2020届全国大联考高三第三次联考数学试题

合集下载

2020年全国普通高等学校招生统一考试理科数学试卷 全国III卷(含答案)

2020年全国普通高等学校招生统一考试理科数学试卷 全国III卷(含答案)

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为A. 2B. 3C. 4D. 6解:有下列(1,7)(2,6)(3,8)(4,4)2.复数113i -的虚部是 A. 310- B. 110- C. 110D. 310解:1131313101010i z i i +===+-3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ==== 解:B4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531--=+t K I t e,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3)A.60B.63C.66D.69()()()()()0.23530.23530.2353-10.951100511====1995951930010.2353=3,53132323153136623解:则,则------==++--===+≈t t t KI t Kee e t t t5. 设O 为坐标原点,直线2x =与抛物线2:2(0)=>C y px p 交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A. (14,0)B. (12,0)C. (1,0)D. (2,0)1212222122212124y y 0又由点在曲线2上y =4,y =4(y y )16,y y 44,1OD OEOD OE y px p p P p p →→⊥•=+====-=-=6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b += A. 3135-B. 1935-C. 1735D. 1935222解:()=++2253612497()19cos(,)5735a b a b a b a b a a b a a a ba ab a a b+•=+-=+=•+•+•+===⨯+7. 在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A. 19B. 13C. 12D. 23222222222解:由余弦定理得:AB =AC +BC -2AC BC cos 216924393AB 3由余弦定理得:AB AC3341cosB=23392AB BCC BC=+-⨯⨯⨯==+-+-==⨯⨯8. 右图为某几何体的三视图,则该几何体的表面积是 A. 6+42 B. 442+ C. 623+ D. 423+表面积122221222sin 602323S VAB S VAC S ABC S VBC S ∆∆∆∆===⨯⨯==⨯⨯⨯= 9.已知2tan tan()74πθθ-+=,则tan θ=A. -2B. -1C. 1D. 222221tan 解:原式=2tan 71tan 则2tan -2tan -1-tan 77tan 则2tan -8tan +8=0则tan -4tan +4=(tan 2)0则tan 2θθθθθθθθθθθθθ+-=-=--==10.若直线l 与曲线y x =2215x y +=都相切,则l 的方程为 A. 21y x =+ B. 122y x =+ C. 112y x =+ D. 1122y x =+设00000000000设的切点P(x ,x )(x 0)111,,则切线方程为:y-x (x )222化为:-2x 0x 1又与圆相切则:d=x 114x 511直线方程为:y=22y x y k x 解:xx x x x y x =>'===-+==⇒=+∴+11. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F , 2F ,离心率为5. P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a=A .1B .2C .4D .82222121212121222212121212222222222解:,则+=(2c)414,82又-=2a,-24164,4又5,54,1,1PF PF PF PF cS PF F PF PF PF PFPF PF PF PF PF PF PF PFc a c ace c a a a a aa∆⊥=====+-=-=-===⇒=-===12. 已知5458<,45138<,设5a log3=,8b=log5,13c log8=,则A. a b c<<B. b a c<<C. b c a<<D. c a b<<5445544588131381381325822222解;58,138,则log5log8,log13log8445log54,45log8;log5,log8,则55lg3lg5lg3lg8lg5log3log5lg5lg8lg5lg8lg3lg8lg24lg252lg5lg30,lg80,lg3lg8()()()()lg52222c ba b<<<<<<<>>•--=-=-=•+>>•<=<== 0,a b a b-<<二、填空题:本题共4小题,每小题5分,共20分。

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷及解析

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷及解析

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷★祝考试顺利★ (解析版)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}20M x x x =+>,(){}ln 10N x x =->,则( )A. M N ⊇B. M N ⊆C. ()1,M N ⋂=+∞D. ()2,M N ⋃=+∞【答案】A 【解析】解出集合M 、N ,利用集合的包含关系和交集、并集的定义可判断各选项的正误.【详解】{}()()20,10,M x x x =+>=-∞-⋃+∞,(){}{}()ln 10112,N x x x x =->=->=+∞,所以,M N ⊇,()2,M N =+∞,()(),10,M N =-∞-+∞.故选:A.2. 已知复数2(2)z i =+,则z 的虚部为( ) A. 3 B. 3iC. 4D. 4i【答案】C 【解析】根据复数的代数形式的乘法法则计算即可得解; 【详解】解:2(2)34z i i =+=+,所以z 的虚部为4. 故选:C .3. 以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.国内1583 55.8%94 3.8%290 19.9%1967 29.0%出国(境)699 24.6%137 5.5%199 13.7%1035 15.3%就业490 17.3%2224 89.2%943 64.8%3657 53.9%签三方就154 5.4%1656 66.4%864 59.4%2674 39.4%业灵活就业336 11.8%568 22.8%79 5.4%983 14.5%未就业64 2.3%39 1.6%23 1.6%126 1.9%合计2836 100.0%2494 100.0%1455 100.0%6785 100.0%清华大学2019年毕业生去向分布情况统计表清华大学2019年毕业生签三方就业单位所在省(区、市)分布图则下列选项错误..的是().A. 清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业B. 清华大学2019年毕业生中,硕士生的就业率比本科生高C. 清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散D. 清华大学2019年签三方就业毕业生中,留北京人数超过一半【答案】D【解析】选项A在表中找出本科生选择继续深造达80.4%,硕士生选择就业达89.2%,则判断选项A正确;选项B在表中找出硕士生的就业率达89.2%,本科生的就业率达17.3%,则判断选项B正确;。

2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(理)试题及答案

2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(理)试题及答案

绝密★启用前2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题1.设复数z 满足|i ||i |z z -=+,i 为虚数单位,且z 在复平面内对应的点为(,)Z x y ,则下列结论一定正确的是 A .1x = B .1y = C .0x = D .0y =答案:D 解:因为满足|i ||i |z z -=+的点Z 为复平面内到点(0,1)和(0,1)-的距离相等的点的集合,所以(,)Z x y 的轨迹为x 轴,其方程为0y =.故选D . 2.已知集合{|20}A x x =-≥,{|ln(1)}B x y x =∈=+Z ,则A B =A .[1,2]-B .(1,2]-C .{0,1,2}D .{1,0,1,2}-答案:C 解:因为{|20}{|2}A x x x x =-≥=≤,{|ln(1)}{|1}B x y x x x =∈=+=∈>-Z Z ,所以{0,1,2}AB =.故选C .3.已知等差数列{}n a 的前n 项和为n S ,若953S a =,则一定成立的是 A .46S S = B .45S S =C .57S S =D .56S S =答案:B 解:因为95593S a a ==,所以50a =,则5454S S a S =+=.故选B .4.国家统计局发布数据显示,2020年1月份全国CPI (居民消费价格指数)同比上涨5.4%,环比上涨1.4%.下图是2019年1月到2020年1月全国居民消费价格同比(与去年同期相比)和环比(与上月相比)涨跌幅,则下列判断错误的是A .各月同比全部上涨,平均涨幅超过3%B .各月环比有涨有跌,平均涨幅超过0.3%C .同比涨幅最大的月份,也是环比涨幅最大的月份D .环比跌幅最大的月份,也是同比涨幅最小的月份 答案:D 解:由统计图可知,各月同比全部上涨,平均涨幅为(1.7 1.5 2.3 2.5 2.7 2.7 2.8 2.8++++++++3.0 3.84.5 4.55.4)131% 3.09%++++÷⨯≈,超过3%,故A 正确;各月环比有涨有跌,平均涨幅为(0.5+1.00.40.10.00.10.40.70.90.90.40.0 1.4)131%0.446%-++-+++++++÷⨯≈,超过0.3%,故B 正确;同比涨幅最大的是2020年1月,环比涨幅最大的也是2020年1月,故C 正确;环比跌幅最大的是2019年3月,同比涨幅最小的是2019年2月,故D 错误,故选D .5.已知实数,x y 满足约束条件2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩,则2x y +的取值范围是A .(3,6]-B .[3,6]-C .3(,6]2-D .3[,6]2-答案:B 解:作出不等式组2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩表示的平面区域,如图中阴影部分所示,设2z x y =+,则2y x z =-+,平移该直线,当直线2y x z =-+经过点A 时,z 取到最大值,由220220x y x y -+=⎧⎨--=⎩得22x y =⎧⎨=⎩,即(2,2)A ,则max 426=+=z ;当直线2y x z =-+经过点C 时,z 取到最小值,易得(1,1)C --,则min 213=--=-z ,所以2x y +的取值范围是[3,6]-.故选B .6.函数52sin ()([π,0)(0,π])33x xx xf x x -+=∈--的图象大致为A .B .C .D .答案:A 解: 因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以()f x 是偶函数,排除B,D ,因为ππ5π(π)033f -=>-,排除C ,故选A.7.已知向量(1,),(2,)t y =-=a b ,其中22121y t t =-++,则当y 最小时,cos ,=a b A 25B .25C .55-D 5答案:B 解: 2222221112(1)32(1)31111y t t t t t t =-+=++-≥+⋅-=-+++,当且仅当22111t t +=+,即0t =时,取等号,y 取得最小值为1-,此时,(1,0),(2,1)=-=-a b ,则225cos ,||||515⋅-===-⋅⨯a b a b a b .故选B .8.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .5答案:B 解:初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环;第二次循环:8441282.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B . 9.已知[]x 表示不超过x 的最大整数,数列{}n a 满足,则数列{}n a的前60项的和为 A .1830 B .1830- C .3660 D .3660-答案:D 解:当43n k =-或42n k =-时,1[]2(1)1n --=;当41n k =-或4n k =时,1[]2(1)1n --=-,所以4342k k a a --+2222414(43)(42)(41)(4)3212k k a a k k k k k -++=-+----=-+,所以数列{}n a 的前60项和60S =32123215121536602-+-⨯+⨯=-.故选D .10.将函数2()cos f x x x x =的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象.对于下列四种说法,正确的是 ①函数()g x 的图象关于点π(,0)3成中心对称②函数()g x 在(π,π)-上有8个极值点③函数()g x 在区间ππ[,]24--,最小值为2-④函数()g x 在区间ππ(,)44-上单调递增 A .①② B .②③C .②③④D .①③④答案:B 解:21cos2π()cos 2)26x f x x x x x x +=-+,将函数()f x 图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到π())6g x x +的图象.对于①,π4ππ())336g +=()g x 的图象不关于点12{x y =-=成中心对称,所以①错误;对于②,由(π,π)x ∈-得π23π25π4(,)666x +∈-,结合函数图象可得()g x 在(π,π)-上有8个极值点,所以②正确;对于③,由ππ24x -≤≤-,得11ππ5π4666x -≤+≤-,则()g x ≤()g x 的最大值为,最小值为-,所以③正确;对于④,当ππ44x -<<时,5ππ7π4666x -<+<,故函数()g x 在区间ππ(,)44-上不单调,所以④错误.故选B . 11.如图平面多边形中,四边形ABCD 是边长为2的正方形,外侧4个三角形均为正三角形.若沿正方形的4条边将三角形折起,使顶点1234,,,S S S S 重合为S 点,得到四棱锥S ABCD -,则此四棱锥的外接球的表面积为A .πB .2πC .3πD .4π答案:D 解:连接,AC BD ,设ACBD H =,连接SH ,根据题意可得SH ⊥平面ABCD .设O为四棱锥S ABCD -的外接球的球心,则O 在SH 上,连接OC ,设此四棱锥的外接球的半径为R ,则OS OC R ==,如图所示.因为正方形ABCD 2,所以1,2,1CH SC SH ===,所以,H O 重合,即四棱锥的外接球的半径为1R =,所以四棱锥的外接球的表面积为24π4πS R ==.故选D . 12.已知过点(4,0)M 的直线与抛物线C :24y x =交于点,A B ,设O 为坐标原点,则||||||OA OB AB +的最大值为A .1B .2C 2D .22答案:C 解:设1122(,),(,)A x y B x y ,直线AB 的方程为4x my =+,与24y x =联立得24160y my --=,则124y y m+=,1216y y =-,所以212121212(4)(4)(1)4()1616(1OA OB my my y y m y y m y y ⋅=+++=++++=-22)16160m m +++=,所以OA OB ⊥,则222||||||OA OB AB +=,所以||||OA OB +≤|AB =(当且仅当||||OA OB =时等号成立),所以||||||OA OB AB +.故选C . 二、填空题13.5(21)x y +-的展开式中22x y 的系数为___________. 答案:120- 解:由题意,5(21)x y +-的展开式中含22x y 的项为2222122531C C (2)C (1)120x y x y ⨯⨯⨯-=-,所以所求系数为120-.14.若π1sin(),(0,π)63αα+=-∈,则πsin(2)3α+=___________.答案:9解:因为(0,π)α∈,所以ππ7π(,)666α+∈,又因为π1sin()063α+=-<,所以π7π(π,)66α+∈,所以πcos()6α+==.则πππ1sin(2)2sin()cos()2()(3663ααα+=++=⨯-⨯=. 15.已知双曲线E :2221(0)x y a a-=>的左、右焦点分别为12,F F ,M 在E 的右支上,若12ππ[,]43F MF ∠∈,则12MF MF ⋅的最大值为___________.答案:2 解:设12||,||MF m MF n ==,12F MF θ∠=,则22242cos c m n mn θ=+-.又2m n a -=,即22224m n mn a +-=,解得21cos mn θ=-,所以12122cos ||||cos cos 1cos MF MF MF MF mn θθθ=θ⋅=⋅⋅==-211cos θ-,因为ππ[,]43θ∈,所以1cos 2θ≤12cos θ≤≤1111cos θ-≤-≤,则2211cos θ≤≤-2=,所以12MF MF ⋅的最大值为2. 16.若存在直线l 与函数1()(0)f x x x=<及2()g x x a =+的图象都相切,则实数a 的最小值为___________. 答案:解:设直线l 与函数()f x 及()g x 的图象分别相切于1(,)(0)A m m m<,2(,)B n n a +,因为21()f x x'=-,所以函数()f x 的图象在点A 处的切线方程为211()y x m m m -=--,即212y x m m=-+,因为()2g x x '=,所以函数()g x 的图象在点B 处的切线方程为22()y n a n x n --=-,即22y nx n a =-+,因为存在直线l 与函数()f x 及()g x 的图象都相切,所以22122n m n a m ⎧=-⎪⎪⎨⎪-+=⎪⎩,所以4124a m m =+, 令1(0)t t m =<,设41()2(0)4h t t t t =+<,则3()2h t t '=+,当t <()0h t '<,函数()h t单调递减;当0t <时,()0h t '>,函数()h t 单调递增,所以min ()(2h t h ==-,所以实数a的最小值为2-三、解答题17.已知四边形ABCD 中,AB AD ⊥,π6BDC ∠=,2AD =,4DC =.(1)若5cos 3ABD ∠=,求BD ,BC ; (2)若C ADC ∠=∠,求sin CBD ∠.答案:(1)3BD =,25123BC =-(2)15sin CBD +∠= 解:(1)在Rt ABD △中,由5cos ABD ∠=22sin 1cos 3ABD ABD ∠-∠,所以3sin ADBD ABD==∠.在BCD中,由余弦定理得2222232cos 3423425123BC BD CD BD CD BDC =+-⋅∠=+-⨯⨯=-, 所以25123BC =-(2)设CBD x ∠=,由C ADC ∠=∠,π6BDC ∠=可得5π6C x ∠=-,π6ABD x ∠=-,在Rt ABD △中,因为2AD =,所以2πsin sin()6AD BD ABD x ==∠-,在BCD 中,由正弦定理得sin sin BD CDC CBD=∠,即45πsin sin()6BD x x =-,所以24π5πsin sin()sin()66x x x =--,整理得24sin 2sin 10x x --=.由sin 0x >得15sin x +=,所以15sin CBD +∠=. 18.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,MB ∥AN ,2NA AB ==,4BM =,23CN =(1)证明:平面DMN ⊥平面BCN ; (2)求二面角C MN D --的余弦值. 答案:(1)证明见解析;(2)22解:(1)因为正方形ABCD 所在平面与梯形ABMN 所在平面垂直,BC AB ⊥,所以BC ⊥平面ABMN ,因为MN ⊂平面ABMN ,BN ⊂平面ABMN ,所以BC MN ⊥,BC BN ⊥,由2,23BC CN ==,得2222BN CN BC =-=,由2NA AB ==,可得AB AN ⊥,在直角梯形ABMN 中,可得22MN =,由4BM =,22BN MN ==,可得222BN MN BM +=,所以BN MN ⊥, 因为BCBN B =,所以MN ⊥平面BCN ,因为MN ⊂平面DMN ,所以平面DMN ⊥平面BCN .(2)如图,以B 为坐标原点,,,BA BM BC 所在直线分别为x,y,z 轴建立空间直角坐标系B-xyz ,则(0,0,0),(0,0,2),(2,0,2)B C D ,(0,4,0),(2,2,0)M N ,(2,2,0)MN =-,(2,2,2)CN =-,(0,2,2)DN =-,设111(,,)x y z =n 是平面CMN 的法向量,则00MN CN ⎧⋅=⎪⎨⋅=⎪⎩n n ,即111112202220x y x y z -=⎧⎨+-=⎩,取11x =,得(1,1,2)=n .设222(,,)x y z =m 是平面DMN 的法向量,则00MN DN ⎧⋅=⎪⎨⋅=⎪⎩m m ,即2222220220x y y z -=⎧⎨-=⎩, 取21z =,得(1,1,1)=m , 设二面角C MN D--的平面角为θ,则cos ||||θ⋅===n m n m由图可知二面角C MN D --的余弦值为3. 19.为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取100名学生,统计了他们的竞赛成绩,已知这100名学生的竞赛成绩均在[50,100]内,并得到频数分布表(如下).(1)将竞赛成绩在[70,100]内定义为“合格”,竞赛成绩在[50,70)内定义为“不合格”.请将下面的22⨯列联表补充完整,并判断是否有99%的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?(2)根据(1)的数据分析,将频率视为概率,从该校学生中用随机抽样的方法抽取3人,记被抽取的3人中“不合格”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望()E X .附参考公式及临界值表:22(),()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++.答案:见解析 解:(1)补充完整的22⨯列联表如下:则2K的观测值2()100(24122836)8.654 6.635()()()()60404852n ad bc ka b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯. 因此有99%的把握认为“法律知识的竞赛成绩是否合格”与“是否是高一新生”有关. (2)根据(1)的数据分析,可得随机抽取一人成绩“不合格”的概率为4021005=.根据题意得2(3,)5~X B ,X 的所有可能取值为0,1,2,3, 00332327(0)C ()()55125P X ==⨯⨯=,11232354(1)C ()()55125P X ==⨯⨯=,22132336(2)C ()()55125P X ==⨯⨯=,3303238(3)C ()()55125P X ==⨯⨯=.所以X 的分布列为所以X 的数学期望2()3 1.25E X =⨯=. 20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,过椭圆C 的左、右焦点12,F F 分别作倾斜角为π3的直线12,l l ,12,l l . (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 只有一个公共点,求点12,F F 到直线l 的距离之积.答案:(1)22143x y +=;(2)3. 解:(1)设c =12,l l π2sin 3c =1c =,由椭圆C 的离心率为12,得12c a =,所以2a =,b == 所以椭圆C 的标准方程为22143x y +=.(2)当直线l 的斜率不存在时,直线l 的方程为2x =±,点12,F F 到直线l 的距离之积为3;当直线l 的斜率存在时,设其方程为y kx m =+,联立y kx m =+及22143x y+=,消去y 得222(34)84120k x kmx m +++-=,因为直线l 与椭圆C 只有一个公共点,所以22222(8)4(34)(412)48(43)0km k m m k ∆=-+-=---=,所以2243m k =+.点1(1,0)F -到直线l :y kx m =+的距离1d =点2(1,0)F 到直线l :y kx m =+的距离2d =所以22221222|||43|311m k k k d d k k -+-===++, 综上可得,若直线l 与椭圆C 只有一个公共点,则点12,F F 到直线l 的距离之积为3. 21.已知函数()cos(1)(1ln )f x x x x =-+-. (1)设()()g x f x '=,求证:1()g x x<; (2)讨论()f x 的单调性.答案:(1)证明见解析;(2)()f x 在(0,1]上是增函数,在(1,)+∞上是减函数 解:(1)因为()cos(1)(1ln )f x x x x =-+-,所以()()sin(1)ln (0)g x f x x x x '==--->,设1()ln (0)h x x x x =-->,则22111()xh x x x x-'=-+=,当(0,1)x ∈时,()0h x '>,()h x 是增函数;当(1,)x ∈+∞时,()0h x '<,()h x 是减函数,所以()(1)1h x h ≤=-,即1ln 1x x --≤-,所以1ln 1x x-≤-,当1x =时取等号. 因为sin(1)1x --≤,所以1()sin(1)ln 1ln g x x x x x=---≤-≤,等号不同时成立, 所以1()g x x<. (2)因为()sin(1)ln g x x x =---,所以1()cos(1)g x x x'=---, 当(0,1]x ∈时,1cos(1)0,0x x->>,()0g x '<,所以()g x 在(0,1]上是减函数,当(0,1]x ∈时()(1)0g x g ≥=, 即(0,1]x ∈时()0f x '≥,所以()f x 在(0,1]上是增函数;(1,1π)x ∈+时,1(0,π)x -∈,所以sin(1)0,ln 0x x --<-<,所以()0<g x ,当[1π,)x ∈++∞时,sin(1)1,ln 1x x --≤-<-,所以()0<g x ,所以当(1,)x ∈+∞时()0<g x ,即()0f x '<,所以()f x 在(1,)+∞上是减函数, 综上,可得()f x 在(0,1]上是增函数,在(1,)+∞上是减函数.22.在平面直角坐标系xOy 中,直线l 的参数方程为8242x tt y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若射线(0)4πθρ=>与l 和C 分别交于点,A B ,求||AB .答案:(1)直线l 的普通方程为40(0)x y x +-=≠;曲线C 的直角坐标方程为2220x y y +-=;(2)||AB =解: (1)由82x t=+可得0x ≠, 由8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得直线l 的普通方程为40(0)x y x +-=≠.由2sin ρθ=可得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,可得2220x y y +-=,所以曲线C 的直角坐标方程为2220x y y +-=. (2)由(1)得,l 的普通方程为40(0)x y x +-=≠, 将其化为极坐标方程可得cos sin 40()2ρθρθθπ+-=≠,当()04θρπ=>时,A ρ=B ρ=所以|||||A B AB ρρ=-== 23.已知函数()|21||1|f x x ax =+--,a R ∈. (1)当2a =时,求不等式1()1f x -≤≤的解集;(2)当1(,0)2x ∈-时,不等式()2f x x >恒成立,求实数a 的取值范围.答案:(1)11[,]44-;(2)[4,0)-解:(1)当2a =时,12,211()|21||21|4,2212,2x f x x x x x x ⎧-<-⎪⎪⎪=+--=-≤≤⎨⎪⎪>⎪⎩,当21x <-或12x >时,|()|2f x =,所以1()1f x -≤≤可转化为1124211x x -≤-≤≤⎧≤⎪⎨⎪⎩,解得1144x -≤≤,所以不等式1()1f x -≤≤的解集为11[,]44-. (2)因为1(,0)2x ∈-,所以|21|21x x +=+,所以()2f x x >,即21|1|2x ax x +-->,即|1|1ax -<. 当0a ≥时,因为1(,0)2x ∈-,所以|1|1ax -≥,不符合题意. 当0a <时,解|1|1ax -<可得20x a<<, 因为当1(,0)2x ∈-时,不等式()2f x x >恒成立,所以12(,0)(,0)2a -⊆,所以212a ≤-,解得40a -≤<,所以实数a 的取值范围为[4,0)-.。

2020年3月高三第三次在线大联考 理科数学-(新课标Ⅰ卷)(全解全析答案)

2020年3月高三第三次在线大联考 理科数学-(新课标Ⅰ卷)(全解全析答案)

2020年3月高三第三次在线大联考(新课标Ⅰ卷)理科数学 全解全析1 2 3 4 5 6 7 89 10 11 12 CDBDBBABDBDC1.C 【解析】因为{|20}{|2}A x x x x =-≥=≤,{|ln(1)}{|1}B x y x x x =∈=+=∈>-Z Z ,所以{0,1,2}A B =I .故选C .2.D 【解析】因为满足|i ||i |z z -=+的点Z 为复平面内到点(0,1)和(0,1)-的距离相等的点的集合,所以(,)Z x y 的轨迹为x 轴,其方程为0y =.故选D .3.B 【解析】因为95593S a a ==,所以50a =,则5454S S a S =+=.故选B .4.D 【解析】由统计图可知,各月同比全部上涨,平均涨幅为(1.7 1.5 2.3 2.5 2.7 2.7 2.8 2.8++++++++ 3.0 3.8 4.5 4.5 5.4)131% 3.09%++++÷⨯≈,超过3%,故A 正确;各月环比有涨有跌,平均涨幅为(0.5+ 1.00.40.10.00.10.40.70.90.90.40.0 1.4)131%0.446%-++-+++++++÷⨯≈,超过0.3%,故B 正确;同比涨幅最大的是2020年1月,环比涨幅最大的也是2020年1月,故C 正确;环比跌幅最大的是2019年3月,同比涨幅最小的是2019年2月,故D 错误,故选D .5.B 【解析】初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环;第二次循环:8441282.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B .6.B 【解析】作出不等式组2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩表示的平面区域,如图中阴影部分所示,设2z x y =+,则2y x z =-+,平移该直线,当直线2y x z =-+经过点A 时,z 取到最大值,由220220x y x y -+=⎧⎨--=⎩得22x y =⎧⎨=⎩,即(2,2)A ,则max 426z =+=;当直线2y x z =-+经过点C 时,z 取到最小值,易得(1,1)C --,则min 213z =--=-,所以2x y +的取值范围是[3,6]-.故选B .7.A 【解析】因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以)(x f 是偶函数,排除B,D ,因为ππ5π(π)033f -=>-,排除C ,故选A. 8.B 【解析】2222221112(1)32(1)31111y t t t t t t =-+=++-≥+⋅-=-+++,当且仅当22111t t +=+,即0t =时,取等号,y 取得最小值为1-,此时,(1,0),(2,1)=-=-a b ,则25cos ,||||15⋅===-⋅⨯a b a b a b .故选B .9.D 【解析】当43n k =-或42n k =-时,1[]2(1)1n --=;当41n k =-或4n k =时,1[]2(1)1n --=-,所以4342k k a a --+2222414(43)(42)(41)(4)3212k k a a k k k k k -++=-+----=-+,所以数列{}n a 的前60项和60S =32123215121536602-+-⨯+⨯=-.故选D .10.B 【解析】2261cos22π()6sin cos 2cos sin 222sin(2)26x f x x x x x x +=+-=+⋅-=+,将函数()f x 图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到π()2sin(4)6g x x =+的图象.对于①,π4ππ()2sin()2336g =+=-,故函数()g x 的图象不关于点π(,0)3成中心对称,所以①错误;对于②,由(π,π)x ∈-得π23π25π4(,)666x +∈-,结合函数图象可得()g x 在(π,π)-上有8个极值点,所以②正确;对于③,由ππ24x -≤≤-,得11ππ5π4666x -≤+≤-,则2()2g x -≤≤,所以()g x 的最大值为2,最小值为2-,所以③正确;对于④,当ππ44x -<<时,5ππ7π4666x -<+<,故函数()g x 在区间ππ(,)44-上不单调, 所以④错误.故选B .11.D 【解析】连接,AC BD ,设AC BD H =I ,连接SH ,根据题意可得SH ⊥平面ABCD .设O 为四棱锥S ABCD -的外接球的球心,则O 在SH 上,连接OC ,设此四棱锥的外接球的半径为R ,则OS OC R ==,如图所示.因为正方形ABCD 21,2,1CH SC SH ===,所以,H O 重合,即四棱锥的外接球的半径为1R =,所以四棱锥的外接球的表面积为24π4πS R ==.故选D .12.C 【解析】设1122(,),(,)A x y B x y ,直线AB 的方程为4x my =+,与24y x =联立得24160y my --=,则124y y m +=,1216y y =-,所以212121212(4)(4)(1)4()1616(1OA OB my my y y m y y m y y ⋅=+++=++++=-u u u r u u u r22)16160m m +++=,所以OA OB ⊥,则222||||||OA OB AB +=,所以||||OA OB +≤|AB =(当且仅当||||OA OB =时等号成立),所以||||||OA OB AB +.故选C .13.120- 【解析】由题意,5(21)x y +-的展开式中含22x y 的项为2222122531C C (2)C (1)120x y x y ⨯⨯⨯-=-,所以所求系数为120-. 14.9【解析】因为(0,π)α∈,所以ππ7π(,)666α+∈,又因为π1sin()063α+=-<,所以π7π(π,)66α+∈,所以πcos()63α+=-.则πππ1sin(2)2sin()cos()2()(3663ααα+=++=⨯-⨯. 15.2 【解析】设12||,||MF m MF n ==,12F MF θ∠=,则22242cos c m n mn θ=+-.又2m n a -=,即22224m n mn a +-=,解得21cos mn θ=-,所以12122cos ||||cos cos 1cos MF MF MF MF mn θθθ=θ⋅=⋅⋅==-u u u u r u u u u r u u u u r u u u u r211cos θ-,因为ππ[,]43θ∈,所以1cos 2θ≤12cos θ≤≤1111cos θ≤-≤,则2211cos θ≤≤-2=,所以12MF MF ⋅u u u u r u u u u r的最大值为2+. 16.【解析】设直线l 与函数()f x 及()g x 的图象分别相切于1(,)(0)A m m m <,2(,)B n n a +,因为21()f x x '=-,所以函数()f x 的图象在点A 处的切线方程为211()y x m m m -=--,即212y x m m=-+,因为()2g x x '=,所以函数()g x 的图象在点B 处的切线方程为22()y n a n x n --=-,即22y nx n a =-+,因为存在直线l 与函数()f x 及()g x 的图象都相切,所以22122n mn a m ⎧=-⎪⎪⎨⎪-+=⎪⎩,所以4124a m m =+, 令1(0)t t m =<,设41()2(0)4h t t t t =+<,则3()2h t t '=+,当t <()0h t '<,函数()h t单调递减;当0t <时,()0h t '>,函数()h t 单调递增,所以min()(h t h ==,所以实数a的最小值为 17.(本小题满分12分)【解析】(1)在Rt ABD △中,由cos ABD ∠2sin 3ABD ∠,所以3sin ADBD ABD==∠.(3分)在BCD △中,由余弦定理得2222232cos 3423425123BC BD CD BD CD BDC =+-⋅∠=+-⨯⨯⨯=-,所以25123BC =-.(6分)(2)设CBD x ∠=,由C ADC ∠=∠,π6BDC ∠=可得5π6C x ∠=-,π6ABD x ∠=-, 在Rt ABD △中,因为2AD =,所以2πsin sin()6AD BD ABD x ==∠-,(8分)在BCD △中,由正弦定理得sin sin BD CDC CBD =∠,即45πsin sin()6BD x x =-, 所以24π5πsin sin()sin()66xx x =--,整理得24sin 2sin 10x x --=.(10分) 由sin 0x >得15sin x +=,所以15sin CBD +∠=.(12分) 18.(本小题满分12分)【解析】(1)因为正方形ABCD 所在平面与梯形ABMN 所在平面垂直,BC AB ⊥,所以BC ⊥平面ABMN , 因为MN ⊂平面ABMN ,BN ⊂平面ABMN ,所以BC MN ⊥,BC BN ⊥,由2,23BC CN ==,得2222BN CN BC =-=,由2NA AB ==,可得AB AN ⊥,(3分) 在直角梯形ABMN 中, 可得22MN =,由4BM =,22BN MN ==,可得222BN MN BM +=,所以BN MN ⊥, 因为BC BN B =I ,所以MN ⊥平面BCN ,因为MN ⊂平面DMN ,所以平面DMN ⊥平面BCN .(6分)(2)如图,以B 为坐标原点,,,BA BM BC 所在直线分别为x ,y ,z 轴建立空间直角坐标系B-xyz ,则(0,0,0),(0,0,2),(2,0,2)B C D ,(0,4,0),(2,2,0)M N ,(2,2,0)MN =-u u u u r ,(2,2,2)CN =-u u u r ,(0,2,2)DN =-u u u r,设111(,,)x y z =n 是平面CMN 的法向量,则00MN CN ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r n n ,即111112202220x y x y z -=⎧⎨+-=⎩, 取11x =,得(1,1,2)=n .(8分)设222(,,)x y z =m 是平面DMN 的法向量,则0MN DN ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u r m m ,即2222220220x y y z -=⎧⎨-=⎩,取21z =,得(1,1,1)=m ,(10分)设二面角C MN D --的平面角为θ,则cos ||||θ⋅===n m n m由图可知二面角C MN D --.(12分) 19.(本小题满分12分)【解析】(1)设c =,由12,l lπ2sin 3c 1c =,(2分) 由椭圆C 的离心率为12,得12c a =,所以2a =,b 所以椭圆C 的标准方程为22143x y +=.(5分)(2)当直线l 的斜率不存在时,直线l 的方程为2x =±,点12,F F 到直线l 的距离之积为3;(6分) 当直线l 的斜率存在时,设其方程为y kx m =+,联立y kx m =+及22143x y +=,消去y 得222(34)84120k x kmx m +++-=,(8分) 因为直线l 与椭圆C 只有一个公共点,所以22222(8)4(34)(412)48(43)0km k m m k ∆=-+-=---=, 所以2243m k =+.点1(1,0)F -到直线l :y kx m =+的距离1d =点2(1,0)F 到直线l :y kx m =+的距离2d =,所以22221222|||43|311m k k k d d k k -+-===++,(11分) 综上可得,若直线l 与椭圆C 只有一个公共点,则点12,F F 到直线l 的距离之积为3.(12分) 20.(本小题满分12分)【解析】(1)(ⅰ)样本的平均数为1(23212219221917192117)2010⨯+++++++++=,样本的标准2=,因此20μ=,2σ=.(2分)(ⅱ)学校7点30分上课,若该学生7点04分准时从家出发,则该学生到达教室所花时间最多为26分钟,若该学生7点06分准时从家出发,则该学生到达教室所花时间最多为24分钟,由于11(26)(3)1[(1(33)]1(10.9974)0.998722P X P X P X μσμσμσ<=<+=-⨯--<<+=-⨯-=,11(24)(2)1[(1(22)]1(10.9544)0.977222P X P X P X μσμσμσ<=<+=-⨯--<<+=-⨯-=.(4分)所以该学生上学不迟到的概率的范围是(0.9772,0.9987).(6分)(2)把该学生这10天早上从家出发到教室所花的时间从小到大排列为17,17,19,19,19,21,21,22,22,23.在这10天中任取2天,所花时间的差的绝对值为Y ,则Y 的可能值为0,1,2,3,4,5,6,且22222322210C C C C 62(0)C 4515P Y +++====,11112221210C C C C 62(1)C 4515P Y +====, 111111232321210C C C C C C 14(2)C 45P Y ++===,1132210C C 62(3)C 4515P Y ====,11112231210C C C C 7(4)C 45P Y +===, 1122210C C 4(5)C 45P Y ===,1121210C C 2(6)C 45P Y ===,(10分)所以Y 的分布列是Y 的数学期望是22142742112()01234561515451545454545E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(12分) 21.(本小题满分12分)【解析】(1)因为()cos(1)(1ln )f x x x x =-+-,所以()()sin(1)ln (0)g x f x x x x '==--->,(1分) 设1()ln (0)h x x x x =-->,则22111()xh x x x x-'=-+=,当(0,1)x ∈时,()0h x '>,()h x 是增函数;当(1,)x ∈+∞时,()0h x '<,()h x 是减函数, 所以()(1)1h x h ≤=-,即1ln 1x x --≤-,所以1ln 1x x-≤-,当1x =时取等号.(4分) 因为sin(1)1x --≤,所以1()sin(1)ln 1ln g x x x x x=---≤-≤,等号不同时成立, 所以1()g x x<.(6分) (2)因为()sin(1)ln g x x x =---,所以1()cos(1)g x x x'=---, 当(0,1]x ∈时,1cos(1)0,0x x->>,()0g x '<,所以()g x 在(0,1]上是减函数,当(0,1]x ∈时()(1)0g x g ≥=, 即(0,1]x ∈时()0f x '≥,所以()f x 在(0,1]上是增函数;(8分)(1,1π)x ∈+时,1(0,π)x -∈,所以sin(1)0,ln 0x x --<-<,所以()0g x <,当[1π,)x ∈++∞时,sin(1)1,ln 1x x --≤-<-,所以()0g x <,所以当(1,)x ∈+∞时()0g x <,即()0f x '<,所以()f x 在(1,)+∞上是减函数, 综上,可得()f x 在(0,1]上是增函数,在(1,)+∞上是减函数.(12分) 22.(本小题满分10分)选修4-4:坐标系与参数方程【解析】(1)由82x t=+可得0x ≠, 由8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得直线l 的普通方程为40(0)x y x +-=≠.(2分)由2sin ρθ=可得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,可得2220x y y +-=, 所以曲线C 的直角坐标方程为2220x y y +-=.(5分) (2)由(1)得,l 的普通方程为40(0)x y x +-=≠,将其化为极坐标方程可得cos sin 40()2ρθρθθπ+-=≠,(7分)当()04θρπ=>时,A ρ=B ρ=所以|||||A B AB ρρ=-==(10分) 23.(本小题满分10分)选修4-5:不等式选讲【解析】(1)当2a =时,12,211()|21||21|4,2212,2x f x x x x x x ⎧-<-⎪⎪⎪=+--=-≤≤⎨⎪⎪>⎪⎩,(2分)当12x <-或12x >时,|()|2f x =,所以1()1f x -≤≤可转化为1124211x x -≤-≤≤⎧≤⎪⎨⎪⎩,解得1144x -≤≤,所以不等式1()1f x -≤≤的解集为11[,]44-.(5分)(2)因为1(,0)2x ∈-,所以|21|21x x +=+,所以()2f x x >,即21|1|2x ax x +-->,即|1|1ax -<.当0a ≥时,因为1(,0)2x ∈-,所以|1|1ax -≥,不符合题意.(7分)当0a <时,解|1|1ax -<可得20x a<<,(8分) 因为当1(,0)2x ∈-时,不等式()2f x x >恒成立,所以12(,0)(,0)2a-⊆,所以212a ≤-,解得40a -≤<,所以实数a 的取值范围为[4,0)-.(10分)。

2020届高三基地学校第三次大联考(数学参考答案)(1)

2020届高三基地学校第三次大联考(数学参考答案)(1)

2020届高三基地学校第三次大联考数学参考答案与评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. {}102−,, 2.3. 5 4.24 5. 236.必要不充分 7. 8 8. 1− 9.13 10. 45 11.9 12.1()2−∞−, 13. 14.2参考解析:12.【解】作出函数()f x 的图象,结合图象及1x x −<−可得, 当1x −≥,即1x −≤时,不等式成立; 当11x −≤,即0x ≥时,不等式不成立; 当10x −<<时,(01)x −∈,,1(12)x −∈,, 所以222(1)2(1)x x x x +<−−−,解得112x −<<−.综上,不等式()(1)f x f x −<−的解集为1()2−∞−,.13.【解】由0AB BC AD DC ⋅=⋅=,得90ABC ADC ∠=∠=,所以四边形ABCD 的外接圆是以AC 为直径的圆. 设AC ,BD 的中点分别为O ,E ,则OE BD ⊥,所以2AC BD AO BD ⋅=⋅2()AB BE EO BD =++⋅212()2AB BD BD =⋅+,结合4AC BD ⋅=1AC BD ⋅=,2AB BD ⋅=−32AB BD ⋅=−, 得2142(2)2BD =−+,所以28BD =,即22BD =BD 的长为14.【解】方程24()()ln(e 1)2x f x g x x a −=⇔+=+−242e1e 0x x a −+−⇔+−=. 令242()e 1e x x a h x x −+−=+−∈R ,,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e 0x x a h x x −+−=+−>,有2个零点. 令2e 0x t x −=>,,则关于t 的方程2e 10a t t −+=, 即1e a t t=+在2(e )−+∞,内有2个不相等的实根, 结合函数21e y t t t−=+>,的图象,得222<e e e a −<+,即4ln 2ln(e 1)2a <<+−.AB CDOE从而存在[1]()a n n n Z ∈+∈,,使得4ln 2ln(e 1)2a <<+−, 所以4ln(e 1)2ln 21n n ⎧<+−⎨<+⎩,,结合n ∈Z ,得max 2n =.二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)【证】(1)因为EA ABC ⊥平面,AB AC ABC ⊂,平面,所以EA AB ⊥,EA AC ⊥. …… 2分又DC EA ∥,所以DC AB ⊥,DC AC ⊥. …… 4分 因为ABAC A =,AB AC ABC ⊂,平面, 所以DC ABC ⊥平面. …… 6分 (2)取AB 中点M ,连结CM ,FM .在△ABE 中,F ,M 分别为EB ,AB 中点, FM ∥EA ,且2EA FM =. 又DC EA ∥且2EA DC =, 于是DC ∥FM ,且DC FM =.所以四边形DCMF 为平行四边形. …… 10分则DF CM ∥,CM ABC ⊂平面,DF ABC ⊄平面,所以DF ABC ∥平面. …… 14分16.(本小题满分14分)【证】(1)在△ABC 中,πA B C ++=,所以()3sin sin 5C A B =+=,即3sin cos cos sin 5A B A B +=,① …… 2分又()1sin 5A B −=,即1sin cos cos sin 5A B A B −=, ② …… 4分由①②得,21sin cos cos sin 55A B A B ==,.因为2A B π≠,,所以两式相除得,tan 2tan A B =. …… 6分【解】(2)由题意,22tan tan AB A B +=,得3tan AB B=. …… 8分在△ABC中,4cos 5C ==,所以sin 3tan cos 4C C C ==. …… 10分A DC BEFM又()()2tan tan 3tan 3tan tan tan 1tan tan 412tan A B B C A B A B A B B +=π−+=−+=−=−=⎡⎤⎣⎦−−,…… 12分即22tan 4tan 10B B −−=,解得tan 1B =+所以2)AB =. …… 14分17.(本小题满分14分)【解】(1)由题意知OM OA R ==,且060θ︒<︒≤. …… 2分在OMN △中,由正弦定理得sin 60sin(120)MN OM θ=︒−,于是)MN θ=︒−, …… 4分从而市民从点O 出发沿道路OM,MN 行走所经过的路径长 ())f OM MN R θθ=+=︒−,060θ︒<︒≤.当12090θ︒−=︒,即30θ=︒时,()f θ取最大值.即当30θ=︒时,市民从点O 出发沿道路OM ,MN 行走所经过的路径最长.6分 (2)市民从点A 出发沿道路AM ,MN 行走所经过的路径长())g AM MN R θθθ=+=+︒−1sin )2R θθθ=++,060θ︒<︒≤. ……8分1()cos )2g R θθθ'=++30)R θ=−−︒,当060θ︒<︒≤时,11sin(30)22θ−<−︒≤,从而()0g θ'>恒成立, 所以()g θ在区间(03π⎤⎥⎦,上单调递增,所以当60θ=︒时,()g θ取最大值. 即当60θ=︒时,市民从点A 出发沿道路AM ,MN 行走所经过的路径最长.14分 18.(本小题满分16分)【解】(1)设圆C 的方程为222()()(0)x a y b r r −+−=>,由题设,222222()))()a b r a b r r ⎧+−=⎪⎪+−=⎪⎨=,,,①②③ …… 3分①−②整理得a b =2r −=,结合①得222((2)a a ++=− 所以0a =,从而0b =,2r =,所以圆C 的方程为224x y +=. …… 5分 (2)(i )设0(4)P y ,,因为PM ,PN 是圆C 的两条切线,所以PM MC ⊥,PN NC ⊥,所以P M N C ,,,在以PC 为直径的圆上,该圆方程为22040x y x y y +−−=. …… 7分设11()M x y ,,22()N x y ,,则221110140x y x y y +−−=④. 因为11()M x y ,在圆C 上,所以22114x y +=⑤, 由④⑤得101440x y y +−=,同理202440x y y +−=, 由此得直线MN 的方程为0440x y y +−=,所以直线MN 过定点(10),. …… 10分 (ii )由(i ),(10)Q ,,设直线PQ 的方程为(1)y k x =−,则(0)D k −,. 设3344()()A x y B x y ,,,,由22(1)4y k x x y =−⎧⎨+=⎩,,得2222(1)2(4)0k x k x k +−+−=, 所以23422342214.1k x x k k x x k ⎧=⎪⎪+⎨−⎪=⎪+⎩+,…… 12分 由DA QA λ=,DB QB μ=,得3344(1)(1)x x x x λμ=−⎧⎨=−⎩,,即334411x x x x λμ⎧=⎪−⎪⎨⎪=⎪−⎩,, …… 14分所以33443434342211()1x x x xx x x x x x λμ+−+=+=+−−−++22222222281223342111k k k k k k−+=+=+=−−+++. …… 16分 19.(本小题满分16分)【解】(1)当1b=−时,1()ln f x ax x x=++,所以222111()ax x f x a x x x+−'=−+=. …… 2分若函数()f x 有两个极值,则0102140a aa <⎧⎪⎪−>⎨⎪+>⎪⎩,,,解得104a −<<.故a 的取值范围是1(0)4−,. …… 4分(2)当1a b +=时,1()(1)ln f x ax a x x=+−−,所以2222(1)1(1)(1)11()ax a x x ax a f x a x x x x +−−+−−'=−+==. 当0a ≤时,()0f x '<,所以()f x 是(0)+∞,上的减函数,所以函数()f x 无最小值,舍去; …… 6分 当0a >时,由()0f x '>得,1x a>,所以()f x 在1(0)a ,上单调递减,在1()a+∞,上单调递增, 所以函数()f x 的最小值为1()1(1)ln f a a a a =++−.由1(1)ln 2a a a ++−=,得(1)(1ln )0a a −−=,解得1a =,或e a =. …… 9分 (3)对任意给定的正实数a b ,,有()1ln ln f x ax b x ax b x x=+−>−. …… 11分(方法一)设()ln g x ax b x =−,则()ax b g x x −'=,所以()g x 在(0)b a ,上单调递减,在(+)b a∞,)上单调递增, 所以min ()()(1ln )b b g x g b a a ==−. 当e b a≤时,()0g x ≥恒成立,所以存在0b x a=,当0x x >时,()0g x >,即当0x x >时,()0f x >. …… 13分当>e b a 时,()0b g a<, 以下证明e b a b a <,且(e )0bag >.令e bx a=>,2()e x h x x =−,则()e 2x h x x '=−, 因为(e 2)e 20x x x '−=−>,所以()e 2x h x x '=−是(e,)+∞上的增函数, 由()(e)0h x h ''>>,得2()e x h x x =−是(e,)+∞上的增函数, 所以()(e)0h x h >>,故当e x >时,2e x x x >>.故<e b a b a ,2(e )e ln e e ()0b b bb a a aa b g a b a a ⎡⎤=⋅−=−>⎢⎥⎣⎦, 由零点存在性定理知,存在0(e )ba b x a∈,,使0()0g x =,故当0x x >时,()0g x >,即当0x x >时,()0f x >. …… 16分(方法2)设()ln ln )g x ax b x ax b x =−=−+. …… 13分设ln y x =,0x >,则1y x'=−=,易知当4x =时,min 22ln 20y =−>,故ln 0y x >.又由0ax −,得2()b x a ≥,对于任意给定的正实数a b ,,取0x 为2()b a与4中的较大者,则当0x x >时,恒有()0g x >,即当0x x >时,()0f x >. …… 16分20.(本小题满分16分)【解】(1)因为12n n nS a a =+,所以221n n n S a a =+.当2n n *∈N ,≥时,2112()()1n n n n n S S S S S −−−=−+, 即2211n n S S −=+,2211(2)n n S S n n *−−=∈N ≥,. 又1n =时,11112S a a =+,得11a =(舍负)所以{}2n S 是以1为首项公差为1的等差数列. …… 4分(2)由(1)知,211n S n n =+−=.又{}n a 是各项都为正数,0n S >,所以n S =.当2n n *∈N ,≥时,1n n n a S S −=−又11a =,所以)n a n *=∈N .于是(1)nn n b ==−+. …… 6分 当n 为奇数时,123n n T b b b b =++++1)(n =−−++−+=当n 为偶数时,123n n T b b b b =++++1)(n =−−++++=所以(1)n T =−. …… 8分(3)由22122p m m pT T −=得122m p p m −=,即222m pp m ⨯=. …… 10分 设2n n n c =,则11111222n n nn n n n n c c ++++−−=−=, 所以12345c c c c c =>>>>. …… 12分由222m ppm ⨯=,2p m m c c c =>,所以m p >,则1m p +≥. 当1m p =+时,222m ppm ⨯=显然不成立; 当1m p >+时,222m pp m ⨯=,则12m p m p −−=. 记1m p t −−=,则t *∈N ,12t p tp ++=,得121t t p +=−. …… 14分记121n n n d +=−,则1111112102121(21)(21)nn n n n n n n n n d d ++++++−⨯−−=−=<−−−−恒成立, 故数列{}n d 单调递减.又12342117d d d ===<,,,则3n ≥时,1n d <恒成立. 从而方程121t t p +=−的解为12t p ==,或21t p ==,. 所以满足条件的m p ,存在,4142m p m p ====,或,. 所以()(){}221()414222p m m p T T m p m p *−⎧⎫⎪⎪=∈=⎨⎬⎪⎪⎩⎭N ,,,,,,. …… 16分数学Ⅱ(附加题)21A .[选修4-2:矩阵与变换](本小题满分10分)【解】设a b c d ⎡⎤=⎢⎥⎣⎦A (a b c d ∈R ,,,),则152103101a b c d −⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA , …… 3分 所以5312053021a b a b c d c d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,,,,解得1a =−,2b =,3c =,5d =−,所以1235−⎡⎤=⎢⎥−⎣⎦A .… 7分 因为12133527−⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−−⎣⎦⎣⎦⎣⎦, 所以点(12)P ,在矩阵A 对应的变换作用下得到点Q 的坐标为(37)−,. …… 10分 21B .[选修4-4:坐标系与参数方程](本小题满分10分)【解】将sin()13ρθπ+=20y +−=, …… 2分将2ρ=化为普通方程为224x y +=. …… 4分联立22204y x y +−=+=⎪⎩,,消y 得240x −=,所以0x =或x = 所以AB 的中点M 的直角坐标为1)2,, …… 8分 所以点M 的极坐标为(1)6π,. …… 10分 21C .[选修4-5:不等式选讲](本小题满分10分)【解】因为22262a b c −=+ …… 2分22222122(2)(1)()(3)3233b c b c a =+++=−≥, …… 6分即25120a a −≤,所以 1205a ≤≤. …… 10分22.(本小题满分10分)【解】三棱锥P ABC −中,因为PA ⊥平面ABC ,所以AP AB ⊥,AP AC ⊥,又AB AC ⊥,所以,可以以{}AB AC AP ,,建立如图所示空间直角坐标系A xyz −. 因为1PA =,2AB AC ==,所以(000)A ,,,(200)B ,,,(020)C ,,,(001)P ,,. 所以(020)AD AC λλ==,,,即(020)D λ,,.…… 2分 所以(201)PB =−,,,(021)PD λ=−,,. 设平面PBD 的法向量为1111()x y z =n ,,,则1111112020PB x z PD y z λ⎧⋅=−=⎪⎨⋅==⎪⎩n n ,-,取1(12)λλ=n ,,. …… 4分(1)当12λ=时,11(11)2=n ,,,又可取2(001)=n ,,为平面BDC 的一个法向量,所以1212122cos ||||3⋅<>===⋅n n n n n n ,,由图可知二面角P BD C −−的余弦值值为23−. …… 6分(2)(021)PC =−,,,平面PBD 的一个法向量为1(12)λλ=n ,,. 设直线PC 与平面PBD 所成角为θ,则111||sin cos ||||PC PC PC θ⋅=<>==⋅n nn , …… 8分=22940λλ−+=, 解得12λ=或4λ=−, 因为01λ<<,所以12λ=. …… 10分 23.(本小题满分10分)【解】(1)因为每个服务区入口处设置宣传标语A 的概率为23, 所以每个服务区入口处设置宣传标语B 的概率为13,所以1~(2)3X B n ,,所以12()233E X n n =⨯=. …… 2分(2)长途司机在走该高速全程中,随机的选取3个服务区,共有32n C 种选取方法.长途司机在走该高速全程中,随机的选取3个服务区,记这3个服务区看到相同的宣传标语的事件数为M ,则其概率32nMP C =. …… 4分设该高速公路全程2(4)n n n *∈N ≥,个服务区中,入口处设置醒目的宣传标语A 的有 m (2)m m n ∈N ,≤个.①当323m n −≤≤时,332m n m M C C −=+.令332()m n m f m C C −=+,323m n −≤≤, 则当324m n −≤≤时,33331212(1)()m n m m n m f m f m C C C C +−−−+−=+−−33331221()()m m n m n m C C C C +−−−=−−−2221m n m C C −−=−212(1)()2n n m −=−− 所以当1m n −≤时,(1)()f m f m +<;当m n ≥时,(1)()f m f m +>,所以当m n =时,3min [()]()2n f m f n C ==,即3min ()2n M f n C ==. …… 6分②当3m <,m ∈N 时,32n m M C −=.显然33322122n n n C C C −−>>,所以33222n m n M C C −−=≥.因为4n ≥,所以23n n −>,所以322(22)(23)(24)4(1)(2)(23)66n n n n n n n C −−−−−−−==334(1)(2)426n n n n n C C −−>=>,即32n M C >. …… 8分③当232n m n −<≤,m ∈N 时,3m M C =.因为232n m n −<≤,m ∈N 时,22m n =−,或21m n =−,或2m n =,所以同②,32n M C >.综上,m n =时,3min ()2nM f n C ==,3min min33222242nn n C M n P n C C −===−, 即两种宣传标语1∶1设置时,符合题设的概率最小,其最小值为242n n −−.… 10分。

理科数学-2020年3月高三第三次在线大联考(新课标Ⅰ卷)(考试版)

理科数学-2020年3月高三第三次在线大联考(新课标Ⅰ卷)(考试版)

2020年3月高三第三次在线大联考(新课标Ⅰ卷)理科数学(满分:150分 考试时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{|20}A x x =-≥,{|ln(1)}B x y x =∈=+Z ,则A B =I A .[1,2]-B .(1,2]-C .{0,1,2}D .{1,0,1,2}-2.设复数z 满足|i ||i |z z -=+,i 为虚数单位,且z 在复平面内对应的点为(,)Z x y ,则下列结论一定正确的是A .1x =B .1y =C .0x =D .0y =3.已知等差数列{}n a 的前n 项和为n S ,若953S a =,则一定成立的是 A .46S S = B .45S S = C .57S S =D .56S S =4.国家统计局发布数据显示,2020年1月份全国CPI (居民消费价格指数)同比上涨5.4%,环比上涨1.4%.下图是2019年1月到2020年1月全国居民消费价格同比(与去年同期相比)和环比(与上月相比)涨跌幅,则下列判断错误的是A .各月同比全部上涨,平均涨幅超过3%B .各月环比有涨有跌,平均涨幅超过0.3%C .同比涨幅最大的月份,也是环比涨幅最大的月份D .环比跌幅最大的月份,也是同比涨幅最小的月份5.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .56.已知实数,x y 满足约束条件2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩,则2x y +的取值范围是A .(3,6]-B .[3,6]-C .3(,6]2-D .3[,6]2-7.函数52sin ()([π,0)(0,π])33x xx xf x x -+=∈--U 的图象大致为8.已知向量(1,),(2,)t y =-=a b ,其中22121y t t =-++,则当y 最小时,cos ,=a b A 25B .25C .5D 5 9.已知[]x 表示不超过x 的最大整数,数列{}n a 满足1[]22(1)n n a n -=-,则数列{}n a 的前60项的和为A .1830B .1830-C .3660D .3660-10.将函数22()6sin cos 2cos f x x x x =+-的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象.对于下列四种说法,正确的是 ①函数()g x 的图象关于点π(,0)3成中心对称②函数()g x 在(π,π)-上有8个极值点③函数()g x 在区间ππ[,]24--上的最大值为2,最小值为2-④函数()g x 在区间ππ(,)44-上单调递增A .①②B .②③C .②③④D .①③④11.如图平面多边形中,四边形ABCD 是边长为2的正方形,外侧4个三角形均为正三角形.若沿正方形的4条边将三角形折起,使顶点1234,,,S S S S 重合为S 点,得到四棱锥S ABCD -,则此四棱锥的外接球的表面积为A .πB .2πC .3πD .4π12.已知过点(4,0)M 的直线与抛物线C :24y x =交于点,A B ,设O 为坐标原点,则||||||OA OB AB +的最大值为 A .1B .2C 2D .22二、填空题(本大题共4小题,每小题5分,共20分) 13.5(21)x y +-的展开式中22x y 的系数为___________. 14.若π1sin(),(0,π)63αα+=-∈,则πsin(2)3α+=___________.15.已知双曲线E :2221(0)x y a a-=>的左、右焦点分别为12,F F ,M 在E 的右支上,若12ππ[,]43F MF ∠∈,则12MF MF ⋅u u u u r u u u u r的最大值为___________.16.若存在直线l 与函数1()(0)f x x x=<及2()g x x a =+的图象都相切,则实数a 的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知四边形ABCD 中,AB AD ⊥,π6BDC ∠=,2AD =,4DC =.(1)若5cos ABD ∠=,求BD ,BC ; (2)若C ADC ∠=∠,求sin CBD ∠. 18.(本小题满分12分)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,MB ∥AN ,2NA AB ==,4BM =,23CN =.(1)证明:平面DMN ⊥平面BCN ; (2)求二面角C MN D --的余弦值. 19.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,过椭圆C 的左、右焦点12,F F 分别作倾斜角为π3的直线12,l l ,12,l l 3 (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 只有一个公共点,求点12,F F 到直线l 的距离之积. 20.(本小题满分12分)某位学生为了分析自己每天早上从家出发到教室所花的时间,随机选取了10天的数据,统计如下(单位:分钟):23,21,22,19,22,19,17,19,21,17.(1)若每天上学所花的时间X 服从正态分布2(,)N μσ,用样本的平均数和标准差分别作为μ和σ的估计值.(ⅰ)求μ和σ的值;(ⅱ)若学校7点30分上课,该学生在7点04分到7点06分之间任意时刻从家出发,求该学生上学不迟到的概率的范围;(2)在这10天中任取2天,记该学生早上从家出发到教室所花时间的差的绝对值为Y ,求Y 的分布列和数学期望.附:若随机变量X 服从正态分布2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)P X μσμσ-<<+= 0.9544,(33)0.9974P X μσμσ-<<+=.21.(本小题满分12分)已知函数()cos(1)(1ln )f x x x x =-+-. (1)设()()g x f x '=,求证:1()g x x<; (2)讨论()f x 的单调性.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为8242x tt y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若射线(0)4θρπ=>与l 和C 分别交于点,A B ,求||AB . 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|21||1|f x x ax =+--,a ∈R . (1)当2a =时,求不等式1()1f x -≤≤的解集;(2)当1(,0)2x ∈-时,不等式()2f x x >恒成立,求实数a 的取值范围.。

2020届海南省全国大联考高三第三次联考数学试题(附带详细解析)

2020届海南省全国大联考高三第三次联考数学试题(附带详细解析)
11.已知数列 的前 项和为 ,且 ,则 等于()
A. B.0C.2D.4
12.已知函数 图象与直线 相交,若在 轴右侧的交点自左向右依次记为 ,则 ()
A. B. C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
13.不等式 的解集为________.
14.曲线 在点 处的切线方程为________.
C. D.
2.在等差数列 中, ,则数列 的公差为()
A. B. C.1D.2
3.设 ,则 的大小关系是()
A. B. C. D.
4.数列 满足 ,且对任意的 ,有 ,则 ()
A.2021B.2035C.2037D.2041
5.若 ,则一定有()
A. B. C. D.
6.已知数列 为等比数列, ,数列 的前 项和为 ,则 等于()
①求数列 的通项公式;
②是否存在正整数 ,使得 成立?若存在,求出所有 的值;若不存在,请说明理由.
22.已知函数 .
(1)若 ,讨论函数 的单调性;
(2)设 ,是否存在实数 ,对任意 , , ,有 恒成立?若存在,求出 的范围;若不存在,请说明理由.
参考答案
1.C
【解析】
【分析】
直接根据集合的交集定义,即可得到本题答案.
【分析】
必要性显然成立;由 , ,得 ①,同理可得 ②,综合①,②,得 ,充分性得证,即可得到本题答案.
【详解】
必要性显然成立;下面来证明充分性,
若 ,所以当 时, ,
所以 ,化简得 ①,
所以当 时, ②,
① ②得 ,所以 ,即数列 是等差数列,充分性得证,所以“ ”是“数列 是等差数列”的充要条件.

衡水中学2020届高三下学期全国第三次联考数学(理)试题含解析

衡水中学2020届高三下学期全国第三次联考数学(理)试题含解析

河北衡水中学2020届全国高三第三次联合考试(Ⅰ)理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2M x x x =+>,(){}ln 10N x x =->,则( )A 。

M N⊇ B 。

M N⊆C.()1,M N ⋂=+∞D.()2,M N ⋃=+∞【答案】A 【解析】 【分析】解出集合M 、N ,利用集合的包含关系和交集、并集的定义可判断各选项的正误. 【详解】{}()()20,10,M x x x =+>=-∞-⋃+∞,(){}{}()ln 10112,N x x x x =->=->=+∞,所以,M N ⊇,()2,M N =+∞,()(),10,MN =-∞-+∞。

故选:A 。

【点睛】本题考查集合包含关系的判断,同时也考查了集合的交集和并集运算、二次不等式与对数不等式的求解,考查计算能力,属于基础题.2. 已知复数2(2)z i =+,则z 的虚部为( )A 。

3B 。

3i C. 4 D.4i【答案】C 【解析】 【分析】根据复数的代数形式的乘法法则计算即可得解;【详解】解:2=+=+,所以z的虚部为4.(2)34z i i故选:C.【点睛】本题考查复数代数形式的乘法,复数的相关概念,属于基础题。

3。

以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.清华大学2019年毕业生去向分布情况统计表清华大学2019年毕业生签三方就业单位所在省(区、市)分布图的是( )。

则下列选项错误..A. 清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业B。

清华大学2019年毕业生中,硕士生的就业率比本科生高C。

清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散D。

清华大学2019年签三方就业毕业生中,留北京人数超过一半【答案】D【解析】【分析】选项A在表中找出本科生选择继续深造达80.4%,硕士生选择就业达89.2%,则判断选项A正确;选项B在表中找出硕士生的就业率达89.2%,本科生的就业率达17.3%,则判断选项B正确;选项C在表中分析出本科生的就业城市主要分散在北京、广东、上海,硕士生的就业城市主要集中在北京,则判断选项C正确;选项D在表中分析出留北京人数仅博士生达到了51。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届全国大联考高三第三次联考数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 集合,则()A.B.C.D.
2. 在等差数列中,,则数列的公差为()A.B.C.1 D.2
3. 设,则的大小关系是()A.B.C.D.
4. 若,则一定有()
C.D.
A.
B.
5. 已知数列为等比数列,,数列的前项和为,则等于()
A.B.C.D.
6. 若,则的最小值为()
A.6
B.C.D.
7. 意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,…,即
,此数列在物理、化学等
领域都有广泛的应用,若此数列被2整除后的余数构成一个新数列,则数
列的前2020项的和为()
A.1347 B.1348 C.1349 D.1346
8. 若数列的前项和为,则“”是“数列是等差数列”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
9. 在中,,点为的中点,过点作
交所在的直线于点,则向量在向量方向上的投影为()
A.2
B.
C.1 D.3
10. 已知数列的前项和为,且,若
,则取最大值时,的值为()
A.14 B.12 C.15 D.13
11. 已知函数图象与直线相交,若在轴右侧的交点自左向右依次记为,则()
A.B.C.
D.
12. 数列满足,且对任意的,有,则()
A.B.C.D.
二、填空题
13. 不等式的解集为________.
14. 若满足约束条件,则的最大值为____________.
15. 已知数列满足,若对于任意的,不等式恒成立,则实数的取值范围为__________.
16. 已知定义在上函数满足,且当时,
恒成立,则不等式的解集为
____________.
三、解答题
17. 已知关于的不等式的解集为.
(1)当时,求集合;
(2)当且时,求实数的取值范围.
18. 已知数列的前项和为,且. (1)证明:数列为常数列.
(2)求数列的前项和.
19. 在中,角所对的边分别为,且
.
(1)判断的形状;
(2)若,的周长为16,求外接圆的面积.
20. 某工厂生产甲、乙两种产品均需用三种原料,一件甲产品需要原料,原料,原料,一件乙产品需要原料,原料,原料,出售一件甲产品可获利7万元,出售一件乙产品可获利6万元,现有原料,原料,原料,请问该如何安排生产可使得利润最大?
21. 设数列的前项和为,已知.
(1)令,求数列的通项公式;
(2)若数列满足:.
①求数列的通项公式;
②是否存在正整数,使得成立?若存在,求出所有的值;若不存在,请说明理由.
22. 已知函数
(1)若在上是减函数,求实数的取值范围;
(2)若的最大值为2,求实数的值.。

相关文档
最新文档