电磁感应专题

合集下载

专题30 电磁感应中的方向问题(解析版)

专题30 电磁感应中的方向问题(解析版)

专题30 电磁感应中的方向问题目录一、热点题型归纳 ........................................................................................................................................................【题型一】右手定则的应用 ................................................................................................................................ 【题型二】楞次定律活用 .................................................................................................................................... 【题型三】二次感应 ............................................................................................................................................ 【题型四】比较电势高低 .................................................................................................................................... 二、最新模考题组练 .. (2)【题型一】 右手定则的应用【典例分析】如图所示,半径为r 的金属圆盘在垂直于盘面的磁感应强度为B 的匀强磁场中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ωRB .由d 到c ,I =Br 2ωRC .由c 到d ,I =Br 2ω2RD .由d 到c ,I =Br 2ω2R答案 D解析 由右手定则,圆盘相当于电源,其电流方向为从边缘指向圆心,所以通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动势E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R,D 正确.【提分秘籍】右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.三定则一定律的比较【变式演练】1.如图所示.金属棒ab、金属导轨和螺线管组成闭合回路,金属棒ab在匀强磁场B中沿导轨向右运动,则()A.ab棒不受安培力作用B.ab棒所受安培力的方向向右C.ab棒向右运动速度v越大,所受安培力越大D .螺线管产生的磁场,A 端为N 极 答案 C解析 金属棒ab 沿导轨向右运动时,安培力方向向左,以“阻碍”其运动,选项A 、B 错误;金属棒ab 沿导轨向右运动时,感应电动势E =Bl v ,感应电流I =ER ,安培力F =BIl =B 2l 2v R ,可见,选项C 正确;根据右手定则可知,流过金属棒ab 的感应电流的方向是从b 流向a ,所以流过螺线管的电流方向是从A 端到达B 端,根据右手螺旋定则可知,螺线管的A 端为S 极,选项D 错误.2.(多选)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd ,用绝缘轻质细杆悬挂在O 点,并可绕O 点左右摆动.金属线框从图示位置的右侧某一位置由静止释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则下列说法中正确的是( )A .线框中感应电流的方向先是d →c →b →a →d ,后是a →b →c →d →aB .线框中感应电流的方向是d →c →b →a →dC .穿过线框中的磁通量先变大后变小D .穿过线框中的磁通量先变小后变大 答案 BD解析 线框从图示位置的右侧摆到最低点的过程中,穿过线框的磁通量减小,由楞次定律可判断感应电流的方向为d →c →b →a →d ,从最低点到左侧最高点的过程中,穿过线框的磁通量增大,由楞次定律可判断感应电流的方向为d →c →b →a →d .也可以利用右手定则。

《电磁感应定律》专题

《电磁感应定律》专题

t 《电磁感应定律》专题一.选择题(共10小题)1.物理学中的许多规律是通过实验发现的,下列说法中符合史实的是()A.法拉第通过实验发现了电磁感应现象B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.卡文迪许通过扭秤实验测出了静电力常量2.关于电磁感应,以下说法正确的是()A.只要磁通量发生变化就会产生感应电流B.导体做切割磁感线运动时,导体两端会产生电压C.感应电流的产生是因为静电力做了功D.发生电磁感应,外界不需要提供能量3.如图所示,两个相同的小导线环和大导线环放在同一水平面内,且两小环关于大环圆心对称.当两小环中通过图示方向的电流,电流强度随时间均匀增大且始终相同,大环()A.无感应电流,不存在扩张收缩趋势B.有顺时针方向的感应电流,存在扩张趋势C.有顺时针方向的感应电流,存在收缩趋势D.有逆时针方向的感应电流,存在收缩趋势4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图所示.导轨上放一根导线ab,磁感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动可能是()A.匀速向右运动B.加速向右运动C.匀速向左运动D.加速向左运动5.如图甲所示,在坐标系xOy中,有边长为L的正方形金属线框abcd,其对角线ac和y轴重合,顶点a位于坐标原点O处.在y轴右侧的第I象限内有一等腰直角三角形区域,直角边边长为L,底边的左端位于坐标原点O处,内有垂直纸面向里的匀强磁场.t=0时刻,线圈从图示位置沿cb方向,匀速穿过磁场区域.取a→b→c→d→a为感应电流的正方向,则在线圈穿越磁场区域的过程中,感应电流i、ab间的电势差U ab.随时间t变化的图线应是乙图中的()A.B.C.D.6.在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的强磁场区域,区域I的磁场方向垂直斜面向上,区域II的磁场方向垂直斜面向下,磁场和宽度H P及PN均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,1时刻ab边刚越GH进入磁场I区域,此时导线框恰好以速度v1做匀速直线运动;t2时刻ab边下滑到JP与MN的中间位置,此时导线框又恰好以速度v2做匀速直线运动.重力加速度为g,下列说法中正确的是()A.当ab边刚越好JP时,导线框具有加速度大小为a=gsinθB.导线框两次匀速直线运动的速度v1:v2=4:1C.从t1到t2的过程中,导线框克服安培力做功的大小等于重力势能的减少D.从t1到t2的过程中,有+机械能转化为电能7.如图所示,磁场垂直于纸面向外,磁场的磁感应强度随水平向右的x轴按B=B0+kx(B0、k为常量)的规律均匀增大.位于纸面内的正方形导线框ab cd处于磁场中,在外力作用下始终保持dc边与x轴平行向右匀速运动.若规定电流沿a→b→c→d→a的方向为正方向,则从t=0到t=t1的时间间隔内,下列关于该导线框中产生的电流i随时间t变化的图象,正确的是()A.B.C.D.8.如图电路中,A1、A2是两个指示灯,L是自感系数很大的线圈,电阻R阻值较小,开关S1断开、S2闭合.现闭合S1,一段时间后电路稳定.下列说法中正确的是()A.闭合S1,通过电阻R的电流先增大后减小B.闭合S1,A l亮后逐渐变暗C.闭合S1,A2逐渐变亮,然后亮度不变D.断开电路时,为保护负载,应先断开S2,再断开S19.如图所示,电源的电动势为E、内阻为r,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,与灯泡L1连接的是一只理想二极管D.下列说法中正确的是()A.闭合开关S稳定后L1、L2亮度相同B.断开S的瞬间,L2会逐渐熄灭C.断开S的瞬间,L1中电流方向向左D.断开S的瞬间,a点的电势比b点高10.下列关于日光灯电路的接法中,正确的是()A.B.C.D.二.解答题(共4小题)11.如图所示,间距为L的光滑M、N金属轨道水平放置,ab是电阻为R0的金属棒,此棒可紧贴平行导轨滑动.导轨右侧连接一水平放置的平行板电容器,板间距为d,板长也为L,导轨左侧接阻值为R的定值电阻,其它电阻忽略不计.轨道处的磁场方向垂直轨道平面向下,电容器处的磁场垂直纸面向里,磁感应强度均为B.当ab以速度v0向右匀速运动时,一带电量大小为q的粒子以某一速度从紧贴A板左侧平行于A板进入电容器内,恰好做匀速圆周运动,并从C板右侧边缘离开.试求:(1)AC两板间的电压U;(2)带电粒子的质量m;(3)带电粒子的速度大小v.( 12.如图甲所示,单匝矩形闭合导线框 αbed 处于匀强磁场中,线框电阻为 R ,αb 、αd 的边长分别为 L l 、L 2;磁感应 强度 B 的大小随时间变化的规律如图乙所示.(1)求 0~2t 0 时间内,回路中电流 I 1 的大小和方向;(2)求 t 0 时刻 ab 边受到的安培力大小 F ;(3)在 2t 0 时刻后线框绕 cd 边以角速度 ω 匀速转动,计算线框中感应电流的有效值 I 2,并求线框从中性面开始转过 90°的过程中,通过导线横截面的电量 q .13.如图 A 所示,一能承受最大拉力为 16N 的轻绳吊一质量为 m=0.8k g 边长为 L= m 正方形线圈 ABCD ,已知线圈 总电阻为 R=0.5Ω,在线圈上半部分布着垂直于线圈平面向里,大小随时间变化的磁场,如图B 所示,已知 t 0 时刻轻绳 刚好被拉断,g=10m/s 2求:1)在轻绳被拉断前线圈感应电动势大小及感应电流的方向;(2)t=0 时 AB 边受到的安培力的大小;(3)t 0 的大小.14.如图所示,正方形单匝均匀线框 a b cd ,边长 L=0.4m ,每边电阻相等,总电阻 R=0.5Ω. 一根足够长的绝缘轻质细 线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接 绝缘物体 P ,物体 P 放在一个光滑的足够长的固定斜 面上,斜面倾角 θ=30°,斜面上方的 细线与斜面平行.在正方形线框正下方有一有界的勻强磁场,上边界 I 和下边界 II 都水平,两边界之间距离也是 L=0.4m .磁场方向水平,垂直纸面向里,磁感应强度大小 B=0.5T . 现让正方形线框 的 cd 边距上边界 I 的正上方高度 h=0.9m 的位置由静止释放,且线框在 运动过程中始终与磁场垂直,cd 边始终保持水 平,物体 P 始终在斜面上运动,线框刚好能 以 v=3m/s 的速度进入勻强磁场并匀速通过匀强磁场区域.释放前细线绷 紧,重力加速度 g=10m/s 2,不计空气阻力.(1)线框的 cd 边在匀强磁场中运动的过程中,c 、d 间的电压是多大?(2)线框的质量 m 1 和物体 P 的质量 m 2 分别是多大?(3)在 cd 边刚进入磁场时,给线框施加一个竖直向下的拉力 F 使线框以进入磁场前 的加速度匀加速通过磁场区域, 在此过程中,力 F 做功 w=0.23J ,求正方形线框 cd 边产生的焦耳热是多少?( 由 《电磁感应定律》专题参考答案与试题解析一.选择题(共 10 小题)1.物理学中的许多规律是通过实验发现的,下列说法中符合史实的是( )A .法拉第通过实验发现了电磁感应现象B .牛顿通过理想斜面实验发现了物体的运动不需要力来维持C .奥斯特通过实验发现了电流的热效应D .卡文迪许通过扭秤实验测出了静电力常量解:A 、法拉第通过实验发现了电磁感应现象.故 A 正确.B 、伽利略通过理想斜面实验发现了物体的运动不需要力来维持.故 B 错误.C 、奥斯特通过实验发现了电流的磁效应.故 C 错误.D 、卡文迪许通过实验测出了引力常量,故 D 错误.故选:A .2.(2014•长宁区一模)关于电磁感应,以下说法正确的是( ) A .只要磁通量发生变化就会产生感应电流 B .导体做切割磁感线运动时,导体两端会产生电压C .感应电流的产生是因为静电力做了功D .发生电磁感应,外界不需要提供能量解:A 、当闭合电路中的磁通量发生变化,才会产生感应电流,故 A 错误;B 、导体做切割磁感线运动时,导体两端会产生电压,故 B 正确;C 、感应电流现象是产生电能,而静电力做功是消耗电能,故 C 错误;D 、在电磁感应现象中,消耗了机械能而产生了电能,即机械能转化为了电能,故D 错误;故选:B .3. 2013•嘉定区一模)如图所示,两个相同的小导线环和大导线环放在同一水平面内,且两小环关于大环圆心对称.当 两小环中通过图示方向的电流,电流强度随时间均匀增大且始终相同,大环( )A .无感应电流,不存在扩张收缩趋势B .有顺时针方向的感应电流,存在扩张趋势C .有顺时针方向的感应电流,存在收缩趋势D .有逆时针方向的感应电流,存在收缩趋势解:根据安培定则判断可知,两个小环产生的磁场方向相反,面积又相等,则知穿过大环的磁通量 完 全抵消,即总的磁通量为零,而且不会变化,故大环中无感应电流,也就不受磁场的安培力作用,不存在扩张或收缩 趋势.故选 A4.(2014•上海二模)在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈 M 相接,如图所示.导轨上放一根 导线 ab ,磁感线垂直于导轨所在平面.欲使 M 所包围的小闭合线圈 N 产生顺时针方向的感应电流,则导线的运动可 能是( )A .匀速向右运动B .加速向右运动C .匀速向左运动D .加速向左运动解:A 、导线 ab 匀速向右运动时,导线 ab 产生的感应电动势和感应电流恒定不变,大线圈M 产生的磁场恒定不变,穿过小线圈 N 中的磁通量不变,没有感应电流产生.故 A 错误.B 、导线 ab 加速向右运动时,导线 ab 中产生的感应电动势和感应电流增加, 右手定则判断出来 a b 电流方向由 a →b ,根据安培定则判断可知:M 产生的磁场方向:垂直纸面向里,穿过N 的磁通量增大,由楞次定律判断得知:线圈N 产 生逆时针方向的感应电流,不符合题意.故 B 错误.C 、导线 ab 匀速向左运动时,导线 ab 产生的感应电动势和感应电流恒定不变,大线圈 M 产生的磁场恒定不变, 穿过小线圈 N 中的磁通量不变,没有感应电流产生,不符合题意.故 C 错误.D 、导线 ab 加速向左运动时,导线 ab 中产生的感应电动势和感应电流增加,由右手定则判断出来 ab 电流方向由 b →a ,根据安培定则判断可知:M 产生的磁场方向:垂直纸面向外,穿过 N 的磁通量增大,由楞次定律判断得知:线 圈 N 产生顺时针方向的感应电流,符合题意.故 D 正确.故选 D( t =5.(2014•德州二模)如图甲所示,在坐标系 xOy 中,有边长为 L 的正方形金属线框 abcd ,其对角线 ac 和 y 轴重合, 顶点 a 位于坐标原点 O 处.在 y 轴右侧的第 I 象限内有一等腰直角三角形区域,直角边边长为 L ,底边的左端位于坐 标原点 O 处,内有垂直纸面向里的匀强磁场.t=0 时刻,线圈从图示位置沿 cb 方向,匀速穿过磁场区域.取 a →b →c →d →a 为感应电流的正方向,则在线圈穿越磁场区域的过程中,感应电流 i 、ab 间的电势差 U ab .随时间 t 变化的图线应是乙 图中的( )A .B .C .D . 解:A 、在 d 点运动到 O 点过程中,ab 边切割磁感线,根据右手定则可以确定线框中电流方向为逆时针方向,即正方 向,电动势均匀减小到 0,则电流均匀减小到 0;然后 cd 边开始切割,感应电流的方向为顺时针方向,即负方向,电 动势均匀减小到 0,则电流均匀减小到 0.故 A 错误,B 正确.C 、d 点运动到 O 点过程中,ab 边切割磁感线,ab 相当于电源,电流由 a 到 b ,b 点的电势高于 a 点,ab 间的电势差 Uab 为负值,大小等于电流乘以 bcd a 三条边的电阻,并逐渐减小.ab 边出磁场后后,cd 边开始切割,cd 边相当于电 源,电流由 b 到 a ,ab 间的电势差 Uab 为负值,大小等于电流乘以 ab 边得电阻,并逐渐减小,且电压的最大值小于前 阶段的最大值.故 C 错误,D 也错误.故选:B .6. 2014•陕西校级二模)在如图所示的倾角为 θ 的光滑斜面上,存在着两个磁感应强度大小均为B 的强磁场区域,区 域 I 的磁场方向垂直斜面向上,区域 II 的磁场方向垂直斜面向下,磁场和宽度 HP 及 PN 均为 L ,一个质量为 m 、电阻 为 R 、边长也为 L 的正方形导线框,由静止开始沿斜面下滑,t 1 时刻 ab 边刚越 GH 进入磁场 I 区域,此时导线框恰好 以速度 v 1 做匀速直线运动;2 时刻 ab 边下滑到 JP 与 MN 的中间位置,此时导线框又恰好以速度 v 2 做匀速直线运动.重 力加速度为 g ,下列说法中正确的是( )A .当 ab 边刚越好 JP 时,导线框具有加速度大小为 a=gsin θB .导线框两次匀速直线运动的速度 v 1:v 2=4:1C .从 t 1 到 t 2 的过程中,导线框克服安培力做功的大小等于重力势能的减少D .从 t 1 到 t 2 的过程中,有+ 机械能转化为电能【解答】解:A 、t 1 时刻,线圈做匀速直线运动,所受的安培力与重力的下滑分力平衡,则得:F 1==mg sin θ;当 ab 边刚越好 JP 时,线圈的上下两边都切割磁感线,产生感应电动势,回路中产生的总感应电动势为 E=2BLv 1,线圈所受的安培力的合力为 F=2BIL=2BL •=4mgsin θ 根据牛顿第二定律得:F ﹣mgsin θ=ma ,解得:a=3gsin θ,故 A 错误.B 、t 2 时刻,有安培力 F 2=2BLI 2=2BL= =mg sin θ,由两式比较得,v 1:v 2=4:1.故 B 正确.C 、从 t 1 到 t 2 过程中,导线框克服安培力做功的大小等于回路中产生的焦耳热,此过程中,线框的重力势能和动能均 减小,根据功能关系得知,线圈克服安培力做功的大小等于重力势能的减少量与动能减小量之和.故C 错误.D 、根据能量守恒定律得从 t 1 到 t 2,线框中产生的电能为:E 电 + .故 D 正确.故选:BD7.(2014•吉林校级二模)如图所示,磁场垂直于纸面向外,磁场的磁感应强度随水平向右的 x 轴 按 B=B 0+kx (B 0、k 为常量)的规律均匀增大.位于纸面内的正方形导线框 abcd 处于磁场中,在外力作用下始终保持dc边与x轴平行向右匀速运动.若规定电流沿a→b→c→d→a的方向为正方向,则从t=0到t=t1的时间间隔内,下列关于该导线框中产生的电流i随时间t变化的图象,正确的是()A.B.C.D.【解答】解:由题意可知,ad、bc两边均在切割磁感线,产生感应电动势的方向相反,大小相减,根据题意,bc、ad两边的磁场之差为:△B=B0+k(L+x)﹣B0﹣kx=kL根据法拉第电磁感应定律E=BLv,则有:△E=BLv=Lv•kL;而感应电流i==,是定值,故A正确,BCD错误;故选:A8.(2014•宿迁二模)如图电路中,A1、A2是两个指示灯,L是自感系数很大的线圈,电阻R阻值较小,开关S1断开、S2闭合.现闭合S1,一段时间后电路稳定.下列说法中正确的是()A.闭合S1,通过电阻R的电流先增大后减小B.闭合S1,A l亮后逐渐变暗C.闭合S1,A2逐渐变亮,然后亮度不变D.断开电路时,为保护负载,应先断开S2,再断开S1解:A、闭合开关S1的瞬间,由于线圈中自感电动势的阻碍,通过电阻R的电流慢慢增加.故A错误.B、闭合开关S1,虽因存在自感作用,但通过R的电流逐渐增加,干路电流逐渐增加,通过A l逐渐变亮.故B错误.C、当闭合S1,线圈对电流的阻碍渐渐变小,导致A2逐渐变暗,故C错误;D、断开电路时,为保护负载,由于线圈L产生自感电动势,应先断开S2,再断开S1.故D正确,故选:D.9.(2013•扬州模拟)如图所示,电源的电动势为E、内阻为r,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,与灯泡L1连接的是一只理想二极管D.下列说法中正确的是()A.闭合开关S稳定后L1、L2亮度相同B.断开S的瞬间,L2会逐渐熄灭C.断开S的瞬间,L1中电流方向向左D.断开S的瞬间,a点的电势比b点高解:A、闭合开关S稳定后,因线圈L的直流电阻不计,所以L1与二极管被短路,导致灯泡L1不亮,而L2将更亮,因此L1、L2亮度度不同,故A错误;B、断开S的瞬间,L2会立刻熄灭,故B错误;C、断开S的瞬间,线圈L与灯泡L1及二极管构成回路,因线圈产生感应电动势,a端的电势高于b端,所以回路中没有电流,故C错误,D正确;故选:D10.(2009•肇庆一模)下列关于日光灯电路的接法中,正确的是()A.B.C.D.解:启辉器是一个自动开关,开始时闭合,然后迅速断开,整流器线圈中产生瞬时高电压,点燃灯管;故启辉器与灯管并联后与整流器串流,故AD错误,BC正确;故选BC.二.解答题(共4小题)11.(2014惠州模拟)如图所示,间距为L的光滑M、N金属轨道水平放置,ab是电阻为R0的金属棒,此棒可紧贴平行导轨滑动.导轨右侧连接一水平放置的平行板电容器,板间距为d,板长也为L,导轨左侧接阻值为R的定值电阻,其它电阻忽略不计.轨道处的磁场方向垂直轨道平面向下,电容器处的磁场垂直纸面向里,磁感应强度均为B.当ab 以速度v0向右匀速运动时,一带电量大小为q的粒子以某一速度从紧贴A板左侧平行于A板进入电容器内,恰好做匀速圆周运动,并从C板右侧边缘离开.试求:(1)AC两板间的电压U;(2)带电粒子的质量m;(3)带电粒子的速度大小v.解:(1)棒ab向右运动时产生的电动势为:E=BLv0AC间的电压即为电阻R的分压,由分压关系可得:(或:,U=IR)解得:(2)带电粒子在AC板间电磁场中做匀速圆周运动,则重力与电场力平衡,则有:解得:(3)粒子由牛顿第二定律可得:粒子运动轨迹如图所示,由几何关系可得:L2+(r﹣d)2=r2解得:v=答:(1)AC两板间的电压U为;(2)带电粒子的质量m为;(3)带电粒子的速度大小v为.12.(2014•南通三模)如图甲所示,单匝矩形闭合导线框αbed处于匀强磁场中,线框电阻为R,αb、αd的边长分别为L l、L2;磁感应强度B的大小随时间变化的规律如图乙所示.(1)求0~2t0时间内,回路中电流I1的大小和方向;(2)求t0时刻ab边受到的安培力大小F;(3)在2t0时刻后线框绕cd边以角速度ω匀速转动,计算线框中感应电流的有效值I2,并求线框从中性面开始转过90°的过程中,通过导线横截面的电量q.解:(1)在0到2t0时间内,回路中的感应电动势:E1=;由图乙可知,;由闭合电路欧姆定律,则有:电流大小I1=;解得:;由楞次定律,可知,在0到2t0时间内,回路中的电流方向逆时针;(2)安培力的大小F=BI1L1;t0时刻的磁场为B=;那么安培力的大小为,F=;(3)线框匀速转动时,产生正弦交流电,感应电动势的最大值E2m=B0L1L2ω;感应电动势的有效值E2=;感应电流的有效值I2==;平均感应电流;通过导线横截面的电量q=;解得:答:(1)0~2t0时间内,回路中电流I1的大小和方向为逆时针;(2)t0时刻ab边受到的安培力大小F=(3)线框中感应电流的有效值I2=.;;线框从中性面开始转过90°的过程中,通过导线横截面的电量:, 13.(2014•潮州二模)如图 A 所示,一能承受最大拉力为 16N 的轻绳吊一质量为 m=0.8k g 边长为 L= m 正方形线圈 ABCD ,已知线圈总电阻为 R=0.5Ω,在线圈上半部分布着垂直于线圈平面向里,大小随时间变化的磁场,如图 B 所示, 已知 t 0 时刻轻绳刚好被拉断,g=10m/s 2求:(1)在轻绳被拉断前线圈感应电动势大小及感应电流的方向;(2)t=0 时 AB 边受到的安培力的大小;(3)t 0 的大小.解:(1)由法拉第电磁感应定律,则有:E= = ,代入数据,解得:E==1V ;根据楞次定律可知,感应电流的方向:逆时针方向;(2)根据闭合电路欧姆定律,则有:I= ; 而 AB 受到的安培力大小为:F=BIL=1×2×N=2 N ; (3)当轻绳刚好被拉断,对其受力分析,如图所示,则有:2Fcos45°+mg=T解得:F=4 N ; 而安培力 F ﹣BIL ,可得:B=; 再根据图象可得:t 0=1s ;答:(1)在轻绳被拉断前线圈感应电动势大小 1V 及感应电流的方向逆时针;(2)t=0 时 AB 边受到的安培力的大小 2 N ;(3)t 0 的大小 1s .14.(2014•福州二模)如图所示,正方形单匝均匀线框 a bcd ,边长 L=0.4m ,每边电阻相等,总电阻 R=0.5Ω. 一根足 够长的绝缘轻质细线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接 绝缘物体 P ,物体 P 放在一个光滑 的足够长的固定斜面上,斜面倾角 θ=30°,斜面上方的 细线与斜面平行.在正方形线框正下方有一有界的勻强磁场, 上边界 I 和下边界 II 都水平,两边界之间距离也是 L=0.4m .磁场方向水平,垂直纸面向里,磁感应强度大小 B=0.5T . 现 让正方形线框的 cd 边距上边界 I 的正上方高度 h=0.9m 的位置由静止释放,且线框在 运动过程中始终与磁场垂直,cd 边始终保持水平,物体 P 始终在斜面上运动,线框刚好能 以 v=3m/s 的速度进入勻强磁场并匀速通过匀强磁场区域.释 放前细线绷紧,重力加速度 g=10m/s 2,不计空气阻力.(1)线框的 cd 边在匀强磁场中运动的过程中,c 、d 间的电压是多大?(2)线框的质量 m 1 和物体 P 的质量 m 2 分别是多大?(3)在 cd 边刚进入磁场时,给线框施加一个竖直向下的拉力 F 使线框以进入磁场前 的加速度匀加速通过磁场区域,在此过程中,力 F 做功w=0.23J ,求正方形线框 cd 边产生的焦耳热是多少?【解答】解:(1)正方形线框匀速通过匀强磁场区域的过程中,设 c d 边上的感应电动势为 E ,线框中的电流强度为 I , c 、d 间的电压为 U cd ,则E=BLv由欧姆定律,得 解得 U cd =0.45V(2)正方形线框匀速通过磁场区域的过程中,设受到的安培力为 F ,细线上的张力为 T ,则F=BIL T=m 2gsin θ m 1g=T+F正方形线框在进入磁场之前的运动过程中,根据能量守恒,则解得 m 1=0.032kg ,m 2=0.016kg(3)因为线框在磁场中运动的加速度与进入前的加速度相同(只受重力) 所以在通过磁场区域的过程中,线框和物体 P 的总机械能保持不变,故力 F 做功 W 等于整个线框中产生的焦耳热 Q ,即 W=Q 设线框 cd 边产生的焦耳热为 Q cd ,根据 Q=I 2Rt 得 解得 Q cd =0.0575J。

电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。

③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。

)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。

再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。

然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。

按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。

最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。

【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。

专题十电磁感应(讲解部分)(完整版)

专题十电磁感应(讲解部分)(完整版)

E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对 关系。
三、感生电动势与动生电动势的比较
感生电动势
动生电动势
产生原因
磁场的变化
导体做切割磁感线运动
移动电荷的非静电力
感生电场对自由电荷的电场力 导体中自由电荷所受洛仑兹力 沿导体方向的分力
回路中相当于电源的部分
处于变化磁场中的线圈部分 做切割磁感线运动的导体
A.从上向下看,导体环中的感应电流的方向先顺时针后逆时针 B.从上向下看,导体环中的感应电流的方向先逆时针后顺时针 C.条形磁铁的加速度一直小于重力加速度 D.条形磁铁的加速度开始小于重力加速度,后大于重力加速度
解析 条形磁铁穿过导体环的过程中,导体环中磁通量方向向上,先增大后 减小,从上向下看,感应电流方向先顺时针后逆时针,A正确,B错误;导体环 中的感应电流产生的磁场始终阻碍条形磁铁运动,所以条形磁铁的加速度 一直小于重力加速度,C正确,D错误。 答案 AC
各物理 量方向 间的关 系图例
因果关系 应用实例
电流→作用力 电动机
运动→电流 发电机
电流→磁场 电磁铁
例4 如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、 MN,当PQ在外力的作用下运动时,MN在磁场力的作用下向右运动,则PQ所 做的运动可能是 ( )
A.向右加速运动 C.向右减速运动
二、电磁感应现象的判断 常见的产生感应电流的三种情况
例2 现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开 关如图所示连接。下列说法中正确的是 ( )
A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转 B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转 C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央 零刻线 D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才会偏转

法拉第电磁感应定律(专题训练)

法拉第电磁感应定律(专题训练)

法拉第电磁感应定律一:感应电流(电动势)产生的条件(1)感应电流产生条件:(2)感应电动势产生条件:1.关于电磁感应,下列说法正确的是()A. 线圈中磁通量变化越大,产生的感应电动势越大B. 在电磁感应现象中,有感应电动势,就一定有感应电流产生C. 闭合电路内只要有磁通量,就有感应电流产生D. 磁感应强度与导体棒及其运动方向相互垂直时,可以用右手定则判断感应电流的方向2.图中能产生感应电流的是()A. B. C. D.3.如图所示,一个闭合三角形导线框位于竖直平面内,其下方固定一根与线框所在的竖直平面平行且相距很近(但不重叠)的水平直导线,导线中通以图示方向的恒定电流。

不计阻力,线框从实线位置由静止释放至运动到直导线下方虚线位置过程中()A. 线框中的磁通量为零时其感应电流也为零B. 线框中感应电流方向先为顺时针后为逆时针C. 线框减少的重力势能全部转化为电能D. 线框受到的安培力方向始终竖直向上4.如图所示,一个U形金属导轨水平放置,其上放有一根金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。

在下列各过程中,一定能在闭合回路中产生感应电流的是()A. ab向右运动,同时使θ角增大(0<θ<90°)B. 磁感应强度B减小,同时使θ角减小C. ab向左运动,同时减小磁感应强度BD. ab向右运动,同时增大磁感应强度B和角θ(0<θ<90°)5.如图所示,有一矩形闭合导体线圈,在范围足够大的匀强磁场中运动、下列图中回路能产生感应电动势的是()A. 水平运动B. 水平运动C. 绕轴转动D. 绕轴转动二:楞次定律(右手定则)内容:6.如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动。

金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面。

高二物理电磁感应大题专题

高二物理电磁感应大题专题

电磁感应计算题1.横截面积S=0.2 m2,n=100匝的圆形线圈A,处在如图所示的磁场中,磁感应强度随时间变化的规律是B=0.6-0.02t(T),开始时S未闭合,R1=4 Ω,R2=6 Ω,C=30 μF,线圈内阻不计。

求:(1)闭合开关S后,通过R2的电流大小和方向;(2)闭合开关S后一段时间又断开,问切断后通过R2的电荷量又是多少?2.用质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。

线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa'、bb'垂直于导轨,磁场的方向与线框平面垂直。

如果把线框从静止状态释放,则线框恰好能够匀速地穿过磁场区域。

若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度大小;(2)开始释放时,MN与bb'之间的距离;(3)线框在通过磁场的过程中所产生的热量。

3.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求(1)棒在匀加速运动过程中,通过电阻R的电荷量q(2)撤去外力后回路中产生的焦耳热Q2(3)外力做的功W F4.如图,质量为M 的足够长金属导轨abcd 放在光滑的绝缘水平面上。

一电阻不计,质量为m 的导体棒PQ 放置在导轨上,始终与导轨接触良好,PQbc 构成矩形。

法拉第电磁感应定律专题

法拉第电磁感应定律专题

法拉第电磁感应定律专题1.关于感应电动势大小的下列说法中,正确的是 [ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势 [ ]A.以2v速率向+x轴方向运动 B.以速率v垂直磁场方向运动3.如图2,垂直矩形金属框的匀强磁场磁感强度为B。

导体棒ab垂直线框两长边搁在框上,ab长为l。

在△t时间内,ab向右匀速滑过距离d,则 [ ]4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示 [ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ]A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向6.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为 [ ]A.4∶1 B.1∶4 C.2∶1 D.1∶28.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量和电阻均相同的两根滑杆ab和cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始,ab和cd都处于静止,现ab杆上作用一水平方向恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab和cd均先做变加速运动,后作匀速运动D.ab和cd均先做变加速运动,后作匀加速运动10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。

电磁感应专题复习

电磁感应专题复习

【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。

及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007届高三物理复习专题四 电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。

思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。

要画好受力图,抓住 a =0时,速度v 达最大值的特点。

(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。

例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。

一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。

答案:(1))()(sin vl t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。

一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向与初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。

求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。

答案:(1)m av x 1220== (2)向运动时=0.18N 向左运动时=0.22N (3)当;x 010220轴相反方向与时,,/>=<F s m l B maRv 当;x 010220轴相同方向与时,,/<=>F s m l B maRv【例3】 如图5所示,在水平面上有一个固定的两根光滑金属杆制成的37°角的导轨AO 和BO ,在导轨上放置一根和OB 垂直的金属杆CD ,导轨和金属杆是用同种材料制成的,单位长度的电阻值均为0.1Ω/m ,整个装置位于垂直红面向里的匀强磁场中,匀强磁场的磁感应强度随时间的变化关系为B=0.2tT ,现给棒CD 一个水平向右的外力,使CD棒从t=0时刻从O 点处开始向右做匀加速直线运动,运动中CD 棒始终垂直于OB ,加速度大小为0.1m/s 2,求(1)t=4s 时,回路中的电流大小;(2)t=4s 时,CD 棒上安培力的功率是多少?答案:(1)1A (2)0.192W 。

【例4】如图6所示,光滑且足够长的平行金属导轨MN 、PQ 电阻不计,固定在同一水平面上,两导轨相距m 40.=l ,导轨的两个端M 与P 处用导线连接一个R=0.4Ω的电阻。

理想电压表并联在R 两端,导轨上停放一质量m=01kg 、电阻r=0.1Ω的金属杆,整个装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直导轨平面向下,现用一水平向右的恒定外力F=1.0N 拉杆,使之由静止开始运动,由电压表读数U 随时间t 变化关系的图象可能的是:【例5】如图8所示,两根相距为d 的足够长的光滑平行金属导轨位于竖直的xOy 平面内,导轨与竖直轴yO 平行,其一端接有阻值为R 的电阻。

在y>0的一侧整个平面内存在着与xOy 平面垂直的非均匀磁场,磁感应强度B 随y 的增大而增大,B=ky ,式中的k 是一常量。

一质量为m 的金属直杆MN 与金属导轨垂直,可在导轨上滑动,当t=0时金属杆MN 位于y=0处,速度为v 0,方向沿y 轴的正方向。

在MN 向上运动的过程中,有一平行于y 轴的拉力F 人选用于金属杆MN 上,以保持其加速度方向竖直向下,大小为重力加速度g 。

设除电阻R 外,所有其他电阻都可以忽略。

问:(1)当金属杆的速度大小为20v 时,回路中的感应电动势多大? (2)金属杆在向上运动的过程中拉力F 与时间t 的关系如何?答案:(1)g d kv E 163301= (2))()(gv R gt t v k F 02202t 21≤-=式中 【例6】(2004北京理综)如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻。

一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值。

解析:(18分)(1)如图所示:重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上(2)当ab 杆速度为v 时,感应电动势E =BLv ,此时电路电流 RBLv R E I ==ab 杆受到安培力Rv L B BIL F 22== 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ 解得 mRv L B g a 22sin -=θ (3)当θsin 22mg R v L B =时,ab 杆达到最大速度v m 22sin LB mgR v m θ= 【例7】(2004上海)水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。

用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。

(取重力加速度g =10m/s 2)(1)金属杆在匀速运动之前做什么运动?(2)若m =0.5kg ,L =0.5m ,R =0.5Ω;磁感应强度B 为多大?(3)由v —F 图线的截距可求得什么物理量?其值为多少?解析:(1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。

(2)感应电动势vBL =ε ① 感应电流R I ε= ② 安培力RL vB IBL F M 22== ③ 由图线可知金属杆受拉力、安增力和阻力作用,匀速时合力为零。

f RL vB F +=22 ④ )(22f F L B R v -=∴⑤由图线可以得到直线的斜率k=2,12==∴kL R B (T ) ⑥ (3)由直线的截距可以求得金属杆受到的阻力f ,f =2(N ) ⑦若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数4.0=μ ⑧【例8】如图所示,两根相距为L 的足够长的平行金属导轨,位于水平的xy 平面内,一端接有阻值为R 的电阻。

在0>x 的一侧存在沿竖直方向的均匀磁场,磁感应强度B 随x 的增大而增大,B=kx ,式中的k 是一常量。

一金属杆与金属导轨垂直,可在导轨上滑动。

当t=0时金属杆位于x =0处,速度为0v ,方向沿x 轴的正方向。

在运动过程中,有一大小可调节的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿x 轴正方向。

除电阻R 以外其余电阻都可以忽略不计。

求:(1)当金属杆的速度大小为v 时,回路中的感应电动势有多大?(2)若金属杆的质量为m ,施加于金属杆上的外力与时间的关系如何?解析: (1)根据速度和位移的关系式ax v v 2202=- α2202v v x -=由题意可知,磁感应强度为 α2)(202v v k kx B -== 感应电动势为 α2)(202Lv v v BLv E -==(2)金属杆在运动过程中,安培力方向向左,因此,外力方向向右。

由牛顿第二定律得 F -BIL=maxR所以ma RF +=200 【例9】如图所示,abcd 为质量M=2kg 的导轨,放在光滑绝缘的水平面上,另有一根质量m=0.6kg 的金属棒PQ 平行bc 放在水平导轨上,PQ 棒左边靠着绝缘固定的竖直立柱e 、f ,导轨处于匀强磁场中,磁场以OO ′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度均为B=0.8T.导轨的bc 段长m l 5.0=,其电阻Ω=4.0r ,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数.2.0=μ 若在导轨上作用一个方向向左、大小为F=2N 的水平拉力,设导轨足够长,g 取10m/s 2,试求:(1)导轨运动的最大加速度;(2)流过导轨的最大电流;(3)拉力F 的最大功率.解析:(1)导轨向左运动时,导轨受到向左的拉力F ,向右的安培力F 1和向右的摩擦力f 。

根据牛顿第二定律:Ma f F F =--1F 1=BI l (1分)f =μ(mg —BI l )M BIl mg F a )1(:μμ---=整理得 当I=0时,即刚拉动时,a 最大. 2m ax /4.0s m M mg F a =-=μ (2)随着导轨速度增大,感应电流增大,加速度减小.当a =0时,I 最大 即0)1(m ax =---l BI mg F μμA Blmg F I 5.2)1(max =--=μμ (3)当a =0时,I 最大,导轨速度最大.rR Blv I +=max max s m Blr R I v /75.3)(m ax m ax =+=W v F P 5.7m a x m a x =⋅=∴ O`【例10】相距为L 的足够长光滑平行金属导轨水平放置,处于磁感应强度为B ,方向竖直向上的匀强磁场中。

相关文档
最新文档