讲稿2(牛顿差分表及例题)

合集下载

牛顿法代数插值ndash差商表的求法

牛顿法代数插值ndash差商表的求法

牛顿法代数插值ndash 差商表的求法原文地址:牛顿法代数插值–差商表的求法作者:大关牛顿法代数插值–差商表的求法下面的求插商的方法并不是好的求插商的方式,因为他的效率并不是很高,不论是从空间效率还是时间效率,但是下面主要探讨的是一种将塔形的数据转换成一位数组的方式。

实际上求插商仅通过一个n个元素的一位数组就能解决,但本文强调的是一种思路,希望对大家有所借鉴。

牛顿插商公式:f[xi,xj]=(f(xj)– f(xi))/(xj– xi)f[xi,xj,xk]=(f[xj,xk]– f[xi,xj])/(xk– xi)….f[x0,x1,x2…,xn]=(f[x1,x2,…,xn]– f[x0,x1,…,xn-1])/(xn– x0)转换成均插表(或称差商表)形式如下:定义1:f[xi,xi+1,…xj]简记为f(i,j)其中i=0&&i=n&&j=0&&j=n&&i j;记f(xi)为f[xi,xi]即f(i,i)根据定义1可以推出:f[x0,x1]=f(0,1),f[x0,x1…xn]=f(0,n)….根据定义1:可以将插商表转换为如下形式。

根据上图,可以给出实际一维数组存储时的序列关系,如下图所示:此时f(0,0)位置是数组下标0,f(1,1)是数组下标为1….这样,我们从中找出相应的规律。

推论1:已知f(i,j),n为变量的数目,令k=j– i。

当k不等于0时,f(i,j)在数组中的下标通过计算得:Index=k*n–((k-1)*k)/2+i当k等于0时Index=i。

推论1很容易证明(实际就是一个等差数列求和问题)这里证明略。

推论2:n为变量的数目,则一维数组的长度可以计算得((1+n)*n)/2推论2可以通过等差数列求和得以证明。

证明略。

推论3:各阶插商就是f(0,k)k=1,2….n.推论3:根据插商的定义和定义1可以直接推出。

牛顿插值法例题求解

牛顿插值法例题求解

牛顿插值法例题求解【原创版】目录1.牛顿插值法简介2.牛顿插值法的基本原理3.牛顿插值法的例题解析4.牛顿插值法的优缺点5.总结正文一、牛顿插值法简介牛顿插值法是一种常用的数学插值方法,主要用于根据已知的函数值预测未知函数值。

牛顿插值法的基本原理是通过求解各阶差分来逼近未知函数值。

这种方法在增加插值节点时具有较好的计算稳定性,因此在实际应用中具有较高的价值。

二、牛顿插值法的基本原理牛顿插值法的基本思想是利用差商的概念,将函数在某区间中若干点的函数值用适当的特定函数表示。

通过求解各阶差分,可以得到这个特定函数的系数,从而得到插值多项式。

在给定的插值节点上,这个插值多项式可以取到已知的函数值,而在其他点上,则可以用这个多项式作为函数的近似值。

具体来说,牛顿插值法的求解过程分为以下几个步骤:1.设定插值多项式的形式,例如拉格朗日插值多项式、牛顿插值多项式等。

2.根据已知的函数值和插值节点,求解插值多项式的系数。

3.将求解得到的系数代入插值多项式,得到插值函数。

4.在给定的插值节点上,求解插值函数的值,作为预测的未知函数值。

三、牛顿插值法的例题解析假设我们有三个样本点:(1,-2),(2,-1),(3,2),我们希望通过这三个点求解一个二次函数。

我们可以用牛顿插值法来解决这个问题。

首先,我们设定插值多项式的形式为 y = ax^2 + bx + c。

然后,将三个样本点带入该方程,得到以下三个方程:- -2 = a(1)^2 + b(1) + c- -1 = a(2)^2 + b(2) + c- 2 = a(3)^2 + b(3) + c解这个方程组,我们可以得到 a = 1/2,b = 5/2,c = -3/2。

因此,我们得到插值函数为 y = 1/2x^2 + 5/2x - 3/2。

将x=1, 2, 3 代入该函数,我们可以得到 y=-2, -1, 2,与给定的样本点相符,说明我们的插值结果是正确的。

牛顿插值法例题求解

牛顿插值法例题求解

牛顿插值法例题求解牛顿插值法是一种用于多项式插值的方法。

它利用给定数据点的函数值和差商的计算来构造一个多项式函数,从而在给定数据点之间进行插值。

以下是一个求解多项式插值的牛顿插值法的例题:假设有以下给定数据点与函数值:x: 0 1 2 4 y: 1 4 11 36现在要使用牛顿插值法,通过这些数据点拟合出一个多项式函数来进行插值。

解题步骤如下:1.计算差商表:x0 f[x0] 0 1 f[x0,x1] 1 4 f[x0,x1,x2] 2 11 f[x0,x1,x2,x3] 4 36差商的计算可以使用以下公式:f[xi,xi+1,...,xi+k] = (f[xi+1,xi+2,...,xi+k] - f[xi,xi+1,...,xi+k-1]) / (xi+k - xi)2.使用差商表计算插值多项式:插值多项式P(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2)P(x)的展开式为:P(x) = 1 + 3(x-0) + 2(x-0)(x-1) + 2(x-0)(x-1)(x-2)3.使用得到的插值多项式进行插值计算。

例如,要计算在x=3 的位置的插值结果,将x 替换为3,计算P(3):P(3) = 1 + 3(3-0) + 2(3-0)(3-1) + 2(3-0)(3-1)(3-2) = 1 + 9 + 12 + 6 = 28因此,使用牛顿插值法,给定数据点(0,1), (1,4), (2,11), (4,36),在 x=3 的位置的插值结果为 28。

注意,此例仅为示例,实际问题中,使用牛顿插值法时可能需要更多的数据点和计算过程。

在实际应用中,还需要考虑插值误差、阶数选择以及数据点的分布等因素。

数值分析2-3(牛顿插值法)

数值分析2-3(牛顿插值法)

二阶差商
f [ xi , x j , xk ]
一般的k阶差商定义为
f [ x0 , x1 ,..., x k ] f [ x0 ,..., x k 2 , x k ] f [ x0 , x1 ,..., x k 1 ] x k x k 1
特别地,f(x)关于一个点xi的零阶 差商定义为函数值本身,即
§3
差 商 与 牛 顿 插 值
一、差商及其性质 二、差商的计算
三、牛顿插值公式 四、牛顿插值法举例
一、差商及其性质
1. 差商的定义 函数关于 xi, xj 一阶差商
f [ xi , x j ] fห้องสมุดไป่ตู้( x j ) f ( xi ) x j xi
f [ x j , xk ] f [ xi , x j ] xk xi
∶ ∶ ∶
f[x0,x1,x2] f[x1,x2,x3]
∶ ∶ ∶
f[x0,x1,x2,x3]
∶ ∶ ∶
例 已知函数y= f (x)的观测数据如下, 试构造差商表,并求 f [2,4,5,6]的值
x 0 2 f(x) 1 5
4 5 6 9 -4 13
解 构造差商表如下
xi f(xi) 一阶 二阶 三阶 0 1 2 5 2 4 9 2 0 5 -4 -13 -5 -1 6 13 17 15 5 四阶
4 3 2
用二次插值求f (3)时,取
x0=2, x1=4, x2=5, 得 f ( 3) f ( 2) f [2,4]( 3 2)
f [2,4,5]( 3 2)( 3 4) 7 5( 3 2)( 3 4) 12 思考:若本题只给出前三个点,结果 如何?请你总结牛顿插值法何时停止?

数值分析2-3(牛顿插值法)差商和与牛顿插值

数值分析2-3(牛顿插值法)差商和与牛顿插值

确定插值多项式的次数
根据已知数据点的数量确定插值多项式的最高次 数。
计算插值多项式
利用差商表,通过拉格朗日插值公式计算插值多 项式。
3
进行插值
将需要插值的x值代入插值多项式中,得到对应 的y值。
05
牛顿插值法的优缺点分析
优点
计算简单
局部性质好
相比于其他多项式插值方法,牛顿插 值法的计算过程相对简单,不需要求 解高阶方程,降低了计算的复杂度。
数值分析2-3:牛顿 插值法、差商和
目录
• 引言 • 牛顿插值法的基本概念 • 差商的计算方法 • 牛顿插值法的实现步骤 • 牛顿插值法的优缺点分析 • 实际应用案例 • 总结与展望
01
引言
主题简介
数值分析是数学的一个重要分支,主 要研究如何用数值方法解决各种数学 问题。
本章节将介绍牛顿插值法、差商和的 概念及其应用。
03
差商的计算方法
差商的递推公式
差商的递推公式
$f[x_0, x_1, ldots, x_n] = frac{f[x_1, ldots, x_n] - f[x_0, x_1, ldots, x_{n-1}]}{x_n - x_0}$
应用
通过递推公式,我们可以计算任意点之间的差商,从而得到插值多项式的导数。
在数据点附近,牛顿插值具有较好的 局部性质,能够提供较为准确的插值 结果。
适用性强
牛顿插值法适用于各种数据分布情况, 无论是线性还是非线性数据,都能得 到较好的插值结果。
缺点
全局误差较大
由于牛顿插值多项式的构造方式, 其全局误差通常较大,尤其是在 数据点较少的情况下。
对数据点敏感
如果数据点发生微小的变动,牛 顿插值多项式可能会发生较大的 变化,导致插值结果不稳定。

牛顿均差差值

牛顿均差差值
n+ f ( n+1) (ξ x ) f [ x , x 0 , ... , x n ]ω n +1 ( x ) = ω n +1 ( x ) ( n + 1) !
f ( n ) (ξ ) f [ x 0 , ... , x n ] = , ξ ∈ ( x min , x max ) n!
的函数表如下, 例 f(x)的函数表如下,用三次牛顿插值计算 的函数表如下 用三次牛顿插值计算f(0.596)的近似值 的近似值

y ← y+t*A(k,k) k ← k+1
N
k>N
Y
输出y 输出
§2 Newton’s Interpolation
等距节点公式 /* Formulae with Equal Spacing */ 牛顿基本插值公式对结点是否等距没有限制. 牛顿基本插值公式对结点是否等距没有限制.不过当 结点等距时前述牛顿插值公式可进行简化.首先介绍 结点等距时前述牛顿插值公式可进行简化. 差分概念. 差分概念. x −x 当节点等距分布时: 等距分布时 当节点等距分布时 x i = x 0 + i h ( i = 0 , ... , n ) h =
0.62)+0.21303(x-0.55)(x-0.65)(x-0.80) f(0.596) ≈N3(0.596)=0.63192
牛顿插值算法设计
N n ( x ) = f ( x0 ) + f [ x0 , x1 ]( x − x0 ) + f [ x0 , x1 , x2 ]( x − x0 )( x − x1 ) + ...
f [ x 0 , x 1 , x 2 ,⋯ , x n] =

第二讲牛顿插值与分段线性插值

第二讲牛顿插值与分段线性插值

四、分段线性插值
我们已经知道插值有多种方法, 我们已经知道插值有多种方法 例 插值、 插值等. 如, Lagrange插值、 Newton插值等 插值 插值 插值等 的目的就是数值逼近的一种手段, 而数值逼近为 的目的就是数值逼近的一种手段 的是得到一个数学问题的精确解或足够的精确解, 的是得到一个数学问题的精确解或足够的精确解 那么是否插值多项式的次数越高, 那么是否插值多项式的次数越高 越能达到这个目 的呢? 观察n次插值多项式的余项 的呢 观察 次插值多项式的余项 f ( n +1) (ξ ) n
差商表
xi x0 x1 x2 x3 x4 ┊ f(xi) f(x0) f(x1) f(x2) f(x3) f(x4) ┊ f(x0,x1) f(x1,x2 ) f(x2,x3 ) f(x3,x4 ) ┊ f(x0,x1,x2) f(x1,x2,x3 ) f(x2,x3,x4 ) ┊ 1阶 阶 2阶 阶 3阶 阶 4阶 阶
∆ 3 f ( x1 ) = ∆(∆ 2 f ( x1 )) = ∆ 2 f ( x2 ) − ∆ 2 f ( x1 )
∆3f(x0) ∆3f(x1) ┊ ∆4f(x0) ┊
……
计算规律: 任一个k(≥1) 阶差分的数值等于所求 计算规律 任一个 差分左侧的数减去左上侧的数. 差分左侧的数减去左上侧的数 注意: 差分表中, 注意 差分表中 对角线上的差分是构造差分形 式的牛顿插值公式的重要数据. 式的牛顿插值公式的重要数据
+ an ( x − x0 )( x − x1 ) ⋅⋅⋅ ( x − xn−1 ).
它满足递推性: 它满足递推性
Pn ( x ) = Pn −1 ( x ) + an ( x − x0 )( x − x1 )L ( x − xn −1 ).

【AP物理B和C】牛顿定律的讲解和例题

【AP物理B和C】牛顿定律的讲解和例题

Δ §2.1 牛顿运动定律

第一定律(惯性定律)(First law,Inertia law)
任何物体都保持静止或匀速直线运动的状态,
除非作用在它上面的力迫使它改变这种状态。
第一定律 的 意义:
定义了“惯性系”(inertial frame)
定性给出了“力”与“惯性”的概念
物体的加速度。 a:
F ma


第三定律(Third Law)
m1
· F
12
F21
m ·
2
F12 F21
对牛顿定律的说明:
1.牛顿定律只适用于惯性系; 而一般物体可认 2.牛顿定律是对质点而言的, 为是质点的集合, 故牛顿定律具有普遍意义。
s v t dv a dt

o
r rA rB
vA
A
s
B
x
v

vB
two-type problems
微分 积分
r v a
dr v dt
dv a dt
r v a v dt a dt

The two elephants exert action and reacti §2.2 SI单位和量纲 (书第二章§2.2 )

国际单位制(SI)的力学基本量和单位:
单 位 的 定 义
138Cs原子某特征频率光波周期的
量的 单位 单位 名称 名称 符号 时间 长度


s
m
9 192 631 770 倍
光在真空中在(1/299 792 458)s 内所经过的距离 保存在巴黎度量衡局的“kg标准 原器”的质量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向前、向后差分表
-
)j
-
)j
例:在微电机设计计算中需要查磁化曲线表,通常给出的表是磁密B每间隔100高斯磁路每厘米长所需安匝数at的值,下面要解决B 从4000至11000区间的查表问题。

为节省计算机存储单元,采用每
500高斯存入一个at值,在利用差分公式计算。

从差分表中看到三阶差分近似于0,计算时只需二阶差分。

当4000≤B≤10500时用牛顿前插公
式;当10500≤B ≤11000时用牛顿后插公式;
例如,求f (5200)时取
2
00005000, 1.58,0.11,B f f f ==∆=∆=
,h=500,B=5200,t=0.4,取n=2,由公式
000(1)
()2!
n t t N x th f t f -+=+∆+
计算得:
(0.4)(0.
(5200) 1.58(0.4)(0.11)2
f -≈++
这个结果与直接查表得到的值相同,说明用此算法在计算机上求值是可行的。

相关文档
最新文档