高斯面上的电荷决定的;(B)分布在高斯面外的电荷决定的;(C)空间所有的电荷决定的;(D)高斯面内电荷代数和决定的。
9.根据高斯定理的数学表达式EdSSq/0可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零;(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零;(C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零;(D)闭合面上各点场强均为零时,闭合面内一定处处无电荷;10.已知一高斯面所包围的体积内电量代数和qi0,则可肯定:(A)高斯面上各点场强均为零;(B)穿过高斯面上每一面元的电通量均为零;(C)穿过整个高斯面的电通量为零;(D)以上说法都不对。
《大学物理》静电场习题

1
a r
2
例2 有一瓦楞状直长均匀带电薄板,面电荷 密度为σ,瓦楞的圆半径为 a 试求:轴线中部一 点P 处的电场强度。
a
P. L
解:
y
q dq o
x dqσ L
a
q dE
dl
dq L s dS s Ldl
s dl
E dE
=ρd 1S
0
E2
ε E2
=
ρd 1
20
1.0×10-4×0.3×10-2 = 2×8.85×10-12
=1.69×104 V/m
E3 S
d
d
ρ
(3)
E3
ρd S
ε E3S + E3S = 0
ε E3
=
ρd
20
1.0×10-4×0.5×10-2 = 2×8.85×10-12
=2.83×104 V/m
dx d
7-19 一层厚度为d =0.5cm的无限大平板,均 匀带电,电荷体密度为ρ =1.0×10-4 C/m3 。求: (1)这薄层中央的电场强度; (2)薄层内与其表面相距0.1cm处的电场强
度; (3)薄层外的电场强度。
ρd
解:(1) E1=0
E2
S d1ρ d
ε (2)
E2S
+ E2S
cosq
π
0
=πσε0
=-2.4V/m
例1 设气体放电形成的等离子体在圆柱内的 电荷分布可用下式表示
r
1
0
r a
2
2
式中r是到圆柱轴线的距离, ρ0是轴线处的电 荷体密度,a 是常量。试计算其场强分布。
大学物理:静电场练习题

由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向
大学物理第05章_静电场习题

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( ) (A )电荷必须呈球形分布。
(B )带电体的线度很小。
(C )带电体的线度与其它有关长度相比可忽略不计。
(D )电量很小。
5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( )(A) (B) (C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。
5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( ) (A) 如果高斯面内无电荷,则高斯面上E处处为零; (B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
5.7 下面说法正确的是 [ ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ ] (A )高斯面上各点场强均为零。
大学物理静电场练习题及答案

练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。
设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。
7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。
设平衡时两线间夹角2θ很小。
(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。
(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。
小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
3大学物理习题_静电场

。
12.两个同心球面的半径分别为 R1 和 R2 ,各自带有电荷 Q1 和 Q2 ,则两球面的电势差
为
。
13.如图,在带电量为+2q 的点电荷电场中,取图中 P 点处为电势零点,则 M 点的电势为_
__________。
14.如图所示电量为 q 的试验电荷, 在电量为 Q
R
·Q d
·a q
3 大学物理习题_静电场
(A)大小不变,方向改变;
(B)大小改变,方向不变;
(C)大小和方向都不变;
(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的?
(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;
(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;
(C)场强方向可由
E
F
定义给出,其中
量等于:
q
(A) ;
6 0
(B) q ; 12 0
a
d
A·q
q
(C) ;
24 0
q
(D) 。
48 0
b
c
图
7.下列说法正确的是
(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;
(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;
(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;
意路径移动到b 点,外力所作的功__________;电场力所作的功____________。
16.平行板电容器的电容随两极板距离的增大而___________(填增大或减小)。
17.平行板电容器两极板间的距离为 d ,两极板的面积均为 S ,极板间为真空,则该平行板
大学物理II第10章静电场 作业题

10.1 四个点电荷到坐标原点的距离均为d ,如题10.1图所示,求点O 的电场强度的大小和方向 。
题图10.1解:由图所示x 轴上两点电荷在O 点产生场强为i d q i d q i d q i E i E E q q2020*********πεπεπε=+=+=-y 轴上两点电荷在点O 产生场强为j dq j d q j d q j E j E E q q2020*********πεπεπε-=--=+=- 所以,点O 处总场强为j dq i d q E E E O2020214343πεπε-=+= 大小为202221423dq E E E O πε=+=,方向与x 轴正向成045-角。
10.4 正方形的边长为a ,四个顶点都放有电荷,求如题10.4图所示的4种情况下,其中心处的电场强度。
q qq q (a ) (b ) (c ) (d )题图10.4解:在四种情况下,均以中心O 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立坐标系,则有(a )根据对称性,四个顶点处的电荷在中心处产生的场强两两相互抵消。
所以0=a E(b ) 根据对称性,电荷在中心处产生的场强在x 轴上抵消,只有y 轴上的分量,所以[]j aq j a a q j E E qy b20220245cos )2/()2/(444πεπε-=+-=-= (c ) 根据对称性,对角线上的电荷在中心处的场强可以相互抵消,所以0=c E(d ) 根据对称性,电荷在中心处产生的场强在y 轴上抵消,只有x 轴上的分量,所以[]i aq i a a q i E E qx d20220245sin )2/()2/(444πεπε=+== 10.5 一半径为R 的半圆细环上均匀地分布电荷+Q ,求环心处的电场强度。
题图10.5解:以环心O 为原心,取如图所示的坐标轴。
在环上取一线元dl ,其所带电量为RQdldq π=,它在环心O 处的电场强度E d 在y 轴上的分量为θππεsin 14120R R Qdl dE y =由于环对y 轴对称,电场强度在x 轴上的分量为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章静电场
习题5-9 若电荷均匀地分布在长为L的细棒上,求证:(1)在棒的延长线,且离棒中心为r处的电场强度为
(2)在棒的垂直平分线上,离棒为r处的电场强度为
若棒为无限长(即L→),试将结果与无限长均匀带电直线的电场强度相比较。
证明:(1)
延长线上一点P的电场强度,故由几何关系可得
电场强度方向:沿x轴。
(2)
若点P在棒的垂直平分线上,如图所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此点P的电场强度E方向沿y轴,大小为利用几何关系,,则
当L→时,若棒单位长度所带电荷为常量,则P点电场强度
其结果与无限长带电直线周围的电场强度分布相同。
习题5-10 一半径为R的半球壳,均匀地带有电荷,电荷面密度为,求球心处电场强度的大小。
解:将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为
(圆环电场强度)
由于平行细圆环在点O激发的电场强度方向相同,利用几何关系,,,统一积分变量,电场强度大小为
积分得
习题5-12 两条无限长平行直导线相距为r0,均匀带有等量异号电荷,电荷线密度为。
(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x);(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。
解:(1)设点P在导线构成的平面上,E+E-分别表示正负电导线在P点的
电场强度,则有
(2)设F+,F-分别表示正负带电导线单位长度所受的电场力,则有
显然有,相互作用力大小相等,方向相反,两导线相互吸引。
习题5-15 边长为a的立方体如图所示,其表面分别平行于Oxy、Oyz和Ozx 平面,立方体的一个顶点为坐标原点。
现将立方体置于电场强度E=
(E1+kx)i+E2j (k,E1,E2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量。
解:如图所示,由题意E与Oxy面平行,所以任何相对Oxy面平行的立方体表面,电场强度的通量为零,即。
而
考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布相同,故有
同理
因此,整个立方体表面的电场强度通量
习题5-18 一无限大均匀带电薄平板,电荷面密度为,在平板中部有一半径为r的小圆孔。
求圆孔中心轴线上与平板相距为x的一点P的电场强度。
分析:本题的电场强度分布虽然不具备对称性,但可以利用具有对称性的无限大带电平面和带圆盘的电场叠加,求出电场的分布,要回灵活应用。
若把小圆孔看做由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度)的小圆盘。
这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和。
解:(由5-4例4可知,)在无限大带点平面附近
为沿平面外法线的单位矢量;圆盘激发的电场
它们的合电场强度为
习题5-20 一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1,球壳外同心罩一个半径为R3的均匀带电球面,球面带电荷为Q2。
球电场分
布。
电场强度是否为离球心距离r的连续函数?试分析。
解:取半径为r的同心球面为高斯面,由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等。
,该高斯面内无电荷,,故
,高斯面内电荷,故
,高斯面内电荷为Q,故
,高斯面内电荷为故
电场强度方向沿矢径方向,各区域的电场强度分布曲线如图(b)所示。
在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴的带点球面两侧,电场强度的跃变量
习题5-21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R1和R2(R2>R1),单位长度上的电荷为。
求离轴线为r处的电场强度:(1)r<R1(2)R1<r<R2,(3)r>R2
解:做同轴圆柱面为高斯面,高斯面上下底面电场强度通量为零,只有侧面有电场强度通量,根据高斯定理
习题5-22 如图所示,有三个点电荷Q1、Q2、Q3沿一条直线等间距分布,且Q1=Q3=Q.已知其中任一点电荷所受合力均为零,求在固定Q1、Q3的情况下,将Q2从点O移到无穷远处外力所做的功。
解:
方法1:
由题意Q1所受合力为零
解得
由点电荷电场的叠加,Q1、Q3激发的电场在y轴上任意一点的电场强度为
将Q2从点O沿y轴移到无穷远处(与沿任意路径做功相同),外力所做的功为
方法2:
与方法1相同,任一点电荷所受合力均为零时,并由电势的叠加得、在点O的电势
将Q2从点O移到无穷远处(与沿任意路径做功相同),外力所做的功为
习题5-23 已知均匀带电长直线附近的电场强度近似为,为电荷线密度。
(1)求在r=r1和r=r2两点间的电势差;(2)在点电荷的电场中,我们曾取r→处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明。
解(1)由于电场力做功与路径无关,若沿径向积分,则有
(2)不能。
电场强度只适用于无限长的均匀带电直线,此时电荷分布在无限空间,处的电势应与直线上的电势相等。
习题5-26 电荷面密度分别为+和-的两块“无限大”均匀带电平行平板,如图放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x变化的关系曲线。
由“无限大”均匀带电平板的电场强度,叠加求得电场强度的分布
电势等于移动单位正电荷到零电势点电场力所作的功
习题5-29 一圆盘半径R=3.00×10-2m. 圆盘均匀带电,电荷面密度=2.00×10-5Cm-2.(1)求轴线上的电势分布;(2)根据电场强度与电势梯度的关系求电场分布;(3)计算离盘心30.0 cm处的电势和电场强度。
解:(1)带电圆环激发的电势
由于电势叠加,轴线上任一点P的电势为
(1)(2)轴线上任一点电场强度为
(2)电场强度方向沿x轴方向。
(3)将场点至盘心的距离x=30.0cm分别代入式(1)和式(2),得
V
E=5607 V/m。