磁性测量原理篇-5-磁光效应pdf
磁光效应简介

法拉第反射是光在磁场中反射时,偏振面发生旋转的现象。这种现象是由于光 在磁场中反射时,磁场所引起的偏振面旋转角与光反射距离成正比。
磁光克尔效应
总结词
磁光克尔效应是磁光效应的一种 ,在光学测量和光学通信等领域 有重要应用。
详细描述
磁光克尔效应是指在外加磁场作 用下,某些非中心对称晶体或各 向异性媒质中,由于光偏振方向 改变而引起折射率变化的现象。
光学数据加密
利用磁光效应可以对数据进行加密和解密,提高数据的安全性。
光学检测领域的应用
光学传感
利用磁光效应可以设计出各种光学传感器,用于测量物理量的变化,如磁场、温度、压力等。
非线性光学效应
磁光效应可以增强非线性光学效应,如光学倍频、光学参量放大等,为光学检测提供了新的手段。
其他领域的应用
激光雷达
2. Phelan, T. W., & Ritz, T. (2007). Magneto-optic effects in semiconductor quantum dots. Journal of applied physics, 101(6), 063102.
3. Sivak, D. A., & Zhang, X. (2012). Magneto-optic effects in thin film garnets. Journal of magnetism and magnetic materials, 324(20), 3395-3400.
磁光效应的实验研究
近年来,实验研究主要集中在利用磁光效应进行 光学通信、光学传感、光学信息处理等领域。
3
磁光效应的理论模型
理论模型主要基于经典电磁理论和量子力学理论 进行描述。
磁光电效应的原理和应用

磁光电效应的原理和应用1. 原理介绍磁光电效应是指材料在外界磁场作用下,光的传播速度和光的偏振方向发生变化的现象。
它是磁场与光场相互作用的结果,具有重要的科学意义和广泛的应用价值。
磁光电效应的原理可归结为克尔效应和磁各向异性效应两个方面。
1.1 克尔效应克尔效应是指材料在外界磁场作用下,光线传播方向发生弯曲的现象。
当光线通过垂直于磁场方向的材料时,由于磁场对光的折射率产生影响,光线会被偏折。
这种现象被称为纵向克尔效应。
当光线通过与磁场平行的材料时,光线传播方向也会发生偏转,这种现象被称为横向克尔效应。
1.2 磁各向异性效应磁各向异性效应是指材料在外界磁场作用下,光的偏振方向发生旋转的现象。
在没有外界磁场的情况下,自然光会以相等的强度沿着所有方向传播。
但是在磁场的作用下,材料会对不同偏振方向的光产生不同的消光或吸收。
这就导致了光的线偏振方向发生旋转。
2. 应用介绍磁光电效应具有广泛的应用价值,在光电通信、光存储、光调制和传感器等领域发挥着重要作用。
2.1 光电通信在光纤通信中,磁光电效应可以用于光纤中光的相位调制和光开关。
通过利用磁光效应使光线偏振方向旋转,可以实现信号的调制和切换。
这种相位调制技术可以提高通信速率和信息传输量。
2.2 光存储磁光电效应可应用于光存储设备中的信息读取和写入。
通过磁场的作用,可以实现光存储介质中的位信息的非破坏性读取,并且能够在存储介质中写入新的信息。
2.3 光调制磁光电效应可以用于光调制器,实现光信号的调制。
利用磁光效应使光线偏振方向发生旋转,可以改变光信号的强度和相位,从而对光信号进行调制。
2.4 传感器磁光电效应在传感器领域也有广泛的应用。
通过测量外界磁场对光电材料产生的影响,可以实现磁场传感器的设计。
利用磁光电效应可以制造出高灵敏度、线性度好的磁场传感器,用于测量磁场的大小和方向。
3. 总结磁光电效应是材料在外界磁场作用下,光的传播速度和偏振方向发生变化的现象。
磁光效应

目录
磁光效应原理
• 法拉第效应基本概述
磁光材料介电常数各向异性
• 对各向同性材料外加磁场 • 材料本身的铁磁性
磁光效应当今具体应用
• 光纤电流传感器优点 • 具体的操作
引言
自然界中存在一些物质,当线偏振光沿光轴方向通过这些物质后,其偏振面会 发生旋转,即发生旋光现象,称之为自然旋光。 旋光现象最早由阿拉果在石英晶体中发现,随后毕奥发现一些各向同性的气体 和液体也具备该特性;而一些不具备自然旋光本领的晶体在磁场的作用下,偏 振面产生偏转的现象称为磁光效应,该现象由法拉第首次发现,也称为法拉第 效应。
将各向同性吸收体放入磁场:
光纤式电流传感器(OFCT) 主要由传感头 、输送与接收光纤 、电子回路 等三部分组成 , 如图 1 所示 :
各向异性吸收体的磁光第效应:
H1是金 H2是连续的电介质层,介电常数为2 H3是掺铋钇铁石榴石Bi-substituted yttrium iron garnet M是玻璃,介电常数为2.13
参考文献——张昊. 环形结构全光纤电流传感器研究[D]. 福建师范大学, 2014.
在自然旋光晶体中,对应左右旋圆偏振光的折射率不同,而光在磁场的作用下, 同样也会有这样的效应产生。磁场作用下,经过一定长度的传播后,两种圆偏 振光转过的角度将大小不同,如图2.3。
二、磁光效应介电常数
一般的,在没有外加磁场的情况下,二氧化硅为各向同性吸收材料,相对介电 常数值取一个常数:
谢谢!
参考文献——Lei C, Li D, Chen L, et al. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays[J]. Optics Letters, 2016, 41(4):729.
磁光效应

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
• 法拉第旋转效应的应用
法拉第效应可以应用于测量 仪器。例如,法拉第效应被用于 测量旋光度、或光波的振幅调变 、或磁场的遥感。在自旋电子学 里,法拉第效应被用于研究半导 体内部的电子自旋的极化。法拉 第旋转器(Faraday rotator)可 以用于光波的调幅,是光隔离器 与光循环器(optical circulator )的基础组件,在光通讯与其它 激光领域必备组件。
克尔磁光效应的应用
克尔磁光效应主要应 用与磁光光盘存储系统中。 人们很早就知道光信息的记 录和再生技术----照相技术 。激束发明后,照相技术有 了很大的发展。光盘就是用 激光非接触式高密度地记录 图像,声音,数据等信息的 圆板状媒体。
参考资料
李国栋 -《 磁性材料及器件》 都有为 - 《功能材料》 牛永宾,许丽萍等 - 《红外与激光工程》
• 克尔磁光效应
线偏振光入射到磁化媒
质表面反射出去时,偏振面
发生旋转的现象。也叫克尔
磁光效应或克尔磁光旋转。
这是继法拉第效应发现
后,英国科学家J.克尔于
图一
1876年发现的第二个重要
的磁光效应。
按磁化强度和入射面的相对取向,克尔磁光效应分极向 克尔磁光效应、横向克尔磁光效应和纵向克尔磁光效应 (图一)。极向和纵向克尔磁光旋转都正比于样品的磁 化强度。通常极向克尔旋转最大、纵向次之。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
磁性测量原理

磁性测量原理
磁性测量原理是一种测定物体磁性特性的方法。
它可以帮助我们了解物体的磁场分布、磁化情况以及其它与磁性相关的信息。
磁性测量通常使用磁感应强度计或磁力计等仪器设备,通过测量磁场的强度、方向和分布来获取相关数据。
磁性测量原理的核心是基于物体的磁场与测量仪器之间的相互作用。
当物体被置于磁场中时,它会受到磁场的影响,产生磁化效应。
这种磁化效应会导致物体产生自身的磁场,进而与外部磁场相互作用。
在磁性测量中,通过测量物体周围磁场的强度和分布来了解其磁性特性。
一般来说,磁感应强度计可以测量磁场的大小和方向。
它使用磁力线对测量物体进行扫描,然后根据磁力线的强度和方向来计算磁场的特性。
另外,磁性测量原理还可以通过测量物体的磁滞回线来了解其磁性特性。
磁滞回线是一个表征物体磁化和去磁化过程的曲线,它描述了物体在不同磁场下磁化和去磁化的行为。
通过测量磁滞回线的形状和特性,我们可以了解物体的磁性特性以及磁场对其的影响。
总之,磁性测量原理通过测量磁场的强度、方向和分布来了解物体的磁性特性。
这种原理可以应用于磁场测量、磁力计量和磁滞回线测量等领域,广泛应用于材料科学、电磁学和工程技术等相关领域。
磁光效应

件。磁光材料及器件的研究从此进入空前发展时期,并在许多高新技领域获得了
广泛的应用。近几十年来,一门新型分支学科——磁光学(包括磁光效应、磁光 理论、磁光材料、磁光测量、磁光器件、磁光光谱学等)基本形成,以此为背景 的各种磁光材料及器件也显示了其独特的性能和广阔的应用前景,并引起了人们 浓厚的兴趣。
磁光效应的概念
磁致旋光材料
1、磁光玻璃 磁光玻璃因其在可见光和红外区具有很好的
透光性,且能够形成各种复杂的形状、拉制成光
纤因而在磁光隔离器、磁光调制器和光纤电流传 感器等磁光器件中有广泛的应用前景。 2、晶体薄膜 此类薄膜材料具有巨大的磁光效应、低的光吸收损耗及高的磁 光优值,被广泛应用于光录像、光复制、光存储和光信息处理的磁 光显示器。
克尔效应
线偏振光入射到磁光介质表面反射出去时,反射光偏振面相对
于入射光偏振面转过一定角度ΘK,此现象称之为克尔效应。
磁光克尔效应包括三种情况: (1)极向克尔效应。磁化强度M与介质表面垂直时的克尔效应(图 3-9A)。 (2)横向克尔效应。磁化强度M与介质表面平行,但垂直于光的入 射面时的克尔效应(如图3-9(B))。 (3)纵向克尔效应。磁化强度M既平行于介质表面又平行于光入射 面时的克尔效应(图3-9(C))。
在磁场的作用下,物质的电磁特性(如磁导率、磁化强度、磁畴结构等) 会发生变化,使光波在其内部的传输特性(如偏振状态、光强、相位、传输 方向等)也随之发生变化的现象称为磁光效应。 1. 法拉第效应 2. 克尔效应 3. 塞曼效应 4. 磁致双折射效应 磁圆振二向色性、磁线振二向色性、磁激发光散射、磁场光吸收、磁离子体 效应和光磁效应等。
法拉第效应
法拉第效应是指一束线偏振光沿外加磁场方向通过置于磁场中 的介质时,透射光的偏振化方向相对于入射光的偏振化方向转过一 定角度ΘF的现象,如图所示。通常,材料中的法拉第转角ΘF与样品 长度L和磁场强度H有以下关系: ΘF=HLV 其中,V为Verdet常数,是物质固有的比例系数,单位是min/(Oe·cm)
磁光效应的解释和应用

磁光效应的解释和应用磁光效应是一种非常特殊的物理现象,它能够在磁场和光之间相互转换。
具体来说,就是在一个磁场中,光线可以被偏转方向。
这个现象神秘而神奇,被广泛地应用在各个领域,包括科学研究、医疗、通信和娱乐等方面。
本文将介绍磁光效应的基本原理和它的一些应用。
磁光效应的基本原理磁光效应是指当光线穿过磁场时,它的偏振方向会被改变的现象。
这个现象可以通过克尔效应来解释。
克尔效应是指在磁场中,不同方向的偏振光线速度不同,因而会产生不同的相位差,从而导致整个光波面的旋转。
更具体地说,当光线通过具有磁性材料时,它会与材料中的磁电荷相互作用,从而导致光线的偏振方向发生变化。
这个过程可以进一步分为常磁性和巨磁性两种情况。
常磁性是指材料中的原子磁矩与磁场方向不一致,这个情况下发生的克尔效应叫做Faraday效应。
而在巨磁性材料中,磁电荷的方向与磁场方向相同,因此会导致Cotton-Mouton效应。
磁光效应的应用磁光效应在科学研究、医疗、通信和娱乐等领域都有广泛的应用。
在科学研究方面,磁光效应被广泛用于材料磁性、磁场和磁畴的研究。
通过测量磁光的旋转角度,可以确定磁场的强度和方向。
磁光效应还常用于开发和研究磁场和磁性材料的新型传感器和器件。
在医疗方面,磁光效应被应用于磁共振成像(MRI)。
在MRI中,利用磁光效应来感测人体内部磁场的小变化,通过这种方式可以创造出人体内部对不同成分的特定效果图像,以诊断不同的病症。
同时,MRI还可以用于医学研究和药物开发等方面。
在通信领域,磁光效应被广泛应用于光学通信中。
磁光器件(Magneto-optical Devices)是一种把电信信息转化为光信号的器件。
通过磁光器件转化,光信号可以更好地保持原信息,并且能够更快地在波长间切换,实现更快速和高质量的数字通信。
在娱乐领域,磁光效应也有一些应用。
例如,磁光图像, 是一种让图像通过光线的磁光效应呈现出立体效果的图像。
这些图像需要使用特定的眼镜来观看,因为它们有双效性。
磁光效应简介

磁光环行器
磁光环行器的原理和隔离器的原理一样。 利用光环行器可在一根光纤内传输两个不 同方向的信号,从而大大减小了系统的体 积和成本。 图中由1端输入的信号只能沿顺时针方向 进入2、3和4端,而不能沿逆时针方向进 入4、3和2端,这样就防止了光线的反射。
磁光传感器
磁光效应传感器的原理主要是利用光的偏振状 态来实现传感器的功能。当一束偏振光通过介 质时,若在光束传播方向存在着一个外磁场, 那么光通过偏振面将旋转一个角度。也就可以 通过旋转的角度来测量外加的磁场。 在特定的试验装置下,偏转的角度和输出的光 强成正比,通过输出光照射激光二极管LD,就 可以获得数字化的光强,用来测量特定的物理 量。
磁光调制器
发生偏振面旋转来调制光束。磁光调制器 有广泛的应用,可作为红外检测器的斩波 器,可制成红外辐射高温计、高灵敏度偏 振计,还可用于显示电视信号的传输、测 距装置以及各种光学检测和传输系统中。 磁光调制器有很多种,常用的有钇铁石榴 石单晶及其薄膜磁光调制器、玻璃磁光调 制器和薄膜波导磁光调制器等。
磁光效应包括很多种,目前对其研究和应 用最广泛的是法拉第效应和克尔效应。
磁光效应的几种理论
一、法拉第效应 二、克尔效应 三、磁线双折射(科顿—莫顿效应或者佛赫特 效应) 四、磁圆振二向色性
五、塞曼效应
六、磁激发光散射 下面就简单介绍一下法拉第效应和克尔效应。
法拉第效应
一束偏振光沿外加磁场方向或磁化强度方 向通过介质时偏振面发生旋转的现象称为 法拉第效应。 描述法拉第效应的物理量称为法拉第旋转, 亦可称为磁光旋转。 法拉第效应的宏观理论可以应用介电张量 和麦克斯韦方程来描述法拉第磁光效应, 这是一种常用的磁光效应的经典理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.
10. “Spin Dynamics in Confined Magnetic Structures III”, by Burkard Hillebrands (Editor), Andre Thiaville (Editor), $225.00, 350 pages, Springer-Verlag; (September 15, 2004), ISBN: 3540201084
2c
Re(n− − n+ ) ≈
ω
2c ε
⋅ z0 ⋅ B
α F = V ⋅ l0 ⋅ B αF = K ⋅ l0 ⋅ M
V:Verdet constant,非磁性介质 K:Kundt constant,磁性介质
线偏振
M
O/E 椭圆偏振 光电转换 YIG
l0 石英玻璃 4.35 2.39 苯 9.25 5.06
右旋圆偏振光
1 E0 e − iω t 2
tan 2α =
' 1 E0 e − iω (t − n+l / c ) 2
2 Ex 0 E y 0 E −E
2 x0 2 y0
cos δ
E+ =
α= δ
1 2
磁光Faraday效应
Faraday旋转角αF:(l0为样品厚度 )α =
F
法拉第效应2
ω z0
法拉第效应3
α F = V ⋅ l0 ⋅ B αF = K ⋅ l0 ⋅ M
磁光Kerr效应
Magnetic Optical Kerr Effect (MOKE)
1876年,Reverend J. C. Kerr Kerr J. C., J. Rep. Brit. Assoc. 5, (1876) 所有介质
1 −iQ 0 iQ 1 0 [ε ] = n 2 0 1 0
ε ki (− H )
• 量子理论-材料的电子结构和电子波函数
跃迁定则:角动量守恒 自旋-轨道耦合,磁场能:Zeeman能
所需基础知识
1. 电磁波的产生与检测 2. 电磁波与物质的相互作用:
a. 光的偏振,波的合成 b. 电动力学(Maxwell方程) c. 量子力学、散射截面 e. 电磁波在物质表面的反射 f. 电磁波的散射、吸收与发射
磁光1
出射光 线偏振 偏振面旋转 线偏振 线偏振 线偏振 线偏振 线偏振 线偏振 椭圆偏振 椭圆偏振 椭圆偏振 椭圆偏振 椭圆偏振 椭圆偏振
吸收
磁场中光源发射的光谱发生劈裂 磁振子-光子散射(Brillouin散射)
磁光效应的物理来源
• 经典(电动力学)理论
磁场使得介电张量矩阵变为非对称矩阵 = n '+ in '' n − iω t plane-wave: e ⇒ ε ik ( H = ) = Q '+ iQ '' Q 磁光效应来源于非对角矩阵元:旋光性 磁场的作用:时间反演对称性破缺
磁光Kerr效应
可 见 光
磁与光 及其 相关效应 电子 磁共振
100 nm 10 nm 1 nm 10-1 10-2 10-3 nm nm nm
紫外线 X-射线 γ射线
磁与光、光与磁
一、磁场(或者磁矩)对光的作用
各种磁-光效应:偏振,吸收,散射,能级 自旋-轨道耦合 + Zeeman劈裂 M H 强度、偏振、方向、频率、相位
物理的 非(纯)数学的
光是什么?
• 会意。甲骨文字形, “从火, 在人上”。 • 本义: 光芒, 光亮 • 《说文》:光, 明也。 Light? Optic? Photo?
物理:光是能量的一种形式
光的表征:波长、频率;强度;速度;相位;偏振;
光与介质
• • • • 光的产生(光辐射):量子力学的发源 光的干涉与衍射:波的特性 光的吸收、散射与色散:物理性质的研究 光致辐射:光电效应
预备1
RF
— 0.001 eV — 0.01 eV — 0.1 eV — 1 eV — 10 eV — 100 eV — 1 keV — 10 keV — 100 keV — 1 MeV
100 cm-1— 100 µm 1000 cm-1— 10 µm 10 000 cm-1— 1 µm
远红外线 红外线
1845年,M. Faraday Faraday M., Phil. Trans. Roy. Soc. 136,1(1846) 所有介质
磁光Faraday效应
1 E− = E0 eiω t 2
' 1 iω ( t − n− l / c) E− = E0 e 2
法拉第效应1
' ' = n0 δ n' n±
磁与光及相关效应
磁-光效应的种类
效应名称 Faraday效应 Cotton-Mouton效应 (Voigt效应) 磁双折射效应 磁圆振 磁线振 横向 纵向 极向 Zeeman效应 磁致激发光散射 发光 Raman散射 Kerr效应 反射 二向色性 透射 光路/模式 入射光 平行于M 垂直于M 平行于M 垂直于M M垂直于表面 M平行表面及入射面 M平行表面垂直入射面
参考读物
8. “Spin Dynamics in Confined Magnetic Structures I (Topics in Applied Physics, 83)”, by Burkard Hillebrands, Kamel Ounadjela, B. Hillebrands, $159.00, 388 pages, SpringerVerlag Telos; (January 1, 2002), ISBN: 3540411917 “Spin Dynamics in Confined Magnetic Structures II (Topics in Applied Physics, 87)”, by Burkard Hillebrands, Kamel Ounadjela, $189.00, 440 pages, Springer-Verlag; (March 18, 2003), ISBN: 3540440844
散射 反射 折射 双折射 吸收 色散 光电效应
磁场 磁性介质
磁场、磁性介质对光的影响
• 对光辐射的影响
能级劈裂:Zeeman效应
• 对光的偏振状态的影响
透射:Faraday效应、Voigt效应、Cotton-Mouton效应 反射:磁光Kerr效应
• 对光的吸收的影响
磁二色性:磁圆二色谱(MCD)、磁线二色谱(MLD)
参考读物
11. “Group Theory in Spectroscopy with applications to Magnetic Circular Dichroism”, by Susan B. Piepho, Paul N. Schatz, Wiley-Interscience Monographs in Chemical Physics, Sean P. McGlynn , Editor, (1983). John Wiley & Sons, Inc., ISBN: 0471-03302-2 12. “Inelastic Scattering of X-Rays with Very High Energy Resolution”, by Eberhard Burkel, Springer Tracts in Modern Physics, Volume 125, Springer-Verlag; (1991), ISBN: 3-54054418-6
V: °/(cm·T) K: °/(cm·Oe)
Hg: 435.8 nm Na: 588.9 nm 830 nm
3.4
磁光Faraday效应
磁光Faraday效应的应用
1. 磁光隔离器(透射型,如YIG) 2. 磁场强度测量(非磁性介质) 3. 磁光存储器读头(read) 4. 磁化行为测量(磁性介质) 5. 磁畴结构观测(透光) 6. 动态磁化过程
二、光对介质磁性能的作用
光辐照效应:矫顽力、磁导率、磁各向异性,铁磁共振 电子的能级移动
磁与光及相关效应
磁光法拉第效应 磁光克尔效应 布里渊散射 磁二色谱 动态磁化过程的观测
/definition/Faraday_effect
磁光Faraday效应
Magnetic Optical Faraday Effect (MOFE)
磁性测量原理篇 之二 磁光效应
赵同云
磁学国家重点实验室
2013年4月22日
磁与光及相关效应
光的吸收、散射和色散
O
x M (B) M(B) E y z
声
明
本讲稿中引用的图、表、数据全部取自 公开发表的书籍、文献、论文,而且仅为教 学使用,任何人不得用于商业目的。
参考读物
1. 2. 3. 4. 5. 6. 7. 关于偏振、透射、反射、散射、吸收(《电动力学》) “Magneto-optical effects”, P. S. Pershan, J. Appl. Phys., 38, 1482-1490 (1967). 《计量测试技术手册》第7卷《电磁学》,中国计量出版社, 1996 《磁性测量》,周世昌 编,电子工业出版社,1994 《拉曼 布里渊散射》,程光熙 著,科学出版社,2001 “Magnetic dichroism in core-level photoemission”, K. Starke, Springer-Verlag, 2000 “X-ray scattering and absorption by magnetic materials”, S.W. Lovesey, S.P. Collins, Oxford U. Press, 1996
• 对光的散射的影响