高中数学竞赛讲义-抽屉原理

合集下载

抽屉原理讲义-学生

抽屉原理讲义-学生

第一抽屉原理原理1:把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。

有时候要构造抽屉。

例如,属相是有12个,那么任意37个人中,有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,(但这里需要注意的是,前面的余数1和这里加上的1是不一样的。

)比如:由于一年最多有366天,因此在367人中至少有2人出生在同月同日。

这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。

例1一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

数学竞赛中的抽屉原理.doc

数学竞赛中的抽屉原理.doc

数学竞赛中的抽屉原理【摘要】虽然抽屉原理的叙述比较简单,但是其被广泛的应用,其延伸出了很多中题目。

在这类题型中,最重要的下手点就是构造抽屉,在是构造抽屉的几种方法,这是灵活应用抽屉原理的关键【关键词】数学竞赛;抽屉原理;题型一、引言本文以抽屉原理为研究对象,对其理论、竞赛题目等内容进行分析和总结。

二、抽屉原理概述抽屉原理在国内外都被广泛的应用,我国被记录的最早运用这个理论的是在《晏子春秋》中有一个“二桃杀三士的故事,讲的是晏子采用借“桃”杀人的办法,不费吹灰之力,杀了得罪他的三个齐国勇士的故事。

抽屉原理形成理论是由19世纪德国数学家狄利克雷完成成,所以抽屉原理又被称为狄利克雷原来,建立成理论后,以后逐渐地应用到引数论、集合论、组合论等数学分支中,逐步的成为各级数学竞赛常见的题目。

抽屉原理被首次应用是在1947年,由匈牙利数学家把这一原理引用到当时的数学竞赛中。

当时匈牙利全国数学竞赛中有这样一道题目,即:“证明:任何6个人中,一定可以找到3个互相认识的人,或者3个互不认识的人。

这道题是数学竞赛中的经典题目,这道题目从表面看起来,是相互矛盾的,也是不符合常识的。

但如果你懂得抽屉原理,要证明这个问题是十分简单的。

由于这是一道非常创新的题目,在很短的时间内,被全世界广泛的流传,随着也使得更多的人知道了这一原理。

通过这道题目,使得抽屉原理被广泛的流传。

由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。

在我国身边,最长见的如招生考试、招聘、工作分配等等,都可以看到抽屉原理的作用。

在我国古代文献中,有不少成功地运用抽屉原理来分析问题的例子。

我国古代科学家虽然很早就会用抽屉原理来分析具体问题,但是在古代文献中并未发现关于抽屉原理的概括性文字,没有人将它抽象为一条普遍的原理。

最后还不得不将这一原理冠以数百年后西方学者狄里克雷的名字、抽屉原理在数学竞赛中的题目分析及总结在上文中,对抽屉原理在数学竞赛中和生活中的应用进行说明,可见抽屉原理在生活中被广泛的应用。

竞赛数学中的抽屉原理

竞赛数学中的抽屉原理

竞赛数学中的抽屉原理
简介:抽屉原理是一种统计原理,由四位数学家兼统计学家:约
翰·施特劳斯、古斯塔夫·海尔·西多夫、艾伦·艾尔法和安德烈·拉普
洛斯在20世纪30年代发现的。

它用于描述随机事件的分布情况。

抽屉原
理的主要思想是,如果一个事件存在多种可能性,则通常会出现几种情况,而这几种情况又可以等分地再被分割,其中每个情况的发生概率都是给定的。

具体而言,抽屉原理可以用来说明随机事件的几率是一致的,也就是说,在每一次随机事件中,每一种可能性的发生概率都是固定的。

抽屉原理也被称为拉普洛斯原理,它简单的说明是,如果一个给定的
随机事件有m种可能性,那么它的概率就是1/m,这意味着每一种可能性
的概率都是相等的。

该原理可以用来推断许多概率题的正确答案。

抽屉原理也可以用来解决概率问题。

比如,一个骰子有6种可能的数字,它们的概率就是1/6.根据抽屉原理,如果确定一个给定的随机事件,就可以确定它的概率。

抽屉原理也可以应用于其他领域,例如,当我们想要预测一支股票的
未来行情时,也可以用抽屉原理。

抽屉原理(高中)

抽屉原理(高中)

抽屉原理一.抽屉原理的各种形式:抽屉原理1:n +1 个元素分成n 类,至少有1类中的元素不止1个.抽屉原理2:n ·m +1个元素分成n 类,至少有1类中的元素不止m +1个.即:k 个元素分成n 类,至少有1类中的元素不止⎣⎡⎦⎤k -1n +1个.(k ,n ∈N*)抽屉原理3:n 个数之和为m ,则其中必有一数≥m n ,也必有一数≤m n .抽屉原理4 把一个无限集A 分成有限个集合的并集,即A i ⊂A ,且i =1∪nA i =A ,A i ∩A j =∅(i ,j =1,2,……,n ;i ≠j ).则至少有一个A 的子集A k (1≤k ≤n ),它有无限多个元素.例1.把大小两个圆盘各划分成2n 个相等的扇形格,在每格都用黑、白两色之一涂色,使两盘总计,黑格与白格都各有2n 格.然后把两个圆盘的圆心固定于同一点,并让小盘在上成为一个转盘.试证:可将小盘转到某一适当位置,使两个圆盘上的格子对齐,并使二盘对应格子颜色不同的不少于n 对.证明:让小盘逐格转动,每次都记下颜色不同的格子对齐的数目,当转动了2n -1次后,小盘转动了一周,共记了2n 次.于是,小盘上每个格子都与大盘上的每个格子对齐一次.设小盘上有k 个黑格,2n -k 个白格,则大盘上有2n -k 个黑格,k 个白格.颜色不同的格子对齐的数目为k 2+(2n -k )2=4n 2+2k 2-4nk =2(k -n )2+2n 2≥2n 2.∴至少有一次转动对齐后,使二盘对应格子颜色不同的数目≥⎣⎡⎦⎤2n 2-12n +1=n .例2.从1,2,3,…,3n (n ≥2)这3n 个正整数中任意取出n +2个数,求证:其中必有两个数,其差大于n 而小于2n .解:设取出的最大的数为k ,则把取出的数都加上 3n -k ,这样做不会影响它们之间的差.此时最大数为3n ,如果在取出的数中有一个在n 与2n 间(满足n+1≤x ≤2n -1的数),则这数与3n 即为所求.若无任何数在此二数之间,则作抽屉(1,2n ),(2,2n +1),(3,2n +2),…,(n ,3n -1),共n 个抽屉,除去3n 这个数外,还有n +1 个数,于是必有两个数落入同一抽屉,此二数即满足要求.例3.任取一个正实数a ,求证:在a ,2a ,3a ,…,(n -1)a 这n -1个数中,至少有一个数,它与最接近的整数之差不超过1n. 解:取这n -1个数的小数部分{a },{2a },{3a },…,{(n -1)a },则此n -1个数都在区间[0,1)内,把区间[0,1)分成n 个小区间,每个区间的长都为1n :[0,1n ),[1n ,2n ),…,[n -1n,1). 若此n -1个数中有某一个落入头尾两个区间之一,则原数即与最近的整数相差不超过1n.此n -1个数不可能没有任何一个落入头尾两个区间中,因若此n -1个数中没有任何一个落入头尾两个区间,则此n -1个数必落入了其余n -2 个区间内,于是必有两个数落入同一区间,设为{ta },{sa },(1≤t <s ≤n -1),此时|(s -t )a |<1n,而0<s -t <n -1,令k =s -t ,于是必有{ka }落入头尾两个区间之一.故证.例4.M 是1985个不同的正整数的集合,M 中每个数的质因数都小于26,求证:从M 中一定可以选出四个不同的数,使它们的积等于一个完全四次方数.解:M 中的任一个数的质因子只能是2、3、5、7、11、13、17、19、23这9个数中的某些数.设a ∈M ,则按这9个质因子的指数为奇或为偶可把所有1985个数分成29=512类,由抽屉原理,任取513个M 中的数必有两个数属于同一类,于是可得(1985-511)÷2=737对数,每对数都属于同一类,于是,这737对数中,每对两数的乘积都是完全平方数,即每个质因子的指数都是偶数.即每个质因子的指数除以4后的余数都只能是0或2,再按这9个质因子的指数是0或2把这737个数分类,又可得512类,现在737个数放入这512类,必有两数同一类,此二数的乘积就是完全四次方数,而乘得此二数的原来4个数即为所求.例5.6个代表队共有1978名运动员,编上号码1,2,3,…,1978号,证明至少有一个运动员,他的号码等于其两个队友号码的和或者等于某一个队友号码的两倍.解:不妨设第1个代表队人数最多,则其人数≥[1978-16]+1=330人,设其中最大的号码为a 1,用a 1减其它329个号码,得到的差如果在此329个数中,则命题已成立.如果这329个差都不是第一个代表队的号码,那么不妨设其中有[329-15]+1=66个号码在第二个队中,同样设这66个号码最大的为b 1,用它减其余65个号码,差b 1-b i =(a 1-a t )-(a 1-a s )=a s -a t 如果在第一或第二个队的号码中,则命题已证,若不在,则此65个数必有[65-14]+1=17人同一队,设为第三队,又设其中最大者为c 1,用c 1减其余16个数,其差c 1-c i =(b 1-b i )-(b 1-b j )=b j -b i ,而b j -b i =(a 1-a t )-(a 1-a s )=a s -a t ,若在第一,二,三队的号码中,则命题可证,依此类推,若无,则[16-13]+1=6,[5-12]+1=3个,其差或是前面某队的号码,或是第6队的号码,问题总能成立.例6.S 是{1,2,3,…,1989}的一个子集,而且S 中任两个数的差不能是4或7,那么S 中最多可有多少个元素?(1989年第七届美国数学邀请赛)解:取前11个自然数1、2、3、4、5、6、7、8、9、10、11,排成一个圈:1、5、9、2、6、10、3、7、11、4、8.这样排好后,任意相邻两数都不能同时被取出,否则其差为4或7.而在这11个数中任取6数,就会在上面这个圈中取出了相邻的两个数,于是这11个数中,最多只能取出5个满足要求的数.例如,取1,3,4,6,9这五个数满足要求.1989=11×180+9,于是把这1989个数从1开始每连续11个数为一组,每组都取出5个数:11k +1,11k +3,11k +4,11k +6,11k +9(k =0,1,2,…,180)共取出181×5=905个数.即S 中最多可有905个元素.当取出的数超过905个时,总有某组数中取出的数超过6个,于是就会出现差为4或7的两个数.从而905为所求.例7.一位棋手参加11周(77天)的集训,每天至少下1盘棋,每周至多下12盘棋,证明这个棋手必在连续的几天内恰好下了21盘棋.解:这名棋手在77天内最多下了11×12=132盘棋.不妨记他从开始起第n 天共下了a n 盘棋,则有a 1<a 2<…<a 77.再取77个数:a 1+21,a 2+21,…,a 77+21,这样共得77×2=154个数.但这些数最大 不超过132+21=153. 于是必有两个数相等,这就是说,必有a i +21=a j (i <j ),即从第i +1天起,到第j 天这连续j -i 天中,这名棋手共下了21盘棋.例8.设有小数A =0.a 1a 2a 3…,如果a i +2是a i +1+a i 的个位数字(i =1,2,3,…),求证:A 是有理数. 解:把a i ,a i +1组成一组:(a i ,a i +1),(i =1,2,3,…),则所有这些组只有以下100种可能的取法:(0,0),(0,1),(0,2),…,(0,9);(1,0),(1,1),(1,2),…,(1,9);…(9,0),(9,1),(9,2),…,(9,9).而取(a 1,a 2),(a 2,a 3),…,(a 100,a 101),(a 101,a 102)这101组,于是必有两组相同,设为(a i ,a i+1),(a i ,a j+1),(i <j ).于是可得a i +2=a j +2,a i +3=a j +3,…,即A 为循环小数,故A 为有理数.例9.已知菲波拉契数列0,1,1,2,3,5,8,13,21,……(从第三项起,每项都等于它的前面两项的和).试问,它的前100000001项中,是否有某一项的末四位数字全为0?(不算第1项)分析:添一项可以看作0000,考虑每一项的末四位数字,末四位数字共有104种,(从0000到9999),而每项的末四位数字都是由其前面两项的末四位数字求和而得出.解:记每一项a i 的末四位数字为x i ,由于该数列的每一项都是其前两项的和,由于x i 有104种,x i+1也有104种,所以有序数对(x i ,x i+1)共有108种,但对于每一项都有一个有序数对(x i ,x i +1)与之对应:(x 0,x 1),(x 1,x 2),…,(x 100000000,x 100000001),共有100000001个数对,从而必有两个数对完全一样,设(x i ,x i +1)与(x j ,x j +1)相同(i <j ).则有x i = x j ,x i +1= x j +1,由于x i -1= x i +1- x i , x j -1= x j +1- x j ,故又有x i -1=x j -1,这样又有(x i -1,x i )=(x j -1,x j ),(x i -2,x i -1)=(x j -2,x j -1),…,直至(x 0,x 1)与(x j -i ,x j -i +1),即x j -i 与x 0相同,即a j -i 的末四位数字全是0.事实上该数列的7501项的末四位全是0.当两项相邻时的情况.例10.设m 、n 都是自然数,任给一个有nm +1项的数列(该数列各项互不相等)a 1,a 2,……,a nm +1证明可以从中选出m +1项,按原来的顺序组成递增数列或选出n +1项按原来的顺序组成递减数列. 说明:先举一个例说明:m =n =2,在一个5项的数列1,8,3,2,5中,可以选出一个3项的递增数列:1,3,5;但未能选出3项的递减数列来.解:对于mn +1项的数列a 1,a 2,…,a nm +1中每一项a i ,都可以从这项开始向后找出以该项为首项的项数最多的递增数列来,设这样的数列有x i 项,同时也能找出以该项为首项的项数最多的递减数列来,设这样的数列有y i 项,这样,对于每一项a i ,都有一对数(x i ,y i )与之对应,这就得到了mn +1个数对(可以看成是mn +1个坐标).如果所有x i 都不大于m ,所有y i 都不大于n ,即x i =1,2,…,m ;且y i =1,2,…,n .于是这样的数对只能有nm 种,将每一种都看成是一个抽屉,但共有nm +1个数对,于是根据抽屉原理,必有2个数对落入同一抽屉.设为a i 与a j ,(i <j ),它们都对应着坐标(h ,k ),这表示从这两个数中的任一个开始,可以向后找出h 项组成递增数列,也可向后找出k 项组成递减数列.若a i <a j ,则从a j 起共有h 项组成递增数列,但加上a i 后应有h +1项,即与a i 对应的数不应为h ,同样若a i >a j ,也将引出矛盾.这说明必有某个x i 满足x i >m ,或者某个y i 满足y i >n 命题得证.例11.设实数x 1,x 2,x 3,…,x n 满足x 12+x 22+x 32+…+x n 2=1证明对每一个整数k ≥2,存在不全为0的整数a 1,a 2,…,a n ,满足|a i |≤k -1,(i =1,2,…,n )使|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 证明:对于|a i |≤k -1,有(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2)≤a 12+a 22+…+a n 2≤(k -1)2+(k -1)2+…+(k -1)2=n (k -1)2.所以, |a 1x 1+a 2x 2+…+a n x n |≤(k -1)n . ⑴现在取{a 1,a 2,…,a n } {0,1,2,…,k -1},则共可有k n 种取法,其每一种取法都满足⑴式.把区间[0,(k -1)n ]分成k n -1等份,每份长为(k -1)n k n -1.则k n 个数落入此区间内,必有二数落入同一份内.设为a '1x 1+a '2x 2+…+a 'n x n 与a "1x 1+a "2x 2+…+a "n x n ,则它们的差:(a '1-a "1)x 1+(a '2-a "2)x 2+…+(a 'n -a "n )x n = a 1x 1+a 2x 2+…+a n x n .必满足|a i |≤k -1 (i =1,2,…,n ),且|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 例12.一个棱柱以五边形A 1A 2A 3A 4A 5及B 1B 2B 3B 4B 5分别为上下底,这两个多边形的每一条边及线段A i B j (i ,j =1,2,3,4,5)均涂上红色与绿色,每个以棱柱的顶点为顶点,以涂色线段为边的三角形都有两边颜色不同.求证:上底与下底10条边的颜色相同.证明:首先证明此棱柱的上底面的棱颜色相同.否则必有两条相邻边颜色不同.不妨设A 1A 5为红,A 1A 2为绿.5条线段A 1B i (i =1,2,3,4,5)中必有3条同色.设有3条同为红色.这3条红色的线段中,总有两条是向相邻的两个顶点引出的,例如A 1B 1、A 1B 2都为红色.于是在△A 1B 1B 2中B 1B 2必为绿色.又在△A 1A 5B 1及△A 1A 5B 2中,A 5B 1及A 5B 2均必为绿色.这样就得△A 5B 1B 2全为绿色.矛盾.这说明上底面的5条棱同色.同理,下底面的5棱也同色. 下面再证明,上下底面10条棱颜色全同.反设上底面5条棱钱红,下底面5条棱全绿.由上证,A 1B 1、A 1B 2不能全红,但也不能全绿,故必一红一绿,设A 1B 1红,则A 1B 2绿,同理得,A 1B 3红,A 1B 4绿,A 1B 5红,此时,△A 1B 1B 5又出现上证情况.故得证.练习题 1. 在3×4(cm )的长方形中,放置6个点,试证:可以找到两点,其距离不超过 5 cm .解 先把长方形分成5个区域(如图),根据抽屉原理,必有两个点在同一个区域内,因而它们的距离不超过 5 cm .2.⑴ 是否存在由10个正整数组成的集合A ,使A 的任一6元子集的元素和都不能被6整除?⑵ 对于任一由11个正整数组成的集合A ,证明:一定可以找到它的一个6元子集,其和能被6整除.⑴解:取A ={1,7,13,19,25,6,12,18,24,30},则A 的任一六元子集的元素和都不能被6整除.⑵证明:对于任一元素都是正整数的11元集A ,总可以把这11个元配成5组,每组二个数的奇偶性相同,于是同组两数的和为偶数,这样就得到5个偶数和.这5个偶数mod 3后,如果有3个数mod 3互不同余,则此三数的和被3整除;如果这样的3个数不存在,即mod 3后只有至多两个剩余类,则其中必有1类中至少有3个数,则此三个数的和被3整除.于是取加得这三个数的原来的六个数,其和被6整除.3.把大小圆盘各划分成n 个相等的扇形格,各依次填上实数a 1、a 2、…、a n 及b 1、b 2、…、b n ,然后把把两圆盘圆心重叠做成转盘,试证:若a 1+a 2+…+a n <0,b 1+b 2+…+b n <0,则必可以使转盘转到某个适当位置,使大小圆盘对应扇形上两个数的乘积的和为一个正数.证明:让小盘逐格转动,每次都记下大小圆盘对应扇形上两个数的乘积的和,这样转过n 次后,共得B 1B 2B 3B 4B 5A 5A 4A 3A 2A 1B 1B 2B 3B 4B 5A 5A 4A 3A 2A1到了n 个和.由于大盘上的每个数字都要与小盘上的每个数字对应一次,故乘积a i b j (i ,j =1,2,3,…,n )在这n 个和中都出现一次且只出现一次,故这n 个和的总和=(a 1+a 2+…+a n )( b 1+b 2+…+b n )>0.∴这n 个和不可能都小于≤0,即其中至少有一个和为正数.4.已知自然数n (n >1),用小于n 的自然数组成两个数组,每组内的数都各自两两不同,但两组间的数不一定全不同.证明:若两组数的总个数不小于n ,那么,一定可以从每一组中各选一个数,其和为n .证明:设所组成的两个数组分别为A ={a 1、a 2、…、a k }及B ={b 1、b 2、…、b h }.其中各个a i 互不相同,各个b j 也互不相同.且k +h ≥n .现取一数组C ={c 1,c 2,…,c h },使c j =n -b j ,于是各c j 均为小于n 的正数,也互不相同.由于数组{ a 1、a 2、…、a k ,c 1,c 2,…,c h }的元素都为小于n 的正整数,但k +h ≥n .从而必有某个c j =a i ,于是a i +b j =n .5.给定13个不同的实数a 1,a 2,…,a 13,求证:存在两个实数a i ,a j ,(i ≠j ),满足0< a i -a j 1+a i a j <2- 3 2+ 3. 证明:令tan θi =a i (-π2 <θi <π2,i =1,2,…,13), 则有tan(θi -θj )= a i -a j 1+a i a j <2- 3 2+ 3 =1- 3 2 1+ 3 2 = 1-cos π6 1+cos π6 =tan π12 . 故只要把这13个角按从大到小排列,并把区间(-π2 ,π2)分成12等分,则总有一个区间内落入了二个所给的角θi ,θj ,(θi >θj ),这两个角对应的实数即为所求.6.在[1,1000]内任取n 个互不相等的数a 1,a 2,…,a n ,为了总可以找到两个数a i ,a j (1≤i <j ≤n ),使得0<a i -a j <1+3∛____a i a j成立,试确定n 的最小值并证明之.解:设a i >a j ,且 0<∛__a i -∛__a j <1,于是,立方之,得0<a i -a j -3∛____a i a j (∛__a i -∛__a j )<1.∴ 0< a i -a j <1+3∛____a i a j (∛__a i -∛__a j )<1+∛____a i a j .如果取n =10,可令a i =i 3,此时当i >j 时,a i -a j =i 3-j 3=(i -j )3+3ij (i -j )≥1+3ij =1+∛____a i a j 当取n =11,及区间[i 3,(i +1)3],(i =1,2,…,9).于是这11个数中必有两个数落入同一区间.由于这些区间共有10个端点,故这11个数不可能只取这9个区间的端点值i 3,于是必存在两个数落入同一区间且其中至少有一个数不是区间的端点.则此二数满足要求.7.证明:存在着绝对值都小于一百万,不全为0的三个整数a ,b ,c ,使|a + 2 b + 3 c |<10-11.证明:令A ={x ∈N |0≤x <106}.M ={ r +s 2 +t 3 | r ,s ,t ∈A }.d =(1 + 2 + 3 )·106.若x ∈M ,则x ∈[0,d ].把区间[0,d ]分成1018-1个长度为l =d 1018-1 的子区间. 由抽屉原理,M 中1018个数中必有两个数同在某个子区间内,此二数之差<l <1071018-1 <10-11. 即此二数之差满足要求.8.我们称A 1,A 2,…,A n 为集合A 的一个n 划分,如果⑴ A 1∪A 2∪…∪A n =A ;⑵ A i ∩A j =Ø,1≤i <j ≤n .求最小的正整数m ,使得对A ={1,2,…,m }的任意一个14划分A 1,A 2,…,A 14,一定存在某个集合A i (1≤i ≤14),在A i 中有两个元素a ,b 满足b <a ≤43b .(中国西部2001数学奥林匹克) 分析:14个集合相当于14个抽屉,取15个数,则必有一个抽屉中有两个数.若15个数中任意两个的数都满足b <a ≤43b ,则可求出最小的m 值. 解:取b ,b +1,b +2,…,b +14,共15个数.若b +14b ≤43,即得b ≤42.即至少取42+14=56个数,就可保证对A 的任一划分满足要求.当m ≥56时,取出其中42,43,…,56,共15个数,则根据抽屉原理,必有两数b ,a (42≤b <a ≤56)在同一划分中,由于1<a b ≤5642 = 43 ,即b <a ≤43b 成立. 若m <56.取A i ={a |a ≡i (mod 14),0<a <56},则对于A i 中任意两个数c ,d (c <d ),显然,c ≤42.故d c≥c +14c =1+14c >1+1442 =43,即此时不存在满足要求的划分.。

高中数学竞赛讲义-抽屉原理

高中数学竞赛讲义-抽屉原理

高中数学竞赛讲义-抽屉原理第一篇:高中数学竞赛讲义-抽屉原理抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。

这类存在性问题中,“存在”的含义是“至少有一个”。

在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。

这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。

这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。

这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。

抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。

“鸽笼原理”由此得名。

例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。

证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学竞赛讲解之抽屉原则素材新人教版(精).doc

高中数学竞赛讲解之抽屉原则素材新人教版(精).doc

抽屉原则在解决存在性问题时,抽屉原则是一个强有力的工具.抽屉原则I将一个元素个数不少于"的集合划分为加个子集岀,短,…,九,则至少有一个子集A*伙w {1,2,…,加})其元素个数其中,[x]表示的最大整数.推论把一个"元集划分为加个子集(">%),则至少有一个集合含有至少两个元素.我们称这里的子集4,爲,…,4”,为加个“抽屉” •应用抽屉原则解题的关键是构造合适的抽屉,在不同的实际问题中抽屉的表现形式是不一样的;即使是对同一问题也可以从不同角度制造不同的抽屉.抽屉原则丫从加个互不相交的有限集中4,爲,…,4”,取出hw + 1个元素构成一个集合S ,则S中至少有k+1个元素属于某个A p(pe {1, 2,…,m}).抽屉原则II将一个元素不多于"的集合S划分为加个子集£,■■■, A m,则至少存在一个集合A伙w {1,2,…,,"})其元素数目抽屉原则III把一个无限集S划分为有限个子集A2, ■■■, A m,则至少存在一个集合A p(pe{l, 2, •••,加})仍为无限集.例1已知集合S={1, 2, 3,…,3町,"是正整数,T是S的子集,满足:对任意x, y , z^T (其中x, y , z可以相同)都有x+y + z^T ,求所有这种集合T 的元素个数的最大值.解析考虑S中那些较大的数.取T0={n + l, n + 2, ■■■, 3n],显然,其中任三数之和大于3”.故max|T|> |7^| = 2n .另一方面,作三元子集列A^={n , 2n, 3n]={k, 2n — k, 2n + k] , k = 1,2, •••, n — 1 ,Ak则S=U4,对于s的任一个2〃 + 1元子集尸,必包含有某个A・若观u尸,则其中有元素3n = n + n + n;若某个4 c T', ke{l,2, ■■■, n-1},则其中有元素In + k -k + k + (2n-k).于是max|T| < 2n + l.所以,max卩| = 2".抽屉原则应用过程中的抽屉制造实质就是对问题涉及的某些对象进行分类. 因此,首先应弄清楚对哪些对象分类,分多少类,按什么规则分.例2从1, 2,…,3839中任意选1996个数,证明:一定存在两个数的差恰好等于96.解析按模96的余数0,1, 2,…,95,把整数分类为96类.现有1996个数,且1996 = 96x20 + 76,故由抽屉原则可知,在这1996个数中必有21个数属于同一类,即这21个数中任意两数的差都是96的倍数.如果这21个数中,每两个数之差都不是96,那么这样的最小的21个数是:- 0x96 + r , a2 = 2x96 + r , a3 - 4x96 + r ,…,axo21 =2x20x96 + r>3840>3839 (0 < r < 95),这与已知条件不符.所以,选出的1996个数中一定存在两数之差恰好等于96.例3 —位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋•证明:这位棋手必定在连续的几天内恰好下21盘棋.解析用S,表示这位棋手在第1天至第7天(包括第7天在内)所下的棋的总盘数(1</<77).由于棋手每天至少下一盘棋,所以S] < S°< ••- < S77.又由于棋手每周至多下12盘棋,所以S77 <12x11 = 132.要证明存在7, j,1<;</<77,使S i-S J =21,这只需证明在» S2)…,S77, 5+21, …,S77+2I中有两项相同即可.事实上,上面的77x2 = 154个数中最小的,1,最大的=S77+21<132+21=153. 由抽屉原则I:必有两数相同.例4试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同,问参加考试的学生最多有多少人?解析设每题的3个选择支为a,b,c.如果参加考试学生有10人,则由抽屉原则II知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人,10-1 + 1 = 2,去掉这组学生,余下的学生中选出7人,则他们对第一题的答案只有两种.对于 这7人关于第二题应用抽屉原则II 知其中必可选出5人,他们关于前两题的答案 都只有两种可能,对于这5人关于第三题应用抽屉原则II,又知可选出4人,关 于第四题应用抽屉原则II,知必可选出3人,他们关于4个题目的答案都只有两 种,这不满足题中的要求.可见,所求的最多人数不超过9.另一方面,如果9 个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同.例5设⑷,a 2,…,a”,…是任意一个具有性质a k < a k+l (k > 1)的正整数的无 穷序列.求证:这个数列中有无穷多个%可以表示为a ,n = xa P + W?,其中,p , q, x, y 是适当的正整数,且p 丰q .解析 在给定的数列中任意取一项仙,因为陶是正整数,把全体正整数按 mod 仙的剩余类分类.由于正整数a ;, a 2, ■■■, a n , ■■-有无穷多个,所以由抽屉原 则III,上述陶个分类中至少有一类含有数列中的无穷多项.再由最小数原理, 这无穷多个项中一定有一个最小的项伟,于是对这个剩余类中的其他任意一项 %都有4” 三 a/moda/,且 a m > a p .所以a m =a p +a q y(y 为某个正整数).取x = l,即有a m = xa p + ya q .例6在不超过91的非零自然数中任意取10个数,证明:这10个数中一定 有两个数的比值在区间§冷内.解析 不超过91正整数共91个,要把这些数分成兀组,使X 可取的最大值是9.现将1, 2, ■■■, 90, 91这91个数分为9组:{1}, {2,3}, {4,5,6}, {7,8,9,10},{11, 12,…,16}, {17, 18,…,25}, {26, 27,…,39},{40, 41,…,60}, {61, 62, ■■■, 91}.这9个组的每个组中任意两数之比P适合-<k<-.由抽屉原则F,从这9个组 3 2中任意取10个数必有两数取自同一组,其比值在-内.L3 2」在这里显然抽屉的个数不能多于9个,分类的规则是使每个抽屉中的任意两数之比落在区间-内.3 2例7对一个5X"的格阵用红、蓝两色进行染色.如果对任意一种染色方案总可找到由3行3列相交出的同色的9个方格,求"的最小值.解析对于每一例,我们考虑相对“均匀”的染法:将其中3个方格染上一种颜色,其余2个方格染上另一种颜色.这样的不同染色方法共有2C;=20种.这提示我们,将5x40格阵的前20列用上述20种不同染法染色,后20列也依前20列的方法对应进行染色.这样的话,无法找到满足题意的同色的3x3格阵.故"至少应为41.如果还是上述“均匀”的染法,那么只要再多一列,即“ =41,就必定出现满足题意的3x3的同色格阵.如果不全是“均匀”的染法,是否"=41还能出现3x3的同色格阵呢?我们得换一个思路,若"=41,因每列红、蓝格数必不相等,所以,至少有21列,每列染某种颜色的格数大于染另一种颜色的格数.不妨设至少有21列每列的红格数大于蓝格数,即每列至少有3个红格.可退一步(?)设这21列每列恰好有3个红格,则对应的染色方法有C;=10种.由抽屉原则知21列中必有3列染法相同,这三列的红色方格即构成3x3的同色格阵.故"的最小值为41.例8在区间[1, 1000]里任意取"个不同的数a,, a2,…,a”,为了总可找到两个数a i, a j (i 丰j , l<i, j < n),使得成立,确定"的最小值,并证明之.解析不等式0<《-勺<1 + 3珈玄成立的一个充分条件是令丽W,疤=4,则问题转化为在区间[1, 10]里任意取"个不同的数乙,…,a'n,从中总存在两数/, a] (i壬j , l<i, j < n)使得将区间[1, 10]分成长度小于1且互不重叠的区间,则至少要分出10个这样的区间,如[1, 2), [2, 3), ■■■, [9, 9.5), [9.5, 10].由抽屉原则T 知,z/ = ll 即可.这说明所求"的最小值不超过11.当zz = 10 时,令^G? = z(z=l, 2, ■■■, 10), i>j,那么«, -a, = O'-J)3 + 3zj(z-;)>1 + 3ij , 不适合条件.故所求的“为11.例9 一个圆内有6000个点,其中任意三点都不共线.(1)能否用直线把这个圆分成2000块,使每块恰含有3个点,如何分?(2)若每块中三点满足:两两之间的距离皆为整数且不超过9,则以每块中的三点为顶点作三角形,这些三角形中大小完全一样的三角形至少有多少个?解析(1)圆内6000个点可确定<価条直线,因^^爲.是个有限的数,所以一定存在圆的一条切线,使它不平行于这C爲。

高一联赛班秋季第四讲-抽屉原理

高一联赛班秋季第四讲-抽屉原理

第4讲抽屉原理4.1 抽屉原理知识点睛本讲我们将叙述组合数学中一个特别简单却又十分重要,应用十分宽泛的一个原理,即抽屉原理. 而后我们将给出与抽屉原理内涵相通的几个变形,即均匀值原理与图形重叠原理 .事实上这几个原理是用来证明存在性问题的有力工具之一,自然我们还能够利用极端原理、反证法、数学概括法、算两次、计数方法和结构法等等来加以证明. 本讲我们主要叙述利用均匀值原理(其 在整数和图形范围内的形式分别为抽屉原理和图形重叠原理)来证明存在性问题,并略举数例说明其 它方法在证明存在性问题中的应用.第一抽屉原理: 若将 m 个物品放入 n 个抽屉中,则必有一个抽屉内起码有[m1] 1个物品 .n第二抽屉原理: 若将 m 个物品放入 n 个抽屉中,则必有一个抽屉内至多有[m] 个物品 ..n事实上这两个原理利用极端性原理与反证法极易证明,此处从略均匀值原理 1:设 a 1 ,a 2 ,..., a n 为实数,且 A a 1 a 2 ...a n,则 a 1 ,a 2 ,..., a n 中必有一个不小于 A ,也必有一个不大于 An均匀值原理 2:设 a 1, a 2 ,..., a n 为正实数,且 Gna 1 a 2 ... a n ,则 a 1 , a 2 ,..., a n 中必有一个不小于 G ,也必有一个不大于 G图形重叠原理: 把面积为 S 1 , S 2 ,..., S n 的 n 个平面图形以任意方式放入一个面积为S 的平面图形 A内,( 1) 假如 S 1 S 2 ... S n S ,则必有两个图形有公共点;( 2) 假如 S 1 S 2 ... S n S ,则必有一点不属于上述 n 个图形中任意一个能够发现,上述三组原理都是极端性原则在不一样场合的详细表现形式. 极端性法例是办理组合数学 中存在性的利器,经过对这三组原理及其解题技巧的深刻掌握,我们也能够自己创建一些近似的极端 性原理来解决问题 .经典精讲【例 1】将平面上的每个点都以红、蓝两色之一着色,证明:存在这样两个相像的三角形,它们的相像比为 2015,并且每一个三角形的三个极点同色。

竞赛数学_抽屉原则

竞赛数学_抽屉原则

抽 屉 原 则抽屉原则也叫鸽巢原理,它是德国数学家狄利克雷首先提出来的,也称狄利克雷原理,是组合数学中一个重要的原理,在数论和组合论中有着广泛的应用,用它可以解决生活中遇到的很多有趣的问题,并且常常能够得到令人惊奇的结果,因此数学竞赛中经常选用这方面的题目。

1 抽屉原理的基本形式原则1 把n +1个球放入n 个盒子里,则必有一个盒子至少有两个球。

证明 假设有n 个盒子,且每个盒子至多有一个球。

那么n 个盒子一共至多有n 个球,与球的个数为n +1矛盾。

故假设错误,即必有一个盒子至少有两个球。

原则2 把12()1n k k k n +++-+ 个球放入n 个盒子里,则存在1i n ≤≤,使得第i 个盒子至少有i k 个球。

证明 假设有n 个盒子,第i 个盒子至多有(1i k -)个球,即第1个盒子至多有(11k -)个球,第2个盒子至多有(21k -)个球,…,第n 个盒子至多有(1n k -)个球,故n 个盒子至多共有12()n k k k n +++- 个球,但是球数总共是12()1n k k k n +++-+ 个,矛盾。

故存在1i n ≤≤,使得第i 个盒子至少有i k 个球。

在原则2中,令122n k k k ==== ,即为原则1。

2 解题时的注意事项原则中的球有时也被描述为元素、对象或者鸽子,其中的盒子被描述为集合、抽屉或者笼子。

在分析题目时,应注意一下几方面: ① 指明什么是“球”, ② 指明什么是“盒子”;③ 指明“球”放入“盒子”的规则;④ 分析出“盒子”中的“球”所具有的性质; ⑤ 够造“盒子”的方法;⑥ 有的题目用一次抽屉原则并不会得出结论,所以也要注意原则的重复使用; ⑦ 解题时需要对“球数”和“盒数”进行估计;⑧ 在用抽屉原则时,“球”和“盒子”需要满足一定的数量关系。

因此,在解题时要注意两种思路,一是通过人为增加球的个数,二是分类讨论减少盒子的个数。

如果将这8个事项都注意到,在解题时才会得心应手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§23抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。

这类存在性问题中,“存在”的含义是“至少有一个”。

在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。

这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。

这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。

这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。

抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。

“鸽笼原理”由此得名。

例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。

证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。

4.已给一个由10个互不相等的两位十进制正整数组成的集合。

求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。

5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。

6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。

7. 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

例题答案:1.分析:5个点的分布是任意的。

如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。

如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么∠PQN=∠C,∠QNP=∠A因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以PQ≥PM。

显然BC≥PQ,故BC≥PM。

由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。

说明:(1)这里是用等分三角形的方法来构造“抽屉”。

类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。

例如“任取n+1个正数a i,满足0<a i≤1(i=1,2,…,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。

又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。

(2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于",请读者试证之,并比较证明的差别。

(3)用同样的方法可证明以下结论:i)在边长为1的等边三角形中有n2+1个点,这n2+1个点中一定有距离不大于的两点。

ii)在边长为1的等边三角形内有n2+1个点,这n2+1个点中一定有距离小于的两点。

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命题仍然成立。

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长为1的正三角形内(包括边界)有两点其距离不超过”。

2.分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。

我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m∈N+,K∈N+,n∈N,则m=(2k-1)·2n,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,……证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):(1){1,1×2,1×22,1×23,1×24,1×25,1×26};(2){3,3×2,3×22,3×23,3×24,3×25};(3){5,5×2,5×22,5×23,5×24};(4){7,7×2,7×22,7×23};(5){9,9×2,9×22,9×23};(6){11,11×2,11×22,11×23};……(25){49,49×2};(26){51};……(50){99}。

这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。

从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。

说明:(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。

想一想,为什么?因为1-2n中共含1,3,…,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。

给n以具体值,就可以构造出不同的题目。

例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?①从2,3,4,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?②从1,2,3,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?你能举出反例,证明上述两个问题的结论都是否定的吗?(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗?3.证明:把前25个自然数分成下面6组:1;①2,3;②4,5,6;③7,8,9,10;④11,12,13,14,15,16;⑤17,18,19,20,21,22,23,⑥因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。

说明:(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。

显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。

这样,我们可以用如上一种特殊的分类法:递推分类法:从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。

能与2同属于一个集合的数只有3,于是{2,3}为一集合。

如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。

(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为{26,27,28,29,30,31,32,33,34,35,36,37,38,39};第8个抽屉为:{40,41,42,…,60};第9个抽屉为:{61,62,63,…,90,91};……那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;(2)从前39个自然数中任取8个自然数;(3)从前60个自然数中任取9个自然数;(4)从前91个自然数中任取10个自然数;…都可以得到同一个结论:其中存在2个数,它们相互的比值在]内。

上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。

如果我们改变区间[](p>q)端点的值,则又可以构造出一系列的新题目来。

4.分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合就有210=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。

空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。

再来看各个真子集中一切数字之和。

用N来记这个和数,很明显:10≤N≤91+92+93+94+95+96+97+98+99=855这表明N至多只有855-9=846种不同的情况。

由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。

若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。

相关文档
最新文档