不等式(组)的字母取值范围的确定方法 -作业

合集下载

求一元一次不等式(组)字母取值范围的常用方法

求一元一次不等式(组)字母取值范围的常用方法

求一元一次不等式(组)字母取值范围的常用方法作者:颜小兵来源:《初中生世界·七年级》2015年第06期求一元一次不等式(组)中字母的取值范围,是近年来中考的一个热点,也是考查同学们掌握及灵活运用所学知识的综合体现,在中考考场中频频登场. 这类试题技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,为了更加快捷、准确地解答这类试题,下面介绍几种常用解法,以供参考.一、紧扣题意,直接求解例1 若不等式组x>5,xA. mB. m>5C. m≤5D. m≥5【解析】∵不等式组无解,∴x≤5即可,题目中x进一步发现,即使m=5,不等式组也无解,所以,当m≤5时,原不等式组无解,选C.【点评】由于求不等式组解集的公共部分时,不等式组无解,此题直接观察发现字母的取值范围,特别要注意的是容易选择A答案,忽视等于的情况.二、巧借数轴,分析求解例2 已知关于x的不等式组x-a≥0,3-2x>-1.的整数解共有5个,则a的取值范围是______.【解析】由原不等式组可得x≥a,x【点评】借助于数轴求不等式组解集的公共部分的整数解,是常用的方法,很直观地根据题目给出的整数解的个数,求出字母的取值范围.三、根据法则,比较求解例3 不等式组x+9x>m+1.的解集是x>2,则m的取值范围是().A. m≤2B. m≥2C. m≤1D. m>1【解析】已知的不等式组中含有字母m,可以先进行化简,求出不等式组的解集,然后再与已知解集比较,求出m的取值范围. 解不等式组,得x>2,x>m+1.因为不等式的解集为x>2,其解集由2与m+1的大小决定,通过比较,根据“同大取大”法则可知,m+1≤2,解得m≤1. 故本题选C.【点评】当一元一次不等式组化简后未知数中含有字母时,可以通过比较已知解集列不等式或列方程来确定字母的取值范围或值.四、前后对比,分析求解例4 已知关于x的不等式(1-a)x>2的解集为xA. a>0B. a>1C. aD. a【解析】因为不等式(1-a)x>2的解集为x2的解集为x1,所以选B.【点评】当一元一次不等式的解集给出时,可以通过对比不等式的性质和解集法则,求出有关字母的取值范围或值.五、逆向思维,巧妙求解例5 不等式组x-a>-1,x-a【解析】先化简不等式组得x>a-1,x7的范围内,从而有a+2≤3或a-1≥7,所以解得a≤1或a≥8.【点评】对于不等式解集在某一个范围内,很难入手解决,对于这些特殊问题,从结论往回推,倒过来思考,从求解回到已知条件,反过去想会使问题简单化.(作者单位:江苏省泰州市姜堰区实验初级中学)。

例析不等式(组)中字母系数的确定

例析不等式(组)中字母系数的确定

例析不等式(组)中字母系数的确定一、单项不等式中字母系数的确定:1. 当未明确给出字母的系数时,可视为1。

例如:x > 3 等价于 1x > 32. 当字母与数字连续相乘时,字母系数为其前方系数与后方系数的乘积。

例如:3x > 6 等价于 3 × 1x > 63. 当字母与括号相乘时,字母系数为与字母相邻的数字。

例如:2(x + 1) > 4 等价于 2x + 2 > 44. 当字母被除数或分母时,字母系数为除数或分母中与字母相邻的数字。

例如:4/x > 2 等价于 4 > 2x 或 2x < 45. 当字母被乘数或因子时,字母系数为乘数或因子中与字母相邻的数字。

例如:2x + 3y > 6 等价于 2x > 6 - 3y 或 x > 3 - (3/2)y二、多项式不等式中字母系数的确定:1. 将不等式化简为标准形式,然后使用单项不等式中的方法确定系数。

例如:2(x + 1) - 3(x - 2) > 5化简成:-x + 8 > 0则 x 的系数为 -1。

2. 使用因式分解将多项式不等式化简为单项不等式,然后使用单项不等式中的方法确定系数。

例如:(x + 2)(x - 3) > 0化简成:x < -2 或 x > 3则 x 的系数分别为 -1 和 1。

三、线性不等式组中字母系数的确定:对于线性不等式组,需要每个不等式都进行系数的确定。

例如:{x + 2y > 32x - y < 4}第一个不等式中,x 的系数为 1, y 的系数为 2。

第二个不等式中,x 的系数为 2, y 的系数为 -1。

总结:确定不等式(组)中字母系数的关键是对其形式进行化简,然后逐项确定系数,注意区分不等式中字母的正负号。

掌握确定系数的方法,有助于快速解决不等式问题。

不等式(组)典型例题解析

不等式(组)典型例题解析

不等式(组)典型例题解析作者:杭静来源:《初中生世界·九年级》2014年第04期关于不等式(组)的知识在各地中考中都占有一定的比例,下面以2013年中考试题为例,对中考中的一些典型试题加以分析,归纳考点,分析得分点,希望对同学们有所帮助.例1 (2013·广东佛山,6分)已知两个语句:①式子2x-1的值在1(含1)与3(含3)之间;②式子2x-1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.【分析】本题涉及由具体问题抽象出一元一次不等式组.(1)注意分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”,明确两者之间的关系;(2)根据题意列出不等式组.解:(1)一样;(3分)(2)式子2x-1的值在1(含1)与3(含3)之间可得1≤2x-1≤3;(6分)或:式子2x-1的值不小于1且不大于3可得2x-1≥1,2x-1≤3.(6分)【点评】解决这类问题关键是正确理解题意,抓住题干中体现不等关系的词语,准确进行文字语言与符号语言的转化. 这类问题是中考中的基本题,只要理解正确,转化准确,即可得到满分.例2 (2013·四川巴中,6分)解不等式:- ≤1,并把解集表示在数轴上.【分析】本题考查一元一次不等式的解法及解集的数轴表示. 按照解一元一次不等式的步骤求解.解:去分母得:2(2x-1)-(9x+2)≤6,(1分)去括号得:4x-2-9x-2≤6,(2分)移项得:4x-9x≤6+2+2,(3分)合并同类项得:-5x≤10,(4分)把x的系数化为1得:x≥-2.(5分)这个不等式的解集可表示如下(如图1):【点评】解一元一次不等式的步骤与解一元一次方程的步骤基本相同,只是在不等式两边同乘(或除以)一个负数时,不等号要改变方向. 用数轴表示不等式的解集,要注意向右或向左、圆点或圆圈的确定,方法是:大于向右,小于向左;圆点包括该点,圆圈不包括该点.例3 (2013·贵州毕节,12分)解不等式组:2x+5≤3(x+2),①2x-把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】本题涉及解一元一次不等式组、在数轴上表示不等式组的解集以及求一元一次不等式组的整数解. 先分别计算出两个不等式的解集,再根据“大小小大中间找”确定不等式组的解集,最后找出解集范围内的非负整数即可.解:由①得:x≥-1,(2分)由②得:x∴不等式组的解集为:-1≤x这个不等式组的解集在数轴上表示如图2所示..(10分)不等式组的非负整数解为2、1、0.(12分)【点评】解不等式组就是先求出各个不等式的解集,再利用数轴找出其解集的公共部分. 不等式组的解集也可用口诀来确定:“大大取大,小小取小,大小小大中间找,大大小小是空集.” 求不等式(组)的特殊解,一般先求出不等式(组)的解集,再在解集中找出符合要求的特殊解.例4 (2013·江苏扬州,8分)已知关于x、y的方程组5x+2y=11a+18,2x-3y=12a-8的解满足x>0,y>0,求实数a的取值范围.【分析】本题综合考查二元一次方程组和一元一次不等式组的解法,解题的关键是先求出方程组的解并用含a的字母表示出来,再利用x>0和y>0构造不等式组,最后解不等式组求字母a的取值范围. 在解方程组时,可以用代入法或加减法,下面给出用加减法求解的完整过程,用代入法求解请你自己完成.解:解方程组5x+2y=11a+18①,2x-3y=12a-8 ②,①×3得,15x+6y=33a+54 ③,②×2得,4x-6y=24a-16 ④,③+④得,19x=57a+38,解得x=3a+2,(2分)把x=3a+2代入①得5(3a+2)+2y=11a+18,∴y=-2a+4,∴方程组的解是x=3a+2,y=-2a+4. (4分)∵x>0,y>0,∴3a+2>0,-2a+4>0,(6分)∴a的取值范围是-【点评】构造不等式组来确定字母的取值范围是最常用的方法之一. 解决这类问题的关键是正确求出方程组的解,不少考生因为无法理解方程组的解可以用含有a的代数式表示而无法解题.例5 (2013·江苏南通,8分)若关于x的不等式组+>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.【分析】本题考查一元一次不等式组的解法和不等式组解集的逆向应用. 应先分别求出各不等式的解集,得到不等式组解集,再由解集中恰有3个整数解得到关于a的不等式,最后得出a的取值范围.解:由不等式+>0,解得x>-,(2分)由不等式3x+5a+4>4(x+1)+3a,解得x所以不等式组的解集为-因为不等式组恰有三个整数解,所以其整数解为0,1,2,所以2所以1【点评】解决本题也可以借助数轴分析解集的情况,确定a的取值范围.例6 (2013·湖北孝感,10分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.【分析】本题综合考查了根的判别式和根与系数的关系,解题的关键是利用根的判别式、根与系数的关系和已知条件建立不等式,在解不等式时一定要注意数值的正负与不等号的变化关系.解:(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,(2分)∴4k2+4k+1-4k2-8k≥0,∴1-4k≥0,∴k≤. (4分)∴当k≤时,原方程有两个实数根. (5分)(2)假设存在实数k使得x1·x2-x12-x22≥0成立.∵x1、x2是原方程的两根,∴x1+x2=2k+1,x1·x2=k2+2k. (6分)由x1·x2-x12-x22≥0,3x1·x2-(x1+x2)2≥0,(7分)∴3(k2+2k)-(2k+1)2≥0,即-(k-1)2≥0,(8分)∴只有当k=1时,上式才能成立.(9分)又∵由(1)知k≤,∴不存在实数k使得x1·x2-x12-x22≥0成立. (10分)【点评】对于存在探究型问题,首先假设条件的存在,然后再通过证明推理及计算,探究自己所假设存在是否与已知条件或推理过程矛盾,若矛盾则假设不成立,否则假设成立. 运用根与系数的关系求某些代数式的值,关键是将所求的代数式恒等变形为用x1+x2和x1x2表示的代数式. 基本步骤:第一步:求出x1+x2和x1x2的值;第二步:将所求代数式用x1+x2和x1x2的代数式表示;第三步:将x1+x2和x1x2的值代入求值.例7 (2013·江苏无锡,8分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨. 若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?【分析】本题涉及用方程、不等式和一次函数的性质来解决实际问题,由“要提取A元素20千克”可以得到一个方程,由“废气排放不超过16吨”可以得到一个不等式,进而可以求出一种原料的取值范围,再求出购买这两种原料的费用的函数关系式,即可求出费用的最少值.解:(1)设购买甲、乙两种原料分别为x吨和y吨,则5%·x·1 000+8%·y·1 000=20,5%·x·1 000×1+8%·y·1 000×0.5≤16.(2分)即5x+8y=2,50x+40y≤16.∴y≥0.1. (4分)设购买甲、乙两种原料所需要的费用为W万元,则W=2.5x+6y=2.5×+6y=1+2y≥1.2,(6分)∴当y=0.1,x=0.24时,W最小=1.2. (7分)答:该厂购买这两种原料最少需要1.2万元. (8分)【点评】在联合运用方程、不等式和函数知识来解决实际问题时,要认真审题,找出表示题目全部含义的数量关系,然后根据不等式(组)确定自变量的范围,再根据题意建立函数模型,最后在自变量的取值范围内求函数最值.例8 (2013·湖南益阳,10分)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输. “益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.【分析】本题考查了二元一次方程组的应用以及不等式的综合应用,解题关键是根据已知条件,寻找到题目中的相等关系和不等关系,再建立方程或不等式模型来求解.(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”组成方程组求解;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式,求出整数解就可以得到所有的购买方案.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,由题意,得x+y=12,8x+10y=110.(2分)解得 x=5,y=7. (4分)答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆.(5分)(2)设载重量为8吨的卡车增加了z辆,由题意,得8(5+z)+10(7+6-z)>165. (7分)解得z∴6-z=6、5、4. (8分)∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. (10分)【点评】(1)建立方程或方程组模型,首先应找到题目中的等量关系,并用文字把等量关系写出来,再把文字用代数式表示,即可列出方程或方程组. (2)列不等式(组)解应用题的关键是根据题意找出题目中的不等关系,再根据相应的关系列出不等式(组). 要注意通常不等关系的给出总是以“至少”“没满”“少于”“不超过”“最大”等关键词语作为标志. 有时在解出不等式(组)之后,还要根据实际情况适当取舍,选出符合要求的答案.(作者单位:江苏省兴化市第一中学)。

一元一次不等式字母取值范围专题

一元一次不等式字母取值范围专题

方法总结
1、把方程中的未知数用含待定字母的代数式表示;
2、把两个代数式代入已知不等式,转化成含待定字母的 不等式;
3、解不等式求出范围。
类型三 已知不等式组的解的情况求字母的取值范围
•例3不等式组
x x
9 5x m1
1,
的解集是x>2,求m的取值范围.
a 练习3
若不等式组
x a 0 1 2x x 2
有解,则
的取值范围是( ).
解题步骤:
1、分别求出不等式组中两个不等式的解;
2.再 确定“<”还是“>”
3.最后确定”=“是否取到
注意:借助数轴分析第2步骤

类型四 已知不等式组的整数解个数求字母的取值范0, 3 2x 1
•练的习整4 数若解关共于有x的5个不,等求式a组的取 2值x x231范52 围xx . 3a,
x a>0 3 2x 1
的整数解共有5个,则a的取值范围是___。
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
含字母系数的一元一次不等式 (组)
类型一 已知不等式组的解集求字母的取值
例1 .若关于x的不等式组 2 x a 1
x
2b
3
解集为-1<x<1,则(a+1)(b-1)的值是__。
练习1
若不等式组
x x
m m
n n
,求不等式 mxn 的解.
的解是 3x5
解题步骤:
1、求出未知数x的取值范围形如 bxa
只有4个整数解,求a的取值范围.
解题步骤
1、求出未知数x的取值范围形如 bxa

巧用口诀法求不等式组中待定字母的值的范围

巧用口诀法求不等式组中待定字母的值的范围

巧用“口诀”法求不等式组中待定字母的值的范围一元一次不等式组是初中数学的一个重要内容,不过一元一次不等式组的解集的确定教材里只讲了用数轴来确定,这种方法对于不等式组中未出现待定字母时容易求解。

一旦不等式组中出现了待定字母,学生是感到束无手策的,本文举例说明如何用口诀法来求一元一次不等式组中待定字母的值。

一元一次不等式组解集是指不等式组中几个一元一次不等式解集的公共部分。

利用数轴来确定虽然直观,但也有不足之处,不过利用它我们能够得出下面“口诀”。

不等式组(a >b) 解集在数轴上的情况 不等式组的解集口诀 ① bx a x >> x >a 同大取大 ② bx a x << x <b 同小取小 ③ b x a x >< b <x <a 大小交叉中间找 ④ b x a x <> 无解(空集) 大小分离无处找例1:如果一元一次不等式组 ax x >>2的解集为2>x ,那么a 的取值范是( )。

A. 2>a B.2≥a C.2≤a D.2<a分析:此题中因为a 待定,所以利用数轴较为困难,但利用口诀法中的“同大取大”结合不等式的解集2>x ,易知b a b a b ab a2≤a ,故选C 。

例2:若不等式组 632≤++m x m x >有解,则m 的取值范围是 。

解:解不等式m x >2+得2-+m x >解不等式63≤+m x 得32m x -≤ 如果此时利用数轴则难以下手,但因为不等式组有解,结合口诀法中的“大小交叉中间找”,表明322m m --<,434<m ,3<m ,所以m 的取值范围是3<m 。

例3:如果不等式组 212++m x m x >>的解集为1->x ,那么m 的值是多少?分析:若212+≥+m m ,则1≥m ,又1->x ,所以结合口诀法中的“同大取大”,可得112-=+m ,解得m=-1,而m ≥1故舍去。

若2m+1<m+2,则m <1,又1->x ,所以利用口诀法中的“同大取大”得m+2=-1,解得m=-3,因m <1,所以符合条件。

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)七下数学与中考试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考.一、 根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。

则a 的范围是 .解:借助于数轴,如图1,可知: 1≤a<5并且 a+3≥5. 所以,2≤a<5 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .分析:由题意,可得原不等式组的解为8<x<2—4a ,又因为不等式组有四个整数解,所以8<x<2—4a 中包含了四个整数解9,10,11,12于是,有12<2—4a ≤13. 解之,得 114-≤a<52- .例4、已知不等式组⎩⎨⎧<+>-b x ax 122的整数解只有5、6。

求a 和b 的范围.解:解不等式组得⎪⎩⎪⎨⎧-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。

21-b 只能在6与7之间. ∴4≤2+a<5 6<21-b ≤7∴2≤a<3, 13<b ≤15.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )图1图2A .m>一lB .m>lC .m<一1D .m<1分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y =223m+<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=2163x +. 又a ≤4<b , 所以,312x -≤4<2163x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解例7、如果不等式组260x x m-≥⎧⎨≤⎩ 无解,则m 的取值范围是 .分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3.例8、不等式组⎩⎨⎧>≤<m x x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2解:借助图4,可以发现:要使原不等式组有解,表示m 的点不能在2的右边,也不能在2上,所以,m<2.故选(A ).例9、(2007年泰安市)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .解:由x-3(x-2)<2可得x>2,由24a x x +>可得x<12a. 因为不等式组有解,所以12a>2. 所以,4a >.31 2图4图3例3、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。

如何确定不等式组中字母的取值范围

如何确定不等式组中字母的取值范围

如何确定不等式(组)中字母的取值范围江苏海安紫石中学 黄本华 226600利用不等式(组)的解或解集情况,确定字母的取值范围是不等式中的难点。

我们只有根据不等式(组)和方程之间的联系,并借助于数轴,多角度、全方位的考虑字母系数所蕴含的相等或不等关系,并且不能遗漏极端情况,才能够准确地求到字母的取值或取值范围,并实现解题过程的全优化.一、已知不等式(组)的解集例1 (2007 天门) 关于x 的不等式12-<-a x 的解集如图所示,则a 的值是( )A 0B 3-C 2- D 1- 分析:由数轴可知,不等式的解集是1-<x ,不等式的一个极端状态即是方程,解集的极端状态即为方程的解.所以当1-=x 时,不等式左右两边一定相等. 解:由题意得:1)1(2-=--⨯a解得:1-=a ,故选D二、只知道不等式(组)有解或无解例2 若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是 分析:先求出不等式组的解集,即把解集用字母表示出来,再根据不等式组是有解或无解,在数轴上把①、②的解集表示出来,从而得到一个关于字母a 的不等式. 解:由①得:a x 4< 由②得:a x ->5所以 a a -≤54 得1≤a要特别注意:当1=a 时,不等式组也无解,所以此题在列不等式时,一定要考虑在极端位置时,即两点重合时,不等式组是有解还是无解,像这题,当a a -=54时,不等式组也无解,所以千万不要把等号丢了.同时,我们还要考虑到是空心圈还是实心点.总之在极端位置,一定要非常慎重.说明:此题若改为不等式组有解,则4a 就要画到a -5的右边,从而得到不等式a a 45<-,解得:1>a三、已知不等式(组)的几个特殊解例3 已知不等式组30080x a x a -≥⎧⎨-<⎩ 的整数解仅为1、2、3,求字母a 的取值范围。

分析:先求出不等式组的解集,即把解集用字母表示出来,再根据不等式组的整数解,在数轴上表示出这个不等式组的解集的可能区间,再列出关于字母a 的不等式组.在列不等式组的时候一定要认真考虑端点情况,慎重确定有无等号.解:由①得: 30a x ≥ 由②得:8a x < 在数轴上表示出这个不等式组的解集的可能区间①② ①②830所以⎪⎪⎩⎪⎪⎨⎧≤<≤<4831300a a 解得:3024≤<a 注意:要非常重视实心点和空心圈的情况,所以30a 可以等于1,但不能等于0;8a 可以等于4,但不能等于3,这一点在列不等式组的时候一定要小心.巩固练习:1、已知关于x 的不等式组 ⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)1)(1(++b a 的值等于2、若关于x 的不等式组⎩⎨⎧<<≤-ax x 211有解,则a 必须满足3、已知关于x 的不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是。

不等式(组)的字母取值范围的确定方法

不等式(组)的字母取值范围的确定方法

不等式(组)的字母取值范围的确定方法一、根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( )A .a<0B .a<一lC .a>lD .a>一l例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。

则a 的范围是 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .例4、已知不等式组⎩⎨⎧<+>-b x a x 122的整数解只有5、6。

求a 和b 的范围.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( ) A .m>一l B .m>l C .m<一1 D .m<1例6、已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.四、逆用不等式组解集求解例7、如果不等式组260x x m -≥⎧⎨≤⎩无解,则m 的取值范围是.例8、不等式组⎩⎨⎧>≤<mx x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2例9、若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 . 例10、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?图1 31 2图4图3练习:1. 已知关于x 的不等式2x )m 1(>-的解集是m12x -<,则m 的取值范围是( ) A. 0m >B. 1m >C. 0m <D. 1m < 2.)若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3.若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) A. 1a -≤B. 1a -≥C. 1a -<D. 1a ->4. 不等式组⎩⎨⎧<-->-2a x 1a x 的解集中每一x 值均不在7x 3≤≤范围内,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式(组)的字母取值范围的确定方法
一、根据不等式(组)的解集确定字母取值范围
例1、如果关于x 的不等式(a+1)x>2a+2。

的解集为x<2,则a 的取值范围是( )。

A.a<0
B.a<-1
C.a>1
D.a>-1 例2、已知不等式组153
x a x a <<⎧⎨<<+⎩的解集为a<x<5。

则a 的范围是__________.
二、根据不等式组的整数解情况确定字母的取值范围
例3、关于x 的不等式组23(3)1324
x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 . 例4、已知不等式组⎩⎨
⎧<+>-b x a x 122的整数解只有5、6。

求a 和b
三、根据含未知数的代数式的符号确定字母的取值范围
例5、已知方程组213(1)21(2)
x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )
A.m>-1
B.m>1
C.m<-1
D.m<1
例6、已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.
四、逆用不等式组解集求解
例7、如果不等式组260x x m
-≥⎧⎨≤⎩ 无解,则m 的取值范围是 . 例8、不等式组⎩
⎨⎧>≤<m x x 21有解,则( ). A.m<2 B.m ≥2 C.m<1 D.1≤m<2
例9、若关于x 的不等式组3(2)224
x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 . 不等式(组)中待定字母的取值范围
不等式(组)中字母取值范围确定问题,技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,下面简略介绍几种解法,以供参考。

图2
一. 把握整体,轻松求解
例1. 已知方程⎩⎨⎧-=++=+②
①m 1y 2x m 31y x 2满足0<-y x ,则m ( )
二. 利用已知,直接求解
例2. 如果关于x 的方程4x m 2x 2x 12-=-+的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8
x )3x (22x 2x 1的一个解,求m 的取值范围。

例3. 已知关于x 的不等式2x )m 1(>-的解集是m
12x -<
,则m 的取值范围是( ) 三. 对照解集,比较求解 例4. 若不等式组⎩
⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) 例5. 若不等式组⎩
⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) 四. 灵活转化,逆向求解
例6. 若不等式组⎩
⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) 例7. 不等式组⎩
⎨⎧<-->-2a x 1a x 的解集中每一x 值均不在7x 3≤≤范围内,求a 的取值范围。

五. 巧借数轴,分析求解
例8. 已知关于x 的不等式组⎩
⎨⎧->-≥-1x 230a x 的整数解共有5个,则a 的取值范围是________。

例9. 若关于x 的不等式组⎩
⎨⎧<>-+>-2x 5a x 0x a 3有解,则a 的取值范围是______ 例10.如果不等式组2223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
例11.如果一元一次不等式组3x x a >⎧⎨>⎩
的解集为3x >.则a 的取值范围是( ) A .3a > B .a ≥3 C .a ≤3 D .3a <
例12.若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a <
例13.关于x 的不等式组12x m x m >->+⎧⎨⎩
的解集是1x >-,则m = . 例14.已知关于x 的不等式组0521
x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____
例15.若不等式组530,0x x m -⎧⎨
-⎩≥≥有实数解,则实数m 的取值范围是( ) A.m ≤53 B.m <53 C.m >53 D.m ≥53 例16.若不等式(2k+1)x<2k+1的解集是x >1,则k 的范围是 。

例17、如果关于x 的不等式(2a-b)x +a -5b>0的解集为x<
107
,求关于x 的不等式ax>b 的解集。

例18、已知不等式4x-a ≤0,只有四个正整数解1,2,3,4,那么正数a 的取值范围是什么?
例19 若-5≤2a -3b ≤1,-2≤3a+b ≤7求(1)a ,b 的范围 ; (2)a -7b 的范围。

相关文档
最新文档