江苏省连云港市2020-2021学年高二上学期期末数学试题

合集下载

江苏省连云港市2020-2021学年七年级上学期期末数学试题及参考答案

江苏省连云港市2020-2021学年七年级上学期期末数学试题及参考答案
【点睛】
本题考查列代数式.能看到表格,将文字语音用符号表示是解题关键.
14.4
【分析】
根据余角的定义判断即可.
【详解】
如图所示: 与∠1,∠2,∠3,∠4,均互为余角,
故答案为:4.
【点睛】
本题考查余角的定义,熟练掌握余角的定义是解题关键.
15.6
【分析】
根据题意列出关于a的一元一次方程求解即可.
【详解】
3.有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是( )
A.三棱柱B.三棱锥C.圆锥D.圆柱
4.下列计算正确的是( )
A. B.
C. D.
5.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()
A. B. C. D.
6.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h的速度行进24min后,爸爸骑自行车以15km/h的速度按原路追赶小明.爸爸从出发到途中与小明会合用了多少时间?设爸爸出发 后与小明会合,那么所列方程正确的是( )
【点睛】
本题考查整式的加减运算,熟练掌握运算法则是解题关键.
5.B
【分析】
先根据数轴的定义得出a、b的符号和绝对值大小,再逐项判断即可得.
【详解】
由数轴的定义得:
A、 ,此项错误
B、 ,此项正确
C、 ,此项错误
D、 ,此项错误
故选:B.
【点睛】
本题考查了数轴的定义、绝对值运算,掌握理解数轴的定义是解题关键.
移项得: ,
合并同类项得:
系数化为1得: .
【点睛】
本题考查解一元一次方程.掌握解一元一次方程的基本步骤,并能结合实际方程灵活运用是解题关键.

江苏省连云港市连云港高级中学2023-2024学年高二上学期期中数学试题

江苏省连云港市连云港高级中学2023-2024学年高二上学期期中数学试题

方程.
20.求适合下列条件的椭圆的标准方程:
(1)长轴长为
6,离心率为
2 3

(2)经过点 P3,0 ,离心率为 6 ,焦点在 x 轴上; 3
(3)x 轴上的一个焦点与短轴两个端点的连线x2 a2
y2 b2
1(a
0, b
0)
的中心在原点,焦点
F1, F2
在坐标轴上, c
A. 0,1
B. 1, 0,1
C.0,1, 2
D.1,0,1, 2
2.若复数
z
满足
2 2
z z
i
,则
z


A. i
B. i
C. 2i
3. a , b 是两个单位向量,则下列四个结论中正确的是( )
A. a b
B. a b 1
C.
2 a
2 b
D. 2i
D. | a |2 | b |2
4.已知点 A0,1, B 1, 0 ,则直线 AB 的倾斜角为( )
12.已知 Sn 是等差数列an 的前 n 项和,且 a7 0, a5 a10 0,则下列选项不正确的是
()
A.数列 an 为递减数列
B. a8 0
C. Sn 的最大值为 S7
D. S14 0
三、填空题
13.已知直线 l1 : mx 2y 1 0 ,直线 l2 : x m 1 y 1 0 ,若 l1 ∥l2 ,则 m =

四、解答题
试卷第 2页,共 3页
17.已知 ABC 的内角 A, B,C 的对边分别为 a,b, c ,且 b sin C c sin B . 2
(1)求角 B; (2)若 b 13, c 3a ,求 ABC 的面积. 18.已知直线 x 2 y 3 0 与直线 3x y 2 0 交于点 P . (1)求过点 P 且平行于直线 3x 4 y 5 0 的直线 l1 的方程;

江苏省扬州市2020-2021学年高二上学期期末数学试题(解析版)

江苏省扬州市2020-2021学年高二上学期期末数学试题(解析版)

2020-2021学年度第一学期期末检测试题高二数学全卷满分150分,考试时间120分钟一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合要求).1. 命题“0x ∀≤,210x x ++≥”的否定是( ) A. 0x ∃≤,210x x ++> B. 0x ∃≤,210x x ++< C. 0x ∀≤,210x x ++< D. 0x ∀>,210x x ++>【答案】B 【解析】 【分析】全称命题的否定为特称命题:∀→∃,并否定原结论即可.【详解】命题“0x ∀≤,210x x ++≥”的否定为“0x ∃≤,210x x ++<”, 故选:B2. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A.B. 1C.D. 2【答案】A 【解析】 【分析】首先求顶点坐标和渐近线方程,利用点到直线的距离公式,直接求解, 【详解】根据双曲线的对称性可设顶点()2,0A ,其中一条渐近线方程是1202y x x y =⇔-=,那么顶点到渐近线的距离d ==故选:A3. 若平面α,β的法向量分别为()1,2,4a =-,(),1,2b x =--,并且//αβ,则x 的值为( )A. 10B. 10-C.12D. 12-【答案】C 【解析】 【分析】根据两个法向量共线可得x 的值. 【详解】因为//αβ,,a b 共线,故12124x --==-,故12x =, 故选:C.4. 《张邱建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄……”其大意为:有一女子不善于织布,每天比前一天少织同样多的布,第一天织5尺,最后一天织一尺,三十天织完…….则该女子第11天织布( ) A.113尺 B.10529尺 C.6529尺 D.73尺 【答案】B 【解析】 【分析】女子每天的织布数成等差数列,根据首项和末项以及项数可求公差,从而可得第11天的织布数. 【详解】设女子每天的织布数构成的数列为{}n a ,由题设可知{}n a 为等差数列, 且1305,1a a ==,故公差15430129d -==--, 故()1114401051115292929a a ⎛⎫=+-⨯-=-= ⎪⎝⎭, 故选:B. 5. 不等式121x ≥-的解集为( ) A. 31,2⎛⎤ ⎥⎝⎦B. 31,2⎡⎤⎢⎥⎣⎦C. ()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. (]3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据分式不等式的解法转化为231xx-≤-,解不等式.【详解】1122011x x≥⇔-≥--,即231xx-≤-,即()()231010x xx⎧--≤⎨-≠⎩,解得:312x<≤,所以不等式的解集为31,2⎛⎤⎥⎝⎦.故选:A6. 已知正方体1111ABCD A B C D-的棱长为2,则点A到平面11A B CD的距离为()A.23B. 2C. 2D. 22【答案】B 【解析】【分析】由垂直关系可知1AD⊥平面11A B CD,根据边长关系直接求点到平面的距离. 【详解】连结1AD,与1A D交于点M,11A D AD⊥,且11A B⊥平面11ADD A111A B AD∴⊥,且1111A D A B A=,1AD∴⊥平面11A B CD,∴点A到平面11A B CD的距离为1122AM AD==. 故选:B7. 在数列{}n p中,如果对任意()*2n n N≥∈,都有11nnn np pkp p+--=(k为常数),则称数列{}n p为比等差数列,k称为比公差.则下列说法正确的是()A. 等比数列一定是比等差数列,且比公差1k =B. 等差数列一定不是比等差数列C. 若数列{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b ⋅一定是比等差数列D. 若数列{}n a 满足121a a ==,()112n n n a a a n +-=+≥,则该数列不是比等差数列 【答案】D 【解析】 【分析】根据数列新定义,由比等差数列的性质()*2n n N ≥∈有11nn n n p p k p p +--=,判断各项描述是否正确即可. 【详解】A :若{}n a 为等比数列,公比0q ≠,1n n a q a +=,1n n a q a -=,所以1101n n n n a ak a a +--==≠,A 错误.B :若1,{}n n b b =为等差数列,故有110n nn n b b b b +--=,为比等差数列,B 错误. C :令0,1n n a b ==,则0n n a b =,此时1111n n n n n n n n a b a ba b a b ++---无意义,C 错误. D :由题设知:342,3a a ==,故33242132112a a a a a a a a -=≠-=-,不是比等差数列,正确. 故选:D8. 已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A. 9-B. 8-C. 7-D. 6-【答案】C 【解析】 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值.【详解】依题意,0,0a b >>,20a b ab +-=可知121a b +=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立. 22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪, 即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C.【点睛】关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分.有选错的得0分,部分选对的得3分)9. (多选题)已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是( ) A.11a b< B. 22ac bc >C.b a a b> D. 22a ab b >>【答案】AD 【解析】 【分析】根据所给条件,结合不等式的性质,判断选项. 【详解】A.1y x =在()0,∞+上单调递减,所以当0a b >>时,11a b<,故A 正确; B.当0c时,22ac bc >不成立,故B 不正确;C.当0a b >>时,22a b >,两边同时除以ab 得,a bb a>,故C 不正确; D. 当0a b >>时,两边同时乘以a 得,2a ab >,或两边同时乘以b 得,2ab b >,所以22a ab b >>,故D 正确. 故选:AD10. 下列命题正确的是( )A. 已知u ,v 是两个不共线的向量.若a u v =+,32b u v =-,23c u v =+则a ,b ,c 共面B. 若向量//a b ,则a ,b 与任何向量都不能构成空间的一个基底C. 若()1,0,0A ,()0,1,0B ,则与向量AB共线的单位向最为2,e ⎛⎫=- ⎪ ⎪⎝⎭D. 在三棱锥O ABC -中,若侧棱OA ,OB ,OC 两两垂直,则底面ABC 是锐角三角形 【答案】ABCD 【解析】 【分析】根据空间向量的共面定理可判断A ;由构成空间向量的基底不能共面可判断B ;根据单位向量的计算公式AB AB可判断C ;利用空间向量的数量积可判断D.【详解】对于A ,u ,v 是两个不共线的向量,不妨假设a ,b ,c 共面 则c ma nb =+,即()()3223c m n u m n v u v =++-=+, 可得131,55m n ==-,存在一对实数,m n ,使得c ma nb =+,即假设成立,故A 正确; 对于B ,向量//a b ,则a ,b 与任何向量都共面,所以a ,b 与任何向量都不能构成空间一个基底,故B 正确;对于C ,()1,1,0AB =-,所以ABAB ⎛⎫= ⎪ ⎪⎝⎭,故C 正确;对于D , OA ,OB ,OC 两两垂直,()()20AB AC OB OA OC OA OA ∴⋅=-⋅-=>,所以AB 与AC 的夹角为锐角,即BAC ∠为锐角,同理ABC ∠,BCA ∠为锐角,ABC ∴是锐角三角形,故D 正确. 故选:ABCD11. 已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A. 614a =B. 数列{}()*213k a k N-+∈是以2为公比的等比数列C. 对于任意的*k N ∈,1223k k a +=-D. 1000n S >的最小正整数n 的值为15 【答案】ABD 【解析】 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD.【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.12. 在平面直角坐标系xOy 中,(),P x y 为曲线22:4224C x y x y +=++上一点,则( )A. 曲线C 关于原点对称B. 1x ⎡∈-+⎣C. 曲线C 围成的区域面积小于18D. P 到点10,2⎛⎫ ⎪⎝⎭【答案】ACD 【解析】 【分析】当0x >,0y >时,曲线C 为()2211142x y -⎛⎫+-= ⎪⎝⎭,根据点(),x y -,(),x y -,(),x y --都在曲线C 上,可得曲线C 图象关于x 轴,y 轴和原点对称,作出其图象,即可判断四个选项的正确性,即可得正确答案. 【详解】当0x >,0y >时,曲线22:4224C x yx y +=++即()2211142x y -⎛⎫+-= ⎪⎝⎭,将2214x y +=中心平移到11,2⎛⎫ ⎪⎝⎭位于第一象限的部分;因为点(),x y -,(),x y -,(),x y --都在曲线C 上,所以曲线C 图象关于x 轴,y 轴和原点对称,作出图象如图所示:对于选项A :由图知曲线C 关于原点对称,故选项A 正确;对于选项B :令2214x y +=中0y =可得2x =,向右平移一个单位可得横坐标为3,根据对称性可知33x -≤≤,故选项B 不正确;对于选项C :令2214x y +=中0x =可得1y =,向上平移12个可得纵坐标最大值为32, 曲线C 第一象限的部分被包围在矩形内,矩形面积为39322⨯=,所以曲线C 围成的区域面积小于94182⨯=,故选项C 正确; 对于选项D :令()2211142x y -⎛⎫+-= ⎪⎝⎭中0x =,可得132y =±,所以到点10,2⎛⎫ ⎪⎝⎭3故选项D 正确, 故选:ACD【点睛】关键点点睛:本题解题的关键是去绝对值得出曲线C 在第一象限的图象,根据对称性可得曲线C 的图象,数形结合、由图象研究曲线C 的性质.三、填空题(本大题共4小题.每小题5分,共20分)13. 若存在实数x ,使得不等式20x ax a -+<成立,则实数a 的取值范围为______________. 【答案】()(),04,-∞+∞【解析】 【分析】结合一元二次不等式对应的二次函数图象性质直接判断0∆=>,计算即得结果.【详解】二次函数2()f x x ax a =-+是开口向上的抛物线,故要使2()0f x x ax a =-+<有解,则需240a a ∆=->,即()40a a ->,解得0a <或4a >.故实数a 的取值范围为()(),04,-∞+∞.故答案为:()(),04,-∞+∞.14. 已知数列{}n a 是等比数列,24a =,816a =,则5a =___________. 【答案】8± 【解析】 【分析】利用等比数列的性质:若m n p q +=+,则m n p q a a a a ⋅=⋅,即可求解. 【详解】由数列{}n a 是等比数列,24a =,816a =, 则252841664a a a =⋅=⨯=,所以58a =±. 故答案为:8±15. 设椭圆()2222:10x y C a b a b+=>>的左焦点为F 、右准线为l ,若l 上存在点P ,使得线段PF 的中点恰好在椭圆C 上,则椭圆C 的离心率的最小值为_____________.1 【解析】 【分析】利用根据椭圆的准线方程,设点2(,2)a P y c,得中点坐标,代入椭圆方程,整理得2y ,又20y ≥,解不等式即可得离心率的最小值.【详解】由()2222:10x y C a b a b+=>>,得(,0)F c -,2a l x c =:,设点2(,2)a P y c ,故中点为22(,)2a c y c-,又中点在椭圆上,故代入椭圆方程得2222222()14a c y a c b-+=, 整理得2222222()[1]04a c y b a c -=⋅-≥,故22222()104a c a c --≥,又(0,1)ce a=∈,整理得2(3)8e -≤,233e -≤≤+,即2231)e ≥-=,1e ≥,故答案为:21-.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).16. 已知函数()()()()244422f x a x a x a a R =-++++∈,则该函数()f x 的图象恒过定点________;若满足()0f x <的所有整数解的和为6-,则实数a 的取值范围是________. 【答案】 (1). 1,02⎛⎫- ⎪⎝⎭(2). 108,75⎡⎫⎪⎢⎣⎭【解析】 【分析】将函数()f x 的解析式变形为()()()21221f x a x a x =-++⋅+⎡⎤⎣⎦,即可求得函数()f x 的图象所过定点的坐标; 【详解】()()()()()4442221221f x a x a x a a x a x =-++++=-++⋅+⎡⎤⎣⎦,当10a -=时,令()0f x =,得12x =-;当10a -≠时,令()0f x =,得()221a x a +=-或12x =-.综上所述,函数()f x 的图象必过点1,02⎛⎫- ⎪⎝⎭. 分以下三种情况讨论:①当10a -=时,即当1a =时,由()()3210f x x =+<,可得12x <-,不合乎题意; ②当10a ->时,即1a >时,()()213021221a a a +⎛⎫--=< ⎪--⎝⎭,则()21212a a +<--, 解不等式()0f x <,可得()21212a x a +<<--,由于不等式()0f x <所有的整数解的和为6-,则不等式()0f x <的所有整数解有3-、2-、1-,所以,()24321a a +-≤<--,解得10875a ≤<;③当10a -<时,即1a <时,()()213021221a a a +⎛⎫--=> ⎪--⎝⎭,可得()21212a a +>--. 解不等式()0f x <,可得12x <-或()221a x a +>-,不等式()0f x <的解中有无数个整数,不合乎题意. 综上所述,实数a 的取值范围是108,75⎡⎫⎪⎢⎣⎭. 故答案为:1,02⎛⎫- ⎪⎝⎭;108,75⎡⎫⎪⎢⎣⎭.【点睛】方法点睛:解含参数的一元二次不等式分类讨论的依据:(1)二次项中若含有参数应讨论是小于0,等于0,还是大于0,然后将不等式转化为二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,讨论判别式∆与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.四、解答题(本大题共6小题.计70分,解答应写出必要的文字说明、证明过程或演算步骤)17. 命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线.(1)若命题q 为真命题,求实数m 的取值范围; (2)若Р是q 的充分不必要条件,求实数a 的取值范围. 【答案】(1)15m <<;(2)512a ≤≤ 【解析】 【分析】(1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m满足方程221 15x ym m+=--表示双曲线,则()()150m m--<,解得15m<<,(2)实数m满足不等式()223200m am a a-+<>,解得2<<a m a,若p是q的充分不必要条件,则{}|2a a m a<<是{}|15m m<<的真子集,所以125aaa≥⎧⎪≤⎨⎪>⎩,解得512a≤≤,所以若p是q的充分不必要条件,求实数a的取值范围是512a≤≤.【点睛】易错点睛:若p是q的充分不必要条件则{}|2a a m a<<是{}|26m m<<的真子集,一般情况下需要考虑{}|2a a m a<<=∅的情况,此情况容易被忽略,但题目中已经给出0a>,很明显{}|2a a m a<<≠∅.18. 如图,在三棱锥M中,M为BC的中点,3PA PB PC AB AC=====,26BC=.(1)求二面角P BC A--的大小;(2)求异面直线AM与PB所成角的余弦值.【答案】(1)23π;(2)36【解析】【分析】(1)连接PM,则可证得PMA∠就是二面角P BC A--的平面角,根据勾股定理和余弦定理求解;(2)取PC中点N,连接,MN AN,则AMN∠就是异面直线AM与PB所成的角,根据余弦定理求解即可.【详解】解:(1)连接PM ,因为M 为BC 的中点,3PB PC AB AC ====, 所以,PM BC AM BC ⊥⊥,所以PMA ∠就是二面角P BC A --的平面角. 在直角PMC △中,3,6PC MC ==,则3PM =,同理可得3AM =,在PMA △中,由余弦定理得1cos 2233PMA ∠==-⨯⨯,所以23PMA π∠=,即二面角P BC A --的大小为23π(2)取PC 中点N ,连接,MN AN ,则//MN PB ,故AMN ∠或其补角就是异面直线AM 与PB 所成的角, 因为等边PAC △中,PC 中点为N ,所以333AN == 又13,22MN PB ==3AM =所以在AMN 中9273344cos 3232AMN +-∠==,因为异面直线所成角的范围为(0,]2π,所以直线AM 与PB 3【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.19. 设等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,其满足112a b ==,453S a b =+,328a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)若_______,求数列{}n c 的前n 项和n T . 在①11n n n n c b a a +=+,②n n n c a b =,③112n n n n n a c a a b +++=这三个条件中任一个补充在第(2)问中;并对其求解.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)1n a n =+,2nn b =;(2)见解析.【解析】 【分析】(1)由题设条件可得公差和公比的方程组,解方程组后可得两个数列的通项. (2)根据所选数列分别选分组求和、错位相减法、裂项相消法可求n T .【详解】(1)设等差数列的公差为d,公比为q,则2434224222228d d qd q⨯⎧⨯+⨯=++⎪⎨⎪++=⎩,解得21qd=⎧⎨=⎩或36qd=-⎧⎨=⎩(舍),故()2111na n n=+-⨯=+,1222n nnb-=⨯=.(2)若选①,()()111221212n nncn n n n=+=-+++++,故()121211111111222334121222nnnTn n n+-=-+-++-+=-+-++-+,若选②,则()12nnc n=+,故()2322324212nnT n=⨯+⨯+⨯+++,所以()234+1222324212nnT n=⨯+⨯+⨯+++,所以()23114222122n n nnT n n++-=++++-+=-⋅即12nnT n+=⋅.若选③,则()()()()113111221222n n n nncn n n n+++==-++++,故()()()12231111111111223232********* n n n nTn n n++ =-+-++-=-⨯⨯⨯⨯+++.【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.20. 如图,在直三棱柱111ABC A B C-中,12AA AB AC===,AB AC⊥,M是棱BC的中点,点P在线段A1B上.(1)若P 是线段1A B 的中点,求直线MP 与平面11ABB A 所成角的大小; (2)若N 是1CC 的中点,平面PMN 与平面CMN 所成锐二面角的余弦值为537,求线段BP 的长度. 【答案】(1)4π;(2)423. 【解析】 【分析】(1)过M 作MH AB ⊥于H ,连接PH ,由已知条件知1//PH AA 且112PH AA =,即PM 与面11ABB A 所成角为MPH θ=∠,即可求其大小.(2)构建空间直角坐标系,由已知线段长度标识,,M N C 的坐标,令(,0,2)P a a -,由向量坐标表示NP ,MN ,NC ,MC ,进而求得面PMN 与面CMN 的法向量,由二面角余弦值即可求参数a ,即可求BP 的长度.【详解】(1)过M 作MH AB ⊥于H ,连接PH ,又AB AC ⊥ ,∴//MH AC ,M 是棱BC 的中点,所以H 是AB 的中点,而P 是线段1A B 的中点, ∴1//PH AA 且112PH AA =, PM 与面11ABB A 所成角为MPH ∠,设MPH θ=∠则12tan 12ACMH AA PH θ===,[0,]2πθ∈, ∴4πθ=,(2)构建以A 为原点,1,,AB AC AA 分别为x 、y 、z 轴正方向,则(1,1,0),(0,2,1),(0,2,0)M N C ,由等腰1Rt A AB ,可令(,0,2)P a a -,∴(,2,1)NP a a =--,(1,1,1)MN =-,(0,0,1)NC =-,(1,1,0)MC =-,若(,,)m x y z =为面PMN 的一个法向量,则2(1)0ax y a z x y z -+-=⎧⎨-++=⎩,令1y =,有(3,1,2)m a a =--,若()111,,n x y z =为面CMN 的一个法向量,则110{0z x y -=-+=,令11x =,有(1,1,0)n =,∴由题意,知:253737||||221014m n m n a a ⋅==⋅-+,整理得22168360a a -+=,解得187a =或23a =,而P 在线段A 1B 上,有23a =则24(,0,)33P ,∴423BP =.【点睛】关键点点睛:(1)根据线面角的几何定义,找到直线MP 与平面11ABB A 所成角的平面角,进而求角.(2)构建空间直角坐标系,设(,0,2)P a a -,求二面角的两个半面的法向量,根据二面角的余弦值求参数a ,进而求线段长.21. 设抛物线()220x py p =>的焦点为F ,其准线与y 轴交于M ,抛物线上一点的纵坐标为4,且该点到焦点F 的距离为5. (1)求抛物线的方程;(2)自M 引直线交抛物线于,P Q 两个不同的点,设MP MQ λ=.若47PQ ⎛∈ ⎝⎦,求实数λ的取值范围.【答案】(1)24x y =;(2)(]1,11,33⎡⎫⋃⎪⎢⎣⎭【解析】 【分析】(1)根据抛物线定义:抛物线线上一点到焦点距离等于到准线距离,得452p+=化简即可; (2)设:1PQ y kx =-,联立直线与抛物线方程设1122(,),(,)P x y Q x y ,用弦长公式表示PQ ,由MP MQ λ=及韦达定理将k 用λ表示出来,此时PQ 用λ表示,结合470,3PQ ⎛⎤∈ ⎥ ⎝⎦解不等式.【详解】解:(1)根据题意作图如下:因为抛物线上一点的纵坐标为4,且该点到焦点F 的距离为5, 又抛物线线上一点到焦点距离等于到准线距离, 所以4522pp +=⇒=,故抛物线的方程为24x y =.(2)由题意直线PQ 斜率存在,设:1PQ y kx =-,由2214404y kx x kx x y=-⎧⇒-+=⎨=⎩,22161601k k ∆=->⇒>, 设1122(,),(,)P x y Q x y ,则121244x x kx x +=⎧⎨=⎩,① 所以22222121116164444PQ k x k k k k =+-=+-=+-因为MP MQ λ=,所以112212(,1)(,1)x y x y x x λλ+=+⇒=代入①化简得()2214k λλ+=令()2214t k λλ+==,则24416PQ t t t +-=-因为470,3 PQ⎛⎤∈ ⎥⎝⎦,所以21129PQ<≤,即2211225616016499316tt t<≤⇒<⇒<≤-≤,所以()22211210164133310303λλλλλλλλ≠⎧+⎧-+>⎪<≤⇒⇒⎨⎨≤≤-+≤⎩⎪⎩即(]1,11,33λ⎡⎫∈⎪⎢⎣⎭所以实数λ的取值范围(]1,11,33⎡⎫⋃⎪⎢⎣⎭.【点睛】在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.22. 已知直线:l y kx m=+与椭圆()2222:10x yC a ba b+=>>交于A,B两个不同的点,点M为AB中点,点O为坐标原点.且椭圆C的离心率为22,长轴长为4.(1)求椭圆C的标准方程;(2)若OA,OB的斜率分别为1k,2k,2k=12k k为定值;(3)已知点(2N,当AOB的面积S最大时,求OM ON⋅的最大值.【答案】(1)22142x y+=;(2)见解析;(3)2.【解析】【分析】(1)求出,a b 后可得椭圆的方程.(2)设()()1122,,,A x y B x y ,联立直线方程和椭圆方程,利用韦达定理化简1212y y x x 可得所求的定值. (3)联立直线方程和椭圆方程,利用弦长公式和点到直线的距离可求面积,结合基本不等式可求AOB 何时取最大值,再用,k m 表示OM ON ⋅,利用基本不等式可求()2OM ON ⋅的最大值,从而得到OM ON ⋅的最大值.【详解】(1)因为长轴长为4,故2a =,又离心率为2,故c =b = 故椭圆方程为:22142x y +=. (2)直线:2l y x m =+,()()1122,,,A x y B x y ,由22224y x m x y ⎧=+⎪⎨⎪+=⎩可得22242x x m ⎛⎫++= ⎪ ⎪⎝⎭,整理得2220x m +-=,故2820m ∆=->即22m -<<.又()211121212121212122x m x m x x m y k y x x x x x k x ⎫++⎪++⎝⎭⎝⎭===+,而12x x +=,2122x x m =-,故()2122112222k m m k ⨯+=+=-即12k k 为定值. (3)设()()1122,,,A x y B x y ,由2222y kx m x y =+⎧⎨+=⎩得()222124240k x kmx m +++-=, 又()()2222221641224163280k m k m k m ∆=-+-=+->,故2224k m +>,又12AB x =-=故12OABS AB==因为222224122k m mk+-+≤=+,故OABSm=时等号成立,此时2224k m+>成立.而12222,21212M Mx x km mx yk k+-===++,故(2222212122=1m kkmk k kOM ON--+=++⋅+,所以2=kOM ON=⋅,2221211212kk k+-==-++,因为212k+≥-,故2112k-≤+2≤≤当且仅当k=时等号成立.所以OM ON⋅的最大值为2,故OM ON⋅的最大值为2,当且仅当k=,m=时取最大值.【点睛】方法点睛:直线与椭圆位置关系中的最值、定值问题,一般需联立直线方程和椭圆方程,消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x+或1212,y y y y+,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.。

2022-2023学年江苏省连云港市海州高二年级上册学期期中数学试题【含答案】

2022-2023学年江苏省连云港市海州高二年级上册学期期中数学试题【含答案】

2022-2023学年江苏省连云港市海州高级中学高二上学期期中数学试题一、单选题1.已知点,则直线AB 的斜率为()(1,0),(2,A B AB .CD.【答案】B【分析】过两点的直线斜率公式为,代入数据可得答案.1212y y k x x -=-【详解】点,根据斜率公式,(1,0),(2,AB 1212y y k x x -=-代入数据得:k ==故选:B2.已知点,则线段AB 的中点坐标为( )(8,10),(4,4)A B -A .B .C .D .(2,7)(4,14)(2,14)(4,7)【答案】A【分析】利用两点的中点坐标公式求出答案.【详解】由题意得:线段AB 的中点坐标为,即.84104,22-+⎛⎫⎪⎝⎭()2,7故选:A.3.双曲线的渐近线方程为( )2219y x -=A .B.C .D .13y x=±3y x =±y =y =【答案】B【分析】根据双曲线方程直接写出渐近线方程即可.【详解】由双曲线方程知:,,而渐近线方程为,1a =3b =b y x a =±所以双曲线渐近线为.3y x =±故选:B4.“中国剩余定理”又称“孙子定理”,最早可见于我国南北朝时期的数学著作《孙子算经》,1852年,英国传教士伟烈亚力将该解法传至欧洲,1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,此定理讲的是关于整除的问题,现将1到2022这2022个数中,能被2除余1且被7除余1的数按从小到大的顺序排成一列,构成数列,则该数列共有( ){}n a A .145项B .146项C .144项D .147项【答案】A【分析】由已知可得能被除余且被除余的数即为能被除余,进而得通项及项数.2171141【详解】由已知可得既能被整除,也能被7整除,故能被整除,1n a -21n a -14所以,,()1141n a n -=-N n *∈即,1413n a n =-故,即,解得,故共项,12022n a ≤≤114132022n ≤-≤5114514n ≤≤145故选:A.5.若等差数列和等比数列满足,,,则的公比为( ){}n a {}n b 11a b =222a b ==48a ={}n b A .2B .C .4D .2-4-【答案】B【分析】根据等差数列的基本量运算可得,然后利用等比数列的概念结合条件即得.111a b ==-【详解】设等差数列的公差为,等比数列的公比为,{}n a d {}n b q 则,242822a a d d +=+==所以,3d =∴,,22123b a a ===+111a b ==-所以.212b q b ==-故选:B.6.以直线经过的定点为圆心,2为半径的圆的方程是( )30()ax y a a ---=∈RA .B .222660x y x y +-++=222660x y x y ++-+=C .D .226260x y x y ++-+=226260x y x y +-++=【答案】A【分析】先由直线的方程求得直线恒过的定点,再由圆的圆心和半径得出圆的方程得选项.【详解】解:因为直线方程为,即,所以直线过定30()ax y a a ---=∈R ()()130a x y a ---=∈R 点,()1,3-所以圆方程为,即,22(1)(3)4x y -++=222660x y x y +-++=故选:A.7.记为等比数列的前n 项和.若,则的值为( )n S {}n a 243,12S S ==6S A .24B .48C .39D .36【答案】C【分析】根据等比数列的性质可知,,是等成比数列,由此列式计算即可.2S 42S S -64S S -【详解】∵为等比数列的前n 项和,∴,,等成比数列,n S {}n a 2S42S S -64S S -∴,,∴,∴.23S =421239S S -=-=6499273S S -=⨯=6427271239S S =+=+=故选:C8.已知椭圆,为的左、右焦点,为上一点,2222:1(0)x y C a b a b +=>>12,F F C (,)(0,0)P m n m n >>C且的内心为,若的面积为,则的值为( )12PF F △(,2)I s 12PF F △nA .B .3C D .6【答案】D【分析】利用焦点三角形的面积公式,建立等量关系,结合椭圆的性质,计算椭圆的离心率,再结合焦点三角形的面积公式即可求的值.n 【详解】由题意得,的内心到轴的距离12PF F △(,2)I s x 等于内切圆的半径,即为的纵坐标,即为,12PF F △(,2)I s 2因为为上的一点,P C所以,1212121||||||22,(22)2222PF F PF PF F F a c S a c a c ++=+=+⨯=+=△即,a c +=又因为,所以,ce a=(1)b e =+,2222222,(1)a b c e a e a ⎤=+∴++=⎥⎦整理得,解得(舍)或,2210e e +-=1e =-12e =所以,1,2c a b ==所以,12121||2PF F S F F n cn == 所以,即,解得.22a c cn +=112()22a a an+=6n =故选:D.二、多选题9.已知等比数列 ,=1, ,则( ).{}n a 1a 2q =A .数列 是等比数列1{}n a B .数列 是递增数列1{}n a C .数列 是等差数列2{log }n a D .数列是递增数列2{log }n a 【答案】ACD【分析】求出数列与的通项公式,再判断是否是等比或等差数列;等差数列的单调性1{}n a 2{log }n a 决定于公差的正负,等比数列的单调性决定于首项的正负和公比与1的大小.【详解】由=1,得,,所以数列 是等比数列且为递减数列,故A 正1a 2q =12n n a -=1112n n a -=1{}n a 确B 不正确;,数列 是递增的等差数列,故C ,D 正确.2log 1n a n =-2{log }n a 故选:ACD.10.下列说法错误的是( )A .直线在y 轴上的截距为353y x =-B .经过定点的直线都可以用方程表示(0,2)A 2y kx =+C .已知直线与直线平行,则平行线间的距离是13490x y ++=6240x my ++=D .点关于直线的对称点是(2,3)C 1x y -=(4,1)【答案】ABC【分析】对A ,截距是直线与轴的交点纵坐标;对B ,当直线与轴垂直时,不能用斜截式表示;y x 对C ,先根据平行求出参数,再用平行线间的距离公式求出距离可判断;对D ,两点关于一条直m 线对称,说明这条直线是这两点连线的中垂线.【详解】A :直线在y 轴上的截距:令,A 错误;53y x =-0,3x y =∴=-B :与轴垂直的直线没有斜率,表示不了B 错误;x 2y kx ∴=+0,x =C :直线与直线平行,则,则可化为3490x y ++=6240x my ++=8m =6240x my ++=,,C 错误;34120x y ++=35d ∴D :过点的直线斜率为,又得斜率为,斜率之积为,故(2,3),C '(4,1)C l 31124k -==--':1l x y -=11-两直线垂直;又点的中点为,中点在上,故是点(2,3),C '(4,1)C ()3,2':1l x y -=1x y -=(2,3),C 的对称轴,D 对.'(4,1)C 故选:ABC11.以下四个关于圆锥曲线的命题中,其中是真命题的有( )A .双曲线与椭圆有相同的焦点221169x y -=2214924x y +=B .在平面内,设、为两个定点,为动点,且,其中常数为正实数,则动点A B P PA PB k+=k 的轨迹为椭圆P C .方程的两根可分别作为椭圆和双曲线的离心率22310x x -+=D .过双曲线的右焦点F 作直线交双曲线于、两点,若,则这样的直线有2212y x -=l A B AB 4=l 且仅有3条【答案】AD【分析】求出双曲线与椭圆的焦点坐标,即可判断A ,由椭圆的定义可分析B 选项,根据椭圆和离心率的取值范围可分析C 选项,考虑直线的斜率存在和不存在两种情况,从而可分析D 选项.l 【详解】解:对于A :双曲线与椭圆的焦点均为,故A 正确;221169x y -=2214924x y +=()5,0±对于B :根据椭圆的定义,在平面内,设、为两个定点,为动点,A B P 当时,动点的轨迹为椭圆,PA PB k AB +=>P 当时,动点的轨迹为线段,PA PB k AB +==P AB 当时,动点的轨迹不存在,故B 错误;PA PB k AB+=<P 对于C :方程的两根为,,不能为椭圆和双曲线的离心率,故C 错误;22310x x -+=11x =212x =1对于D :双曲线的右焦点为,,,2212y x -=)F()11,A x y ()22,B x y当直线的斜率不存在时,中,可得,所以;l x =2212y x -=2y =AB 4=当直线的斜率存在时,设其直线方程为,联立,l (y k x =2212y x -=可得,显然,()()22222230k xx k -+-+=22k ≠所以,()()422212422316160k k k k∆=+-+=+>所以,12x x +=2122232k x x k +=--所以,()2224142k AB x k +=-===-解得,故D 正确.k =故选:AD.12.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A 、B 的距离之比为定值的点(1)λλ≠的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知,点P 满xOy (0,0),(3,0)O A 足,设点P 的轨迹为圆,下列结论正确的是( )||2||PA PO =C A .圆C 的方程是22(1)4x y ++=B .过点A 向圆C 引切线,两条切线的夹角为π3C .过点A 作直线l ,若圆C 上恰有三个点到直线距离为1,该直线斜率为D .在直线上存在两点D ,E ,使得=1x -||2||PD PE =【答案】ABD【分析】利用求轨迹方程的方法确定圆的方程可判断选项A ,,再根据边与角的关系求出C 即可确定两条切线的夹角判断选项B ,根据圆心到直线的距离可求出斜率判断选项C ,π6CAM ∠=利用轨迹方程的办法判断选项D.【详解】设,由,(,)P x y ||2||PA PO =2=整理得,故A 正确;22(1)4x y ++=过点A 向圆引切线,设其中一个切点为,C M 圆的半径为,且,4,AC =C 2MC r ==MC AM ⊥所以,所以,1sin ,2MC CAM AC ∠==π0,2CAM ⎛⎫∠∈ ⎪⎝⎭π6CAM ∠=所以两条切线的夹角为,故B 正确;π23CAM ∠=设点A 作直线,:(3)l y k x =-因为圆上恰有三个点到直线距离为1,圆的半径为,C C 2r =所以圆心到直线的距离等于1,C (3)y k x =-,解得C 错误;1=k =假设存在,使得,(1,),(1,)D m E n --||2||PD PE =,2=化简得,222228421033m n n m x y x y --+++++=因为的轨迹为,P 22230x y x ++-=所以,解得或,2228034133m nn m -⎧=⎪⎪⎨-⎪+=-⎪⎩41m n =⎧⎨=⎩41m n =-⎧⎨=-⎩故直线上存在两点或,=1x -()()1,1,1,4D E --()()1,1,1,4D E ----使得成立,故D 正确;||2||PD PE =故选:ABD.三、填空题13.经过点,斜率为3的直线方程为___________.(4,1)【答案】3110.x y --=【分析】知道直线过的点和直线的斜率,直接代入点斜式方程可得答案.【详解】经过点,斜率为3的直线方程为(4,1)()134,y x -=-化简得:3110.x y --=故答案为:3110.x y --=14.圆与圆的位置关系是___________.2260x y x +-=224x y +=【答案】相交【分析】由圆的方程可确定圆心和半径,根据可确定两圆关系.2112r r d r r -<<+【详解】圆可化为,圆心为,半径;2260x y x +-=()2239x y -+=()3,013r =圆,圆心为,半径;224x y +=()0,022r =圆心距,,,∴3d =125r r +=211r r -=易得,两圆相交.2112r r d r r -<<+∴故答案为:相交.15.在数列{an }中,,若 的前n 项和为,则项数n =________.1(1)n a n n =+{}n a 20222023【答案】2022【分析】利用裂项求和法求得的前n 项和的表达式,由题意列出方程,求得答案.{}n a 【详解】由题意得,111(1)1n a n n n n ==-++1111112231n S n n ∴=-+-++-+ ==,11n 1=-+1nn +20222023∴n =2022,故答案为:202216.已知数列的通项公式,记数列落在区间内项的个数为,则{}n a 76n a n =-{}n a ()27,7m m m b ___________.2b =【答案】336【分析】由题意可得求落在区间内项的个数,再根据通项公式列不等式求解即可.{}n a ()247,7【详解】由题意,即求满足的正整数的个数,即,247767n <-<n 2476776n +<<+,故,共个.3667777n +<<+()*8343,N n n ≤≤∈34381336-+=故答案为:336四、解答题17.已知抛物线的顶点在原点,对称轴为x 轴,焦点在直线上.240x y --=(1)求该抛物线的方程;(2)若该抛物线上点A 的横坐标为2,求点A 到该抛物线焦点的距离.【答案】(1)216y x=(2)6【分析】(1)求出焦点坐标,设出抛物线方程,从而得到,求出及抛物线方程;22y px =42p =8p =(2)由焦半径公式进行求解.【详解】(1)中,令得:,240x y --=0y =4x =则焦点坐标为,故设抛物线方程为,()4,022y px =故,解得:,42p=8p =故抛物线方程为;216y x =(2)设点A 到该抛物线焦点的距离为,h 由抛物线的定义可知:.2462A ph x =+=+=18.已知在等差数列中,.{}n a 591,7a a ==-(1)求数列的通项公式;{}n a (2)若数列的前n 项和,则当n 为何值时取得最大,并求出此最大值.{}n a n S n S 【答案】(1)112n a n=-(2)当时,取得最大值,最大值为25.5n =n S 【分析】(1)设出公差,利用等差数列的性质计算出公差,从而求出通项公式;(2)令,解不等式,求出当时,取得最大值,并用等差数列求和公式求出最0,0n n a a ><5n =n S 大值.【详解】(1)设等差数列的公差为,{}n a d 则,解得:,957414a d d a +=+==-2d =-则的通项公式为;{}n a ()()55125112n a a n d n n =+-=--=-(2)因为,N n *∈令得:,令得:,1120n a n =->15n ≤≤1120n a n =-<6n >故当时,取得最大值,5n =n S 其中,故最大值为.159,1a a ==()()155********a a S +⨯+===19.已知的顶点,边上的高所在的直线方程为.ABC ()5,1B AB 250x y --=(1)求直线的方程;AB (2)若边上的中线所在的直线方程为,求直线的方程.BC 250x y --=AC【答案】(1)2110x y +-=(2)6590x y --=【分析】(1)根据边上高所在直线与的位置关系可确定直线的斜率,又已知点,AB AB AB ()5,1B 所以可得直线的方程;AB (2)由(1)中的方程及边上的中线所在的直线过点,可求点的坐标,又设点,AB BC A A (),C a b 根据的中点在直线上及点在上列方程组可求解的BC 51,22a b ++⎛⎫ ⎪⎝⎭250x y --=C 250x y --=,a b 值,得点的坐标,从而可求直线的方程.C AC 【详解】(1)解:由边上的高在上可知,垂直于直线AB 250x y --=AB 250x y --=所以2AB k =-又,所以直线的方程为:,()5,1B AB 12(5)y x -=-即的方程为.AB 2110x y +-=(2)解:因为是边上的中线所在的直线,又的方程为250x y --=BC AB 2110x y +-=则联立,解得,故点坐标为.2+11=025=0x y x y ---⎧⎨⎩=4=3x y ⎧⎨⎩A ()4,3设点,则的中点在直线上,(),C a b BC 51,22a b ++⎛⎫ ⎪⎝⎭250x y --=所以,即①,5125022a b ++⨯--=210a b --=又点在上,则有②,C 250x y --=250a b --=联立①②解得,.1a =-3b =-即,所以,所以直线的方程为:(1,3)C --336145AC k --==--AC 63(4)5y x -=-即直线的方程为:.AC 6590x y --=20.已知圆,点在圆C 上.22:()3(R)C x y b b +-=∈(1)求圆C 的方程;(2)已知直线l 与圆C 相切,且直线l 在x 轴、y 轴上的截距相等,求直线l 的方程.【答案】(1)22(5)3x y +-=(2)或y x =5y x =-+【分析】(1)将代入圆的方程求解即可;(2)分直线l 过原点与不过原点两种情况设直线的方程,再结合直线与圆相切则圆心到直线的距离等于半径列式求解即可.【详解】(1)因为在圆C 上,故,解得,故圆C的方程为23(5)3b +-=5b =.22(5)3x y +-=(2)当直线l 在x 轴、y 轴上的截距均为0时,此时圆C 圆心在y 轴上,故直线存在斜率.()0,5l 设直线l 的方程为,则到的距离,即,解得y kx =()0,50kx y -=d ()22531k =+的方程为.k=l y =当直线l 在x 轴、y 轴上的截距不为0时,设直线l 的方程为,即,则1x y a a +=0x y a +-=,即的方程为.5a -=5a =l 5y x =-+综上,直线l 的方程为或y =5y x =-+±21.已知数列中,,且对任意,都有.{}n a 12a =*n ∈N 121n n a a +=-(1)求数列的通项公式;{}n a (2)若,求数列的前n 项和.()21n n b n a =⋅-{}n b n S 【答案】(1)121n n a -=+(2)1(1)22+=-⋅+n n S n 【分析】(1)构造等比数列求通项;(2)利用错位相减法求和.【详解】(1)由得,,121n n a a +=-()1121n n a a +-=-111a -=所以数列是以1为首项,2为公比的等比数列,{}1n a -所以,所以.111122n n n a ---=⨯=121n n a -=+(2)由(1)得,1222n n n b n n -=⋅=⋅因为,12n n S b b b =+++ 所以,1212222n n S n =⨯+⨯++⨯ ,231212222n n S n +=⨯+⨯++⨯ 以上两式相减得,121112(12)22222(1)2212n n n n n n n n n S +++-=+++-⋅=--⋅=-⋅-- 所以.1(1)22+=-⋅+n n S n 22.已知焦点在x 轴上,短轴长为C ,经过点.(2,1)A (1)求椭圆C 的标准方程;(2)若点M 、N 在椭圆C 上,且以MN 为直径的圆经过点A ,求点A 到直线MN 距离的最大值.【答案】(1)22163xy +=【分析】(1)利用待定系数法可求椭圆的标准方程.(2)可证直线过定点,从而可求点A 到直线MN 距离的最大值.MN 【详解】(1)设椭圆标准方程为,则且,22221(0)x y a b a b +=>>b =24113a +=故,故椭圆标准方程为:.26a =22163x y +=(2)若直线的斜率与直线的斜率均存在且非零,AM AN 故可设,.():21AM y k x =-+()1:21AN y x k =--+由可得,()2216321x y y k x ⎧+=⎪⎨⎪=-+⎩()()222124(12)21260k x k k x k ++-+--=故,故,()222126212M k x k --⨯=+()22221234421212M k k k x k k ----==++故.2224112M k k y k --+=+同理,,.222442N k k x k -++=+22422N k k y k +-=+故()()()()()222222222241(12)(42)2442(12)244MNk k k k k k k k k k k k k +--+-++-=+---+-++,42242213(1)312(1)3(1)232k k k k k k k k k k --+--+==--+--故直线的方程为:,MN 222222241314421223212k k k k k k y x k k k k ⎛⎫--+--+---=- ⎪+--+⎝⎭整理得到:,2222222231314422412322321212k k k k k k k k y x k k k k k k --+--+----+=-⨯+----++整理得到:,()()()()()()22222222314422412323123223212k k k k k k k k k k y x k k k k k ---+--+--+----+=+----+222313232232k k k x k k k k --+=+----222231231123232323k k k k x k k k k --+--+=-⨯-----,22312123233k k x k k --+⎛⎫=-- ⎪--⎝⎭故直线过定点.MN 21,33⎛⎫- ⎪⎝⎭若直线的斜率与直线的斜率一个不存在,另一个则为零,AM AN 此时或,()()2,1,2,1M N --()()2,1,2,1M N --此时的方程为:,也过,MN 2x y =-21,33⎛⎫- ⎪⎝⎭综上,直线过定点.MN 21,33Q ⎛⎫- ⎪⎝⎭所以为A MN =当且仅当即时取最大值.AQ MN ⊥11MN AQ k k =-=-。

连云港市第一学期高二期末考试数学试题(选修历史)

连云港市第一学期高二期末考试数学试题(选修历史)

连云港市第一学期高二期未考试数学试题(选修历史)(时间120分钟,满分160分)注意: 1.本试题满分160分,考试时间120分钟.2.答题前请将试卷密封线内的有关项目填写清楚,密封线内不能答题.参考公式:线性回归方程a bx y+=ˆ系数公式 x b y a xn xy x n yx b ni ini ii -=--=∑∑==,1221.一、填空题:本大题共14小题,每小题5分,共70分.不需要 写出解答过程,请把正确答案填写在该题相应的横线上.1.写出命题:“013},101{>+-∈∃x x ,,”的否定为 . 2.曲线xe y x=在1=x 处的切线斜率为 .3.已知某市第一批免费接种甲型H1N1流感疫苗的大学生2000人,中学生4500人,小学生3500人.“疾控中心”要了解大中小学生接种疫苗的不良反应信息,从接种该疫苗的学生中,用分层抽样的方法抽取500人. 则中学生抽取 人.4.抛物线x y 42-=上某点到焦点的距离为5,则该点的坐标为 .5. 半径为2的圆内有一个封闭区域M ,经计算机模拟试验得知:向圆内随机撒豆子100粒,落在区域M 内的为60粒.以此估计区域M 的面积约为.6.某赛季甲、乙两名篮球运动员都参加了10场比赛,右图为其得分的茎叶图,则两名篮球运动员甲与乙得分的平均数之差为 .7.函数2)(x x f =在区间]5.2,2[上的平均变化率为 . 8.下列语句表示y 是x 的函数: Read xIf 0≥x Then y ←xElsey ← -x End If Print y题号 一 15 16 17 18 19 20 总分 得分则这个函数的解析式为 .9.与椭圆1154022=+x y 有相同焦点,离心率为35的双曲线方程为 . 10.右图为一个问题的算法流程图,其输出结果S = .11. 已知21,F F 为椭圆13422=+y x 的两个焦点,过2F 的直线交椭圆于B A ,,则△1ABF 的周长为 . 12.某种设备的使用年限x (年)和所需维修费用y (万元)之间的n 组对应数据确定n 个点),(111y x P ,),(222y x P ,…,),(n n n y x P ;设0P 坐标为),(y x .下列命题中正确的是▲ .(将正确命题的序号都填上)①回归直线必定经过点0P ),(y x ;②回归直线至少经过),(111y x P ,),(222y x P ,…,),(n n n y x P 中的一个点;③当b a ,使2222211)()()(n n y a bx y a bx y a bx Q -+++-++-+= 取最小值时,方程a bx y+=ˆ是拟合这组数据的线性回归方程. 13.函数 ) ]2,[(cos 2ππ2-∈-=x x x y 的单调增区间为 .14.已知“m x ≤≤1”是“0652≤+-x x ”的必要不充分条件,则实数m 的取值范围是 .小题,满分90分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分14分)已知k 为实常数.命题p :方程111222=-+-k y k x 表示椭圆;命题q :方程13422=-+k y x 表示双曲线. (1)若命题p 为真命题,求k 的取值范围;(2)若命题p 、q 中恰有一个为真命题,求k 的取值范围.16.(本题满分14分)袋中有大小、形状都相同的红、黄、白球各一个,现依次有放回地摸取两次,每次摸一个球. (1)试列出两次摸球的所有可能情况;(2)设摸到一次红、黄、白球分别记2分、1分、0分,求两次摸球总分不少于3分的概率.17.(本题满分14分)Array质检部门对某工厂一批产品进行了抽检.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],(1)求样本中产品净重小于100克的频率;(2)已知样本中产品净重小于100克的件数是72,求样本中净重(单位:克)在[100,104)范围内的件数;(3)若这批产品共有10000件,试估计其中净重(单位:克)在[104,106] 范围内的件数.18.(本题满分16分)经试验证实,某型号的汽车每小时的耗油量y (升)与速度x (千米/小时)的关系式为2)0890(333+-=xx y .已知甲乙两地相距180千米,限速120千米/小时.(1)若车速为45千米/小时,求汽车从甲地到乙地的耗油量;(2)当车速为x (千米/小时)时,从甲地到乙地的耗油量为)(x f (升),求函数)(x f 的解析式; (3)当车速为多大时,从甲地到乙地的耗油量最少.19.(本题满分16分))0,(m ,左、右准线分别为1:,1:21+=--=m x l m x l ,且21,l l 分别与直线x y =相交于B A ,两点.(1)若离心率为22,求椭圆的方程; (2)当7<⋅时,求椭圆离心率的取值范围.20.(本题满分16分)已知函数b ax x x f +++=23)(,)1(f 是其一个极值. (1)求实数a 的值;(2)求函数)(x f 的图象与x 轴公共点的个数;(3)]e ,1[∈∃x ,使x x x x f ln 83)(2+->成立,求实数b 的取值范围.(参考数据: 718.2=e ,952.218.2,683.197.233==)连云港市2009--2010学年度第一学期高二期未考试数学试题(选修历史)参考答案一、填空题1.∀013},101{≤+-∈x x ,,; 2.0; 3.225; 4. )4,4±-(;5. 7.5;6. 6.0;7. 5.4;8. ||x y =;9.116922=-x y ; 10. 2550; 11.8; 12.①③; 13. ]2,6[ππ-; 14. 3≥m 二、解答题15.解:(1)若命题p 为真命题,有⎪⎩⎪⎨⎧-≠->->-11201012k k k k 即k 的取值范围是1>k ------------6'(2)当p 真q 假时,⎩⎨⎧≥>31k k 即3≥k , -----------------------------------------------------9'当p 假q 真时,⎩⎨⎧<≤31k k 即1≤k , ------------------------------------------------------21'故所求的k 的取值范围是1≤k 或3≥k -----------------------------------------------------41'16.解(1) 两次摸球的所有可能情况为:红红,红黄,红白,黄红,黄黄,黄白,白红,白黄,白白; ------------------------------6' (2)设“两次摸球总分不少于3分”为事件A ,所有等可能的基本事件总数为9,事件A 中所含的基本事件数为3(红红,红黄,黄红) ----------------------------------21'3193)(==A P ,所求概率为31. ----------------------------------41'17.解:(1)产品净重小于100克的频率为(0.050+0.100)×2=0.3 -----------------------------4' (2)已知样本中产品净重小于100克的个数是72,设样本容量为n ,则3.072=n,所以024=n ,净重大于或等于100克并且小于104克的产品的频率为(0.150+0.125)×2=0.55,所以样本中净重大于或等于100克并且小于104克的产品的个数是240×0.55=132. ------------------------------------------------------ 01'(3) 净重(单位:克)在 [104,106] 内的频率为0.0750.152=⨯,则这批产品中净重(单位:克)在 [104,106] 内的个数估计有10000150015.0=⨯. ------------------------------------------------------41'18.解:(1)45=x , =+-=2)08459045(333y 1675,75.184********=⨯. 若车速为45千米/小时,汽车从甲地到乙地的耗油量为75.18升. ---------------------5'(2))280190(540180)(32x x y x x f +-=⨯=,∈x ]120,0(. ----------------------01' (3)23332390901080)2902(540)(xx x x x f -⨯=-=' ----------------------21' 当90=x 时,0)(='x f ;当900<<x 时,0)(<'x f ;当12090≤<x 时,0)(>'x f 因此,当90=x 时,)(x f 有最小值.(为11.25)即当车速为90(千米/小时)时,从甲地到乙地的耗油量最少. --------------------61'19.解:(1)由已知得1,2+==m ca m c ,从而)1(2+=m m a ,mb =2 由22=e 得c b =,从而1=m ------4' 故1,2==b a ,得所求方程为1222=+y x --------------------6' (2)易得)1,1(----m m A ,),1,1(++m m B 从而),1,1(),1,12(+=⋅++=m m m故724)1(1222<++=+++=⋅m m m m , --------------------01' 得10<<m , -------------------21' 由此离心率mm m m ac e 111)1(+=+==,故所求的离心率范围为)22,0(. ---------------61'20解:(1)a x x x f ++='2)(2,0)1(='f 则03=+a ,3-=a (经检验符合题意), ------4'(2)32)(2-+='x x x f =0,得3-=x 或1=x ,可得)(x f 在)3,(--∞和),1(+∞上递增,在)1,3(-上递减,9)3(+=-b f ,35)1(-=b f . --------------------7' 当9)3(+=-b f <0或35)1(-=b f >0 即9-<b 或35>b 时,函数)(x f 的图象与x 轴有一个公共点,当9)3(+=-b f =0或35)1(-=b f =0 即9-=b 或35=b 时,函数)(x f 的图象与x 轴有两个公共点,当9)3(+=-b f >0且35)1(-=b f <0 即359<<-b 时,函数)(x f 的图象与x 轴有三个公共点.------------------------------------------------------------------------------------01'(3)从x x x x f ln 83)(2+->得x x b ln 833+->,令x x x g ln 83)(3+-=, 则xx x x x g 3288)(-=+-=',从0)(='x g 得2=x ,---------------------------------------31')2,1[∈x 时0)(>'x g ,],2(e x ∈时0)(<'x g ,又 )1(038)(,31)1(3g e e g g >>-=-=,31)1()(min -==g x g ,当min )(x g b >时满足题意.所求的实数b 的取值范围是31->b .-------61'。

2020-2021学年江苏省连云港市高一(上)期末数学试卷 (解析版)

2020-2021学年江苏省连云港市高一(上)期末数学试卷 (解析版)

2020-2021学年江苏省连云港市高一(上)期末数学试卷一、选择题(共8小题).1.若命题p:∃x∈R,x2+2x+1≤0,则命题p的否定为()A.∃x∉R,x2+2x+1>0B.∃x∈R,x2+2x+1<0C.∀x∉R,x2+2x+1>0D.∀x∈R,x2+2x+1>02.若集合M={x|x2<1},N={x|0≤x<2},则M∩N=()A.{x|﹣1<x<2}B.{x|0≤x<1}C.{x|0<x<1}D.{x|﹣1<x<0} 3.cos(﹣)=()A.B.C.D.4.某班45名学生中,有围棋爱好者22人,足球爱好者28人,则同时爱好这两项的人最少有()A.4人B.5人C.6人D.7人5.已知a=30.2,b=log30.3,c=0.30.2,()A.a<c<b B.a<b<c C.c<a<b D.b<c<a6.在一次数学实验中,某同学运用图形计算器采集到如表一组数据:x123458y0.5 1.5 2.08 2.5 2.82 3.5在四个函数模型(a,b为待定系数)中,最能反映x,y函数关系的是()A.y=a+bx B.y=a+b x C.y=a+log b x D.y=a+7.函数f(x)=•sin x的部分图象大致为()A.B.C.D.8.已知函数f(x)是定义在R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(2sin x+1)|≤1的解集为()A.{x|kπ﹣≤x≤kπ+,k∈Z}B.{x|2kπ+≤x≤2kπ+,k∈Z}C.{x|kπ﹣≤x≤kπ+,k∈Z}D.{x|2kπ﹣≤x≤2kπ+,k∈Z}二、选择题(共4小题).9.下列结论正确的是()A.若ac>bc,则a>b B.若a>|b|,则a2>b2C.若a>b>0,则>D.若a<|b|,则a2<b210.若x>0,y>0,n≠0,m∈R,则下列各式中,恒等的是()A.lgx+lgy=lg(x+y)B.lg=lgx﹣lgyC.log xn y m=log x y D.lgx=11.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时,则()A.点P第一次到达最高点需要20秒B.当水轮转动155秒时,3.点P距离水面2米C.当水轮转动50秒时,点P在水面下方,距离水面2米D.点P距离水面的高度h(米)与t(秒)的函数解析式为h=4sin(t+)+2 12.已知函数f(x),x∈(﹣∞,0)∪(0,+∞),对于任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),则()A.f(x)的图象过点(1,0)和(﹣1,0)B.f(x)在定义域上为奇函数C.若当x>1时,有f(x)>0,则当﹣1<x<0时,f(x)<0D.若当0<x<1时,有f(x)<0,则f(x)>0的解集(1,+∞)三、填空题(共4小题,每小题,5分,满分20分)13.已知函数f(x)=,x>1,则f(f(1))=.14.函数f(x)=3sin(2x﹣)的减区间是.15.若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则实数a的取值范围是.16.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为P=P0•e kt,其中e是自然对数的底数,k为常数,(P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,则k=;要能够按规定排放废气,还需要过滤n小时,则正整数n的最小值为.(参考数据:log52≈0.43)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在①角α的终边经过点P(4m,﹣3m)(m≠0);②tan(﹣α)=;③3sinα+4cosα=0这三个条件中任选一个,求sin2α﹣sinαcosα﹣2cos2α的值.18.已知集合A={x|log2(x﹣1)≤2},集合.B={x|x2﹣2ax+a2﹣1≤0},其中a∈R.(1)若a=1,求A∪B;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.19.受疫情的影响及互联网经济的不断深化,网上购物已经逐渐成为居民购物的新时尚,为迎接2021年“庆元旦”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,经调查测算,该促销产品在“庆元旦”网购狂欢节的销售量p(万件)与促销费用x(万元)满足p=3﹣(其中0≤x≤10),已知生产该产品还需投入成本(10+2p)万元(不含促销费用),每一件产品的销售价格定为(6+)元,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y(万元)表示为促销费用x(万元)的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.20.已知函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R)的最小值为g(a),且g(a)=.(1)求实数a的值;(2)求函数f(x)的最大值,并求此时x的取值集合.21.已知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为g(x),若不等式g(x)﹣m≤0在x∈[0,6]恒成立,求实数m的取值范围.22.已知a∈R,函数f(x)=log2(+a).(1)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过2,求a的最小值;(2)若关于x的方程f()﹣log2[(a﹣2)x+3a﹣5]=0的解集中恰好只有一个元素,求a的取值范围.参考答案一、选择题(共8小题).1.若命题p:∃x∈R,x2+2x+1≤0,则命题p的否定为()A.∃x∉R,x2+2x+1>0B.∃x∈R,x2+2x+1<0C.∀x∉R,x2+2x+1>0D.∀x∈R,x2+2x+1>0解:命题为特称命题,则命题的否定为∀x∈R,x2+2x+1>0,故选:D.2.若集合M={x|x2<1},N={x|0≤x<2},则M∩N=()A.{x|﹣1<x<2}B.{x|0≤x<1}C.{x|0<x<1}D.{x|﹣1<x<0}解:∵M={x|﹣1<x<1},N={x|0≤x<2},∴M∩N={x|0≤x<1}.故选:B.3.cos(﹣)=()A.B.C.D.解:cos(﹣)=cos=cos(2)=cos=.故选:D.4.某班45名学生中,有围棋爱好者22人,足球爱好者28人,则同时爱好这两项的人最少有()A.4人B.5人C.6人D.7人解:设同时爱好这两项的人最少有a人,作出韦恩图:∵某班45名学生中,有围棋爱好者22人,足球爱好者28人,∴22﹣a+a+28﹣a=45,解得a=5.故选:B.5.已知a=30.2,b=log30.3,c=0.30.2,()A.a<c<b B.a<b<c C.c<a<b D.b<c<a 解:∵30.2>30=1,log30.3<log31=0,0<0.30.2<0.30=1,∴b<c<a.故选:D.6.在一次数学实验中,某同学运用图形计算器采集到如表一组数据:x123458y0.5 1.5 2.08 2.5 2.82 3.5在四个函数模型(a,b为待定系数)中,最能反映x,y函数关系的是()A.y=a+bx B.y=a+b x C.y=a+log b x D.y=a+解:由表格中数据作出散点图:由图可知,y是关于x的增函数,且递增的比较缓慢,故选:C.7.函数f(x)=•sin x的部分图象大致为()A.B.C.D.解:f(﹣x)=•sin(﹣x)=•(﹣sin x)=•sin x=f(x),则f(x)是偶函数,图象关于y轴对称,排除C,D,由f(x)=0得x=0或sin x=0,即x=π是右侧第一个零点,当0<x<π时,f(x)>0,排除B,故选:A.8.已知函数f(x)是定义在R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(2sin x+1)|≤1的解集为()A.{x|kπ﹣≤x≤kπ+,k∈Z}B.{x|2kπ+≤x≤2kπ+,k∈Z}C.{x|kπ﹣≤x≤kπ+,k∈Z}D.{x|2kπ﹣≤x≤2kπ+,k∈Z}解:由已知得f(0)=﹣1,f(3)=1,则不等式|f(2sin x+1)|≤1,即﹣1≤f(2sin x+1)≤1,即f(0)≤f(2sin x+1)≤f(3),又因为函数f(x)是定义在R上的增函数,所以0≤2sin x+1≤3,即﹣≤sin x≤1,结合正弦函数的图象,可得2kπ﹣≤x≤2kπ+,k∈Z,即不等式的解集为{x|2kπ﹣≤x≤2kπ+,k∈Z}.故选:D.二、选择题(共4小题,每小题5分,满分20分)9.下列结论正确的是()A.若ac>bc,则a>b B.若a>|b|,则a2>b2C.若a>b>0,则>D.若a<|b|,则a2<b2解:对于A:若c>0时,不等式成立,当c<0时,不等式不成立,故A错误;对于B:由于a>|b|,则a2>b2,故B正确;对于C:由于a>b>0,则>,故C正确;对于D:当a=﹣5,b=1时,不等式不成立,故D错误;故选:BC.10.若x>0,y>0,n≠0,m∈R,则下列各式中,恒等的是()A.lgx+lgy=lg(x+y)B.lg=lgx﹣lgyC.log xn y m=log x y D.lgx=解:由x>0,y>0,n≠0,m∈R,得:对于A,lgx+lgy=lg(xy)≠lg(x+y),故A错误;对于B,lg=lgx﹣lgy,故B正确;对于C,log xn y m===log x y,故C正确;对于D,lgx=lgx=,故D正确.故选:BCD.11.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时,则()A.点P第一次到达最高点需要20秒B.当水轮转动155秒时,3.点P距离水面2米C.当水轮转动50秒时,点P在水面下方,距离水面2米D.点P距离水面的高度h(米)与t(秒)的函数解析式为h=4sin(t+)+2解:设点P距离水面的高度为h(米)和t(秒)的函数解析式为h=A sin(ωt+φ)+B(A >0,ω>0,|φ|<),由题意,h max=6,h min=﹣2,∴,解得,∵T==60,∴ω=,则h=4sin(+φ)+2.当t=0时,h=0,∴4sinφ+2=0,则sinφ=﹣,又∵|φ|<,∴φ=﹣.h=,故D错误;令h==6,∴sin()=1,得t=20秒,故A正确;当t=155秒时,h=4sin()+2=4sin5π+2=2米,故B正确;当t=50秒时,h=4sin()+2=4sin+2=﹣2,故C正确.故选:ABC.12.已知函数f(x),x∈(﹣∞,0)∪(0,+∞),对于任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),则()A.f(x)的图象过点(1,0)和(﹣1,0)B.f(x)在定义域上为奇函数C.若当x>1时,有f(x)>0,则当﹣1<x<0时,f(x)<0D.若当0<x<1时,有f(x)<0,则f(x)>0的解集(1,+∞)解:对于A,对任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),令x=y=1,则f(1×1)=f(1)+f(1),解得f(1)=0,再令x=y=﹣1,则f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1),解得f(﹣1)=0,所以f(x)的图象过点(1,0)和(﹣1,0),故A正确;对于B,令y=﹣1,则f(﹣x)=f(x)+f(﹣1),所以f(﹣x)=f(x),又函数f(x)的定义域关于原点对称,所以函数f(x)为偶函数,故B错误;对于C,设x1,x2∈(0,+∞),且x1>x2,则>1,若当x>1时,有f(x)>0,所以f()>0,所以f(x1)﹣f(x2)=f(x2•)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,所以f(x1)>f(x2),所以f(x)在(0,+∞)上的是增函数,由函数f(x)为偶函数,可得f(x)在(﹣∞,0)上是减函数,所以当﹣1<x<0时,f(x)<f(﹣1)=0,故C正确;对于D,设x1,x2∈(0,+∞),且x1<x2,则0<<1,当0<x<1时,有f(x)<0,则f()<0,所以f(x1)﹣f(x2)=f(x2•)﹣f(x2)=f(x2)+f()﹣f(x2)=f()<0,所以f(x1)<f(x2),所以f(x)在(0,+∞)上的是增函数,由函数f(x)为偶函数,可得f(x)在(﹣∞,0)上是减函数,因为当0<x<1时,f(x)<0,可得当﹣1<x<0时,f(x)<0,当x<﹣1时,f(x)>f(﹣1)=0,当x>1时,f(x)>f(1)=0,故D错误.故选:AC.三、填空题(共4小题,每小题,5分,满分20分)13.已知函数f(x)=,x>1,则f(f(1))=﹣2.解:f(1)=21+2=4,所以.故答案为:﹣2.14.函数f(x)=3sin(2x﹣)的减区间是[kπ+,kπ+],(k∈Z)..解:由2kπ+≤2x﹣≤2kπ+,可得:kπ+≤x≤kπ+,(k∈Z),故答案为:[kπ+,kπ+],(k∈Z).15.若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则实数a的取值范围是(0,).解:若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则,解得:0<a<,故答案为:(0,).16.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为P=P0•e kt,其中e是自然对数的底数,k为常数,(P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,则k=﹣;要能够按规定排放废气,还需要过滤n小时,则正整数n的最小值为8.(参考数据:log52≈0.43)解:由题意,前4个小时废气中的污染物被过滤掉了80%,∵P=P0•e kt,∴(1﹣80%)P0=P0•e4k,得0.2=e4k,即k=﹣,由0.25%P0=P0•e kt,得0.0025=﹣,∴t==4log5100=8(1+log52)=11.44.故整数n的最小值为12﹣4=8.故答案为:;8.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在①角α的终边经过点P(4m,﹣3m)(m≠0);②tan(﹣α)=;③3sinα+4cosα=0这三个条件中任选一个,求sin2α﹣sinαcosα﹣2cos2α的值.解:sin2α﹣sinαcosα﹣2cos2α==,若选①角α的终边经过点P(4m,﹣3m)(m≠0);可得tan=﹣,原式==﹣.若选②tan(﹣α)=,可得tanα=,原式==﹣.若选③3sinα+4cosα=0,tanα=﹣,原式==.18.已知集合A={x|log2(x﹣1)≤2},集合.B={x|x2﹣2ax+a2﹣1≤0},其中a∈R.(1)若a=1,求A∪B;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.解:A={x|log2(x﹣1)≤2}={x|log2(x﹣1)≤log24}={x|1<x≤5},B=={x|(x﹣a+1)(x﹣a﹣1)≤0}={x|a﹣1≤x≤a+1},(1)若a=1时,B=[0,2],A∪B=[0,5];(2)因为“x∈A”是“x∈B”的必要条件,所以“x∈B”是“x∈A”的充分条件,即B⊆A,即,解得:2<a≤4,综上所述:a的取值范围(2,4].19.受疫情的影响及互联网经济的不断深化,网上购物已经逐渐成为居民购物的新时尚,为迎接2021年“庆元旦”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,经调查测算,该促销产品在“庆元旦”网购狂欢节的销售量p(万件)与促销费用x(万元)满足p=3﹣(其中0≤x≤10),已知生产该产品还需投入成本(10+2p)万元(不含促销费用),每一件产品的销售价格定为(6+)元,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y(万元)表示为促销费用x(万元)的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.解:(1)由题意得,y=(6+)p﹣x﹣(10+2p),把p=3﹣代入得,y=22﹣(0≤x≤10);(2)y=24﹣()≤24﹣2=16,当且仅当,即x=2时取等号,所以促销费用投入2万元时,厂家的利润最大,为16万元.20.已知函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R)的最小值为g(a),且g(a)=.(1)求实数a的值;(2)求函数f(x)的最大值,并求此时x的取值集合.解:(1)根据题意:函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R),令t=sin x,(﹣1≤t≤1),则g(t)=2t2﹣at﹣a﹣1(﹣1≤t≤1),①当时,即a≤﹣4,f(a)=,所以无解.②当时,即﹣4<a≤4,f(a)=,即a2+8a+12=0,所以a=﹣2或a=﹣6(舍去),③当时,即a>4时,,所以a=,(舍去),综上所述:a=﹣2.(2)当a=﹣2时,f(x)=,当sin x=1时,即x=2k(k∈Z)时,函数的最大值为5.即当{x|x=2k(k∈Z)}时,函数的最大值为5.21.已知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为g(x),若不等式g(x)﹣m≤0在x∈[0,6]恒成立,求实数m的取值范围.解:(1)根据题中函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象,可得=5﹣1,∴ω=,根据五点法作图,可得×1+φ=,∴φ=,故函数f(x)=2cos(x+).(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),可得y=2cos(x+)的图象;再将得到的图象向右平移4个单位长度,所得图象的函数为g(x)=2cos(x﹣)的图象,若不等式g(x)﹣m≤0在x∈[0,6]恒成立,即x∈[0,6]时,g(x)的最大值小于或等于m.当x∈[0,6]时,x﹣∈[﹣,],故当x﹣=0时,g(x)取得最大值为2,∴m≥2.22.已知a∈R,函数f(x)=log2(+a).(1)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过2,求a的最小值;(2)若关于x的方程f()﹣log2[(a﹣2)x+3a﹣5]=0的解集中恰好只有一个元素,求a的取值范围.解:(1)因为在x∈[t,t+1]上为减函数,所以,又因为y=log2x在上为增函数,所以,所以在恒成立,即对恒成立,即3at2+3(a+1)t﹣1≥0对恒成立,等价于y=3at2+3(a+1)t﹣1在的最小值大于等于0,因为y=3at2+3(a+1)t﹣1在为增函数,所以,故,解得,所以a的最小值为;(2)方程f()﹣log2[(a﹣2)x+3a﹣5]=0,即,可转化为(a﹣2)x2+(2a﹣5)x﹣2=0且,①当a﹣2=0,即a=2时,x=﹣2,符合题意;②当a﹣2≠0,即a≠2时,,1°当,即时,符合题意;2°当,即a≠﹣2且时,要满足题意,则有或,解得;综上可得,a的取值范围为.。

2022-2023学年江苏省连云港市高二年级上册学期期末调研(七)数学试题【含答案】

2022-2023学年江苏省连云港市高二年级上册学期期末调研(七)数学试题【含答案】

2022-2023学年江苏省连云港市高二上学期期末调研(七)数学试题一、单选题 1.若经过两点,6A m 和1,3B m 的直线的斜率是12,则实数m 的值为( )A .1B .1-C .2D .2-【答案】D【分析】由两点间连线的斜率公式即可求解. 【详解】解:因为直线经过两点,6A m 、1,3B m 且直线的斜率是12,所以63121mm ,解得2m =- 故选:D .2.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数的和为( ) A .28 B .26C .24D .20【答案】A【分析】根据题意利用等差等比中项公式得到方程组,解之即可; 【详解】依题意,设这四个数分别为,,12,16x y y x --,则2(12)2(16)(12)x y y y x y +-=⎧⎨-=-⎩,解得04x y =⎧⎨=⎩或159x y =⎧⎨=⎩, 所以这四个数为0、4、8、16或15、9、3、1,则这四个数的和为28. 故选:A .3.已知直线l 过点()1,2且与抛物线24y x =只有一个公共点,则直线l 的方程是( ) A .2y = B .10x y -+= C .1x = D .2y =或10x y -+=【答案】D【分析】先判断点()1,2在抛物线上,再分直线的斜率不存在,直线的斜率为0和直线的斜率存在且不为0,三种情况讨论求解即可.【详解】将点(1,2)的坐标代入抛物线方程得2241=⨯,即该点在抛物线上.①若直线的斜率不存在,直线l 的方程为:1l x =,当直线l 与抛物线有两个交点,不合题意; ②若直线的斜率为0,则直线:2l y =平行于x 轴,则满足题意;③若直线的斜率存在且不为0,设()():210l y k x k -=-≠,联立方程组22(1)4y k x y x -=-⎧⎨=⎩,将21y x k k =-+代入24y x =化简得24840y y k k-+-=, 则248Δ()4(4)01k kk=---=⇒=, 此时:2110l y x x y -=-⇒-+=. 综上,直线l 的方程为2y =或10x y -+=. 故选:D .4.如图,圆228x y +=内有一点()012P -,,AB 为过点0P 的弦,若弦AB 被点0P 平分时,则直线AB 的方程是( )A .250x y ++=B .250x y -+=C .250x y --=D .2150x y +-=【答案】B【分析】根据题意得到直线AB 与直线0OP 垂直,求出直线0OP 的斜率,可得直线AB 的斜率,点斜式即可确定AB 的方程.【详解】当弦AB 被点0P 平分时,直线AB 与直线0OP 垂直, 因为020210OP k -==---,所以12AB k =,则直线AB 的方程为()1212y x -=+,即250x y -+=. 故选:B .5.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是 ( )A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=【答案】A【分析】根据椭圆22185x y +=方程,可得出其焦点坐标、顶点坐标,进而得到双曲线的焦点坐标、顶点坐标,即可得到双曲线的方程.【详解】在椭圆22185x y +=中,c,椭圆的焦点坐标为,(,左右顶点坐标分别为,()-,则双曲线的顶点坐标为,(,焦点坐标为,()-,且双曲线的焦点在x 轴上,所以a =c =222835b c a =-=-=, 所以双曲线的方程为:22135x y -=. 故选:A.6.已知f (x )=x ln x ,若0()2f x '=,则x 0=( ) A .e 2 B .e C .ln 22D .ln2【答案】B【分析】对函数进行求导,然后代入求值即可. 【详解】因为f (x )=x ln x ,所以()ln 1f x x '=+, 由00()ln 12f x x '=+=,解得0x e =. 故选:B.7.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等比数列,上面3节的容积之积3升,下面3节的容积之积为9升,则第5节的容积为( ) A .2升 B .6766升 C .3升 D【答案】D【详解】现有一根9节的竹子,自上而下各节的容积成等比数列, 上面3节的容积之积3升,下面3节的容积之积为9升,∴2111678111··3··9a a q a q a q a q a q ⎧=⎨=⎩,解得1a q =3q =∴第5节的容积为:433611333a q a q q ===.故选:D .8.已知函数2(1)1ax y x x =>-有最大值4-,则a 的值为( )A .1B .1-C .4D .4-【答案】B【解析】根据函数2(1)1ax y x x =>-,求导211(1)y a x ⎡⎤=-⎢⎥-⎣⎦',然后根据开区间上唯一的极值点为最值点,结合函数在区间(1,)+∞上的最大值为4-求解. 【详解】因为函数2(1)1ax y x x =>-, 所以2222222(1)2111(1)(1)(1)ax ax x ax ax ax y a x x x x '⎛⎫⎡⎤---====- ⎪⎢⎥----⎣'⎦⎝⎭,令0y '=,解得2x =或0x =(舍去).若函数在区间(1,)+∞上有最大值4-,则最大值必然在2x =处取得,所以441a=-,解得1a =-, 此时2(2)(1)x x y x '--=-,当12x <<时,0'>y ,当2x >时,0'<y , 所以当2x =时y 取得最大值4-, 故选:B.二、多选题9.若圆C 23100x y +-=与圆C 相切于点()2,2P ,则圆的方程是( ) A .()22113x y +-= B .()22113x y ++= C .()()224513x y ++-= D .()()224513x y -+-=【答案】BD【分析】由直线与圆相切及点在圆上,结合待定系数法得到方程组,解之即可. 【详解】根据题意,设圆的标准方程为()22()13x a y b -+-=,圆心坐标为(),a b ,过圆心且过切点的直线与直线23100x y +-=垂直,得22123b a -⎛⎫⋅-=- ⎪-⎝⎭,即322a b -=①, 由点()2,2P 在圆上得()()222213a b -+-=②,将①②联立得()()223222213a b a b -=⎧⎪⎨-+-=⎪⎩,解得01a b =⎧⎨=-⎩或45a b =⎧⎨=⎩, 故所求圆的方程为()22113x y ++=或()()224513x y -+-=. 故选:BD .10.已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC【分析】由91011S S S =<,得100,0d a >= ,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确 又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC11.已知方程22121x y m m -=++,下列说法错误的是( )A .当21m -<<-时,此方程表示椭圆B .此方程不可能表示圆C .若此方程表示双曲线,则2m <-D .当2m <-时,此方程表示双曲线【答案】ABC【分析】分别列出方程22121x y m m -=++表示椭圆,圆,双曲线的条件,推出 m 的范围与取值,判断选项的正误即可.【详解】若该方程表示椭圆,则201021m m m m +>⎧⎪+<⎨⎪+≠--⎩,33(2,)(,1)22m ∴∈--⋃--,故A 错误;若该方程表示是圆,则21m m +=--,32m ∴=-,即当32m =-时,此方程表示圆,故B 错误;若该方程表示是双曲线,则(2)(1)0m m ++>,1m ∴>-或2m <-,故C 错误;当2m <-时,20,10m m +<+<,方程22121x y m m -=++表示焦点在y 轴上的双曲线,故D 正确;故选:ABC.12.下列说法正确的是( )A .截距相等的直线都可以用方程1x ya a+=表示B .方程()20x my m R +-=∈能表示平行y 轴的直线C .经过点()11P ,,倾斜角为θ的直线方程为()1tan 1y x θ-=-D .经过两点()111P x y ,,()222P x y ,的直线方程()()()()2112110y y x x x x y y -----= 【答案】BD【分析】A .当直线过原点时,无法表示;B .当0m =时,满足条件;C .当倾斜角为90︒时,无法表示;D .结合两点式方程进行判断即可.【详解】解:对于A ,截距相等为0的直线都不可以用方程1x ya a+=表示,故错误;对于B ,当0m =时,方程()20x my m R +-=∈能表示平行y 轴的直线2x =,故正确;对于C ,经过点()11P ,,倾斜角为90θ=︒的直线方程不能写成()1tan 1y x θ-=-,故错; 对于D ,经过两点()111P x y ,,()222P x y ,的直线均可写成()()()()2112110y y x x x x y y -----=,故正确. 故选:BD .三、填空题13.设k 为实数,若直线:13l yk x 不经过第四象限,则k 的取值范围为______.【答案】⎡⎢⎣⎦【分析】根据直线不经过第四象限,得到不等关系,求出k 的取值范围.【详解】直线:13l yk x 经过定点),当0k =时,此时直线:1l y =,符合要求;当0k ≠时,直线:13l ykx k ,要想不经过第四象限,则满足010k >⎧⎪⎨≥⎪⎩,解得:0k <≤,综上:0k ≤≤故答案为:⎡⎢⎣⎦14.方程22121x y k k +=--表示双曲线,则实数k 的取值范围是________.【答案】{1k k <或}2k >【分析】根据方程22121x y k k +=--表示双曲线,可知()()210k k --<,从而可求实数k 的取值范围【详解】∵方程22121x y k k +=--表示双曲线,∴()()210k k --<,解得1k <或2k >, ∴实数k 的取值范围是{1k k <或}2k >, 故答案为:{1k k <或}2k >15.我国古代用诗歌形式提出的一个数列问题:远望巍巍塔七层,红灯向下成倍增,共灯三百八十一,试问塔顶几盏灯?通过计算可知,塔顶的灯数为_____________. 【答案】3【分析】设第n 层塔的红灯盏数为n a ,由题意知{}n a 为公比为12的等比数列,根据7381S =求出首项得通项公式,再计算7a 可得答案.【详解】设第n 层塔的红灯盏数为n a ,由题意知,{}n a 为公比为12的等比数列,且7381S =,则()71711a q S q -=-,即71112381112a ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=-,解得1192a =, 则6671119232a a q ⎛⎫==⨯= ⎪⎝⎭,从而可知塔顶有3盏灯. 故答案为:3.16.对于函数()f x ,若()02f x '=,则000()()limh f x h f x h h→+--=_____.【答案】4【分析】由导数定义构造计算可以得到结果. 【详解】[][]000000()()()()()()f x h f x h f x h f x f x f x h +--=+-+--又0000()()lim()h f x h f x f x h →+-'=,()()()()()0000000lim lim h h f x f x h f x h f x f x h h→-→---=-'-∴=0000()()lim2()4h f x h f x h f x h→+--'∴==故答案为:4.四、解答题17.已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S . (1)求n a 及n S ; (2)记12111n nT S S S =++⋯+,求n T 【答案】(1)21n a n =+,(2)n S n n =+;(2)32342(1)(2)n n n +-++. 【分析】(1)利用等差数列的通项公式,结合3577,26a a a =+=,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式 和前n 项和公式求出n a 及n S ;(2)利用裂项相消法可以求出n T . 【详解】1)设等差数列{}n a 的公差为d ,311571273210262a a d a a a a d d =+==⎧⎧∴∴⎨⎨+=+==⎩⎩ ()121,(2)2n n n n a a a n S n n +∴=+==+ (2)由(1)知:11111(2)22n n n n n S ⎛⎫==- ⎪++⎝⎭123111111*********2n n T S S S S n n ⎛⎫∴=+++=-+-++- ⎪+⎝⎭11113231221242(1)(2)n n n n n +⎛⎫=+--=-⎪++++⎝⎭ 【点睛】本题考查了等差数列的通项公式和前n 项和公式,考查了裂项相消法求数列前n 项和,考查了数学运算能力.18.在平面直角坐标系xOy 中,已知椭圆2222:1x y C a b+=过点(A ,且a =.直线 :l y kx m =+与椭圆C 相交于,M N两点.(1)当1k =时,求实数m 的取值范围;(2)当2m k =-时,AMN 的面积为4,求直线l 的方程. 【答案】(1)m -<(2)直线l 的方程为0y =.【解析】(1)先根据题中已知条件求出椭圆的方程,再与:l y kx m =+联立,令0∆>即可求解; (2)椭圆方程与直线:l y kx m =+联立,由根与系数的关系求出12x x +和12x x ,利用弦长公式求出MN,利用点到直线的距离公式求出点(A 到直线:2l y kx k =-距离,将面积表示出,解方程即可得k 得值,进而得出直线l 的方程.【详解】由题意可得22222421a abc a b ⎧⎪=⎪=+⎨⎪⎪+=⎩,解得:22a b c ⎧=⎪=⎨⎪=⎩ 所以椭圆22:184x y C +=,设()11,M x y ,()22,N x y由22184y kx mx y =+⎧⎪⎨+=⎪⎩ 得:()222214280k x kmx m +++-=, (1)当1k =时,2234280x mx m ++-=,若直线与椭圆有2个交点,则()221612280m m ∆=-->,解得:m -< 所以实数m的取值范围为m -<(2)当2m k =-时,()222214280k x kmx m +++-=即()2222218880kx k x k +-+-=2122821k x x k +=+,21228821k x x k -=+,12MN x =-)22121k k +==+, 点(A 到直线:2l y kx k =-距离为d ==,所以AMN的面积为)2211142221k MN d k +⨯⨯=⨯=+,即(22121k k +=+221k =+,两边同时平方得42430k k +=,解得0k =,所以0m =,且0k =时,()2222218880k x k x k +-+-=即为280x -=满足直线与椭圆有2个交点,所以直线l 的方程为:0y =.【点睛】关键点点睛:本题的关键点是正确求出椭圆的标准方程,直线与椭圆交于两点等价于直线与椭圆方程联立消元后的一元二次方程判别式0∆>,关键是正确求出弦长MN和点(A 到直线:2l y kx k =-距离,化简运算得过程要仔细认真,属于中档题. 19.已知等差数列{}n a 的前n 项和为n S ,且52254S S =,221n n a a =+,N n *∈ (1)求数列{}n a 的通项公式;(2)若3n n b =,令n n n c a b =,求数列{}n c 的前n 项和.n T【答案】(1)21n a n =-,()*N n ∈(2)()1133n n T n +=-⋅+【分析】(1)由等差数列的通项公式与求和公式求解即可; (2)由错位相减法求解即可【详解】(1)设等差数列{}n a 的公差为d , 则由52254S S =,221n n a a =+,*N n ∈, 可得()()()11112551024212211a d a d a n d a n d ⎧+=+⎪⎨⎪+-=+-+⎩解得112a d =⎧⎨=⎩因此21n a n =-,()*N n ∈;(2)由(1)知()213nn c n =-,()23133353213n T n n ∴=⨯+⨯+⨯++-⋅,①()23413133353...213n n T n +=⨯+⨯+⨯++-⋅,②①-②得()231213232323213n n n T n +-=⨯+⨯+⨯++⨯--⋅()()23132333213n n n +=+⨯+++--⋅()()()211131332213622313n n n n n -++-=+⨯--⋅=---⋅-,()1133n n T n +∴=-⋅+20.已知函数()1n )l (f x x a x a x=--∈R(1)若函数()f x 在(2,)+∞上单调递增,求a 的取值范围;(2)若函数()f x 有两个不同的极值点1x ,2x ,12x x >不等式()12f x mx <恒成立,求实数m 的取值范围.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦;(2)[)0,+∞. 【分析】(1)由题意得出21()10a f x x x '=+-≥对2x >恒成立,即1a x x≤+对2x >恒成立,求出1x x +的最大值,得出a 的取值范围; (2)根据一元二次方程根的分布求出2a >,111a x x =+,结合()12f x mx <得出22111(1)ln 1m x x x >-+-,构造函数22()(1)ln 1,1g x x x x x =-+->,利用导数得出()(1)0g x g <=,从而得出实数m 的取值范围.【详解】解(1)21()10a f x x x '=+-≥对2x >恒成立,即1a x x≤+对2x >恒成立, 令1(),2h x x x x=+>,2(1)(1)()0x x h x x -+'=>,即()h x 在2,上递增,15222a ∴≤+=, 故a 的取值范围为5,2⎛⎤-∞ ⎥⎝⎦; (2)2221(1)1a f x x x x ax x '=-+=+- 若()f x 有两极值点,即210x ax -+=在0,上有两根1x ,2x ,12x x >,则212124001a x x a x x ⎧∆=->⎪+=>⎨⎪=⎩. 2a ∴>,111a x x =+, 12x x >,11x ∴>,201x <<,12()f x mx <,22211111111()ln 1(1)ln 1m x f x x ax x x x x ∴>=--=-+-,令22()(1)ln 1,1g x x x x x =-+->,1()2ln g x x x x x'=--, 令1()2ln h x x x x x =--,21()2ln 1h x x x '=--, 1x >,2110x ∴-<,()0h x '∴<, ()(1)0h x h ∴<=,即()0,g x '<()g x ∴在1,递减,()(1)0g x g <=,0m ∴≥,故m 的取值范围为[)0,+∞.21.已知抛物线)(2:20C y px p =>上的点M 到焦点F 的距离为5,点M 到x 轴的距离为6p .(1)求抛物线C 的方程;(2)若抛物线C 的准线l 与x 轴交于点Q ,过点Q 作直线交抛物线C 于A ,B 两点,设直线F A ,FB 的斜率分别为1k ,2k .求12k k +的值.【答案】(1)28y x =(2)0【分析】(1)由焦半径公式求C 的方程;(2)设直线AB 方程,与抛物线方程联立,由韦达定理表示出12x x +,12x x ,代入12k k +中化简求值即可.【详解】(1)设点)(00,M x y ,则06y p =(2062p px =,解得03x =. 因为03522p p MF x =+=+=,所以4p =.所以抛物线C 的方程为28y x =. (2)由题知,)(2,0F ,)(2,0Q -,直线AB 的斜率必存在,且不为零.设)(11,A x y ,)(22,B x y ,直线AB 的斜率为k ,则直线AB 的方程为2y kx k =+,由228y kx k y x =+⎧⎨=⎩,得)(22224840k x k x k +-+=. 所以212284k x x k -+=,124x x =, 且)()(2242Δ48166410k k k =--=->,即21k <. 所以)()()()()()()()(1212211212121212222222222222k x k x x x x x y y k k k x x x x x x +++-++-+=+=+=------)(12121228024x x k x x x x -==-++ 所以12k k +的值为0.22.已知函数()e x f x ax =+(1)讨论函数()f x 的单调性;(2)当1a =时,不等式()sin 1f x mx x ≥-+对任意[)0,x ∈+∞恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2)(,3]-∞【分析】(1)求出()f x 的导数()'f x ,分当0a ≥,当a<0的情况讨论,可得()f x 的单调性;(2)可构造函数()e sin 1x g x x mx x =+-+-,利用(0)0g =,判断()g x 单调性,即可得出m 的取值范围.【详解】解:(1)()'x f x e a =+,当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增;当a<0时,由()'0x f x e a =+>得,ln()x a >-,则函数()f x 在(ln(),)a -+∞上单调递增,在(,ln())a -∞-上单调递减.综上所述,当0a ≥时,()f x 在()0,∞+上单调递增;当a<0时,()f x 在(ln(),)a -+∞上单调递增,在(,ln())a -∞-上单调递减.(2)设()e sin 1x g x x mx x =+-+-,()1cos x g x e m x '=+-+,设()()h x g x '=,()[)sin 0,0,x h x e x x >'=-∈+∞上恒成立,所以()g x '在[0,)+∞为增函数,(0)3g m '=-,若3,()(0)0,()m g x g g x ''≤≥≥在[0,)+∞上单调递增,所以()0g x ≥恒成立,即()sin 1f x mx x ≥-+对任意[)0,x ∈+∞恒成立;若3,(0)30m g m '>=-<,()()()ln2'ln 21cos ln 21cos ln 20m g m e m m m m =+--=+->,存在0(0,ln 2)x m ∈,使得000()0,(0,),()0g x x x g x ''=∈<,()g x 单调递减,所以0(0,),()(0)0x x g x g ∈<=,此时不等式()sin 1f x mx x ≥-+不成立,不合题意,所以实数m 取值范围是(,3]-∞.【点睛】证明不等式恒成立要注意端点函数值,尤其是端点取等号时的端点效应,经常作为解题的突破口.。

2022-2023学年江苏省连云港市海头高二年级上册学期第三次月考数学试题【含答案】

2022-2023学年江苏省连云港市海头高二年级上册学期第三次月考数学试题【含答案】

2022-2023学年江苏省连云港市海头高级中学高二上学期第三次月考数学试题一、单选题1.过两点()2,4-和()41-,的直线在y 轴上的截距为( ) A .145B .145-C .73D .73-【答案】C【分析】求出直线方程,令x =0,即可求出纵截距. 【详解】由题可知直线方程为:()()411424y x --+=⋅---,即()5416y x =---, 令x =0,则73y =,故直线在y 轴上的截距为73.故选:C.2.某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为 A .41.1 B .51.1C .610(1.11)⨯-D .511(1.11)⨯-【答案】D【分析】利用等比数列的求和公式即得.【详解】依题意可得,从今年起到第五年这个厂的总产值为;52551(110%)[1(110%)]1(110%)1(110%)1(110%)11(1.11)1(110%)⋅+-+⋅++⋅+++⋅+==⨯--+.故选:D3.若双曲线经过点(),且它的两条渐近线方程是3y x =±,则双曲线的方程是( ).A .2219y x -=B .2219x y -=C .221273y x -=D .221273x y -=【答案】A【分析】由渐近线方程可设双曲线为229y x m -=且0m ≠,再由点在双曲线上,将点代入求参数m ,即可得双曲线方程.【详解】由题设,可设双曲线为229y x m -=且0m ≠,又()在双曲线上,所以36319m =-=-,则双曲线的方程是2219y x -=. 故选:A4.过圆x 2+y 2=5上一点M (1,﹣2)作圆的切线l ,则l 的方程是( ) A .x +2y ﹣3=0 B .x ﹣2y ﹣5=0 C .2x ﹣y ﹣5=0 D .2x +y ﹣5=0【答案】B【分析】本题先根据圆的切线的几何意义建立方程求切线的斜率,再求切线方程即可. 【详解】解:由题意:点M (1,﹣2)为切点,则1OM l k k ⋅=-,20210OM k --==--, 解得:12l k =, ∴l 的方程:1(2)(1)2y x --=-,整理得:250x y --=, 故选:B.【点睛】本题考查圆的切线的几何意义,点斜式直线方程,两线垂直其斜率相乘等于1-,是基础题. 5.已知函数()2ln af x x x x=-+在定义域内单调递减,则实数a 的取值范围是( )A .(],1-∞B .(),1∞-C .()1,+∞D .[)1,+∞【答案】D【分析】由题意转化为()0f x '≤,0x >恒成立,参变分离后转化为()2max2a x x≥-+,求函数()()22,0g x x x x =-+>的最大值,即可求解.【详解】函数的定义域是()0,∞+, ()222221a x x af x x x x-+-'=--=, 若函数()f x 在定义域内单调递减,即220x x a -+-≤在()0,∞+恒成立,所以22a x x ≥-+,0x >恒成立,即()2max2a x x≥-+设()()22211g x x x x =-+=--+,0x >, 当1x =时,函数()g x 取得最大值1,所以1a ≥. 故选:D6.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积是( ) A .6766升 B .176升 C .10933升 D .1336升【答案】A【分析】设此等差数列为{}n a ,利用方程思想求出1a 和d ,再利用通项公式进行求解. 【详解】根据题意得该竹子自上而下各节的容积形成等差数列{}n a , 设其首项为1a ,公差为d ,由题意可得123478934a a a a a a a +++=⎧⎨++=⎩,所以114633214a d a d +=⎧⎨+=⎩,解得113=227=66a d ⎧⎪⎪⎨⎪⎪⎩,所以511376744226666a a d =+=+⨯=, 即第5节竹子的容积为6766升. 故选:A .7.在平面直角坐标系xOy 中,线段AB 的两端点A ,B 分别在x 轴正半轴和y 轴正半轴上滑动,若圆22:(4)(3)1C x y -+-=上存在点M 是线段AB 的中点,则线段AB 长度的最小值为 ( ) A .4 B .6 C .8 D .10【答案】C【分析】首先求点M 的轨迹,将问题转化为两圆有交点,即根据两圆的位置关系,求参数t 的取值范围.【详解】设AB t =,()0t >,AB 的中点为M ,则1122OM AB t ==, 故点M 的轨迹是以原点为圆心,12t 为半径的圆,问题转化为圆:M 22214x y t +=与圆()()22:431C x y -+-=有交点,所以111122t MC t -≤≤+,5MC =,即11521152t t ⎧+≥⎪⎪⎨⎪-≤⎪⎩,解得:812t ≤≤,所以线段AB 长度的最小值为8. 故选:C8.设函数()f x 是定义在(0,)+∞上的可导函数,其导函数为()f x ',且有()2()xf x f x '>,则不等式24(2022)(2022)(2)0f x x f ---<的解集为( )A .(0,2023)B .(2022,2024)C .2022(,)+∞D .(,2023)-∞【答案】B【分析】构造函数2()()f x g x x =,根据()2()xf x f x '>得到2()()f x g x x =的单调性,在变形不等式由单调性求解即可.【详解】由题知,函数()f x 是定义在(0,)+∞上的可导函数,其导函数为()f x ',且有()2()xf x f x '>,即()2()0xf x f x '->, 设2()()f x g x x =, 所以243()2()()2()()0x f x xf x xf x f x g x x x ''--'==>,所以()g x 在(0,)+∞上单调递增, 因为24(2022)(2022)(2)0f x x f ---<, 所以22(2022)(2)(2022)2f x f x -<-,所以2022020222x x ->⎧⎨-<⎩,解得20222024x <<,所以不等式24(2022)(2022)(2)0f x x f ---<的解集为(2022,2024), 故选:B二、多选题9.若在1和256中间插入3个数,使这5个数成等比数列,则公比q 为( ) A .2 B .-2C .4D .-4【答案】CD【分析】由等比数列的性质,即可求解.【详解】由条件可知,11a =,5256a =,所以4256q =,解得:4q =±. 故选:CD10.若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是( ) A .3x = B .3y =C .34130x y --=D .43150x y --=【答案】AC【分析】由弦长公式得出圆心到直线距离,考虑直线斜率不存在和存在两种情况,根据距离公式得出所求方程.【详解】圆的标准方程为:()()22415x y -+-=,由题意圆心到直线l的距离1d == ①当直线的斜率不存在时,直线方程为3x =,圆心到直线的距离1d =,符合题意, ②当直线的斜率存在时,设直线的方程为()13y k x +=-,即130kx y k ---=,圆心到直线的距离为1d ==,解得34k =,则直线方程为34130x y --=, 综上,直线 l 的方程为3x =或34130x y --=. 故选:AC .11.已知数列{}n a 是等比数列,则下列结论中正确的是( )A .数列{}2n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则 1r =- 【答案】AC【解析】利用等比数列的定义可判断A 选项的正误;利用等比中项的性质可判断B 选项的正误;分10a <和10a >两种情况讨论,求得对应的q 的取值范围,结合数列单调性的定义可判断C 选项的正误;求得1a 、2a 、3a ,由2213a a a =求得r 的值,可判断D 选项的正误.【详解】设等比数列{}n a 的公比为q ,则0q ≠,且1n na q a +=. 对于A 选项,222112n n n n a a q a a ++⎛⎫== ⎪⎝⎭,所以,数列{}2n a 是等比数列,A 选项正确; 对于B 选项,由等比中项的性质可得253764a a a ==,又因为2530a q a =>,则5a 与3a 同为正数,则58a =,B 选项错误;对于C 选项,若10a <,由123a a a <<可得1211a a q a q <<,可得21q q q <⎧⎨<⎩,解得01q <<,则110n n a a q -=<,11n na q a +=<,则1n n a a +>,此时,数列{}n a 为递增数列; 若10a >,由123a a a <<可得1211a a q a q <<,可得21q q q >⎧⎨>⎩,解得1q >,则110n n a a q -=>,11n na q a +=>,则1n n a a +>,此时,数列{}n a 为递增数列. 综上所述,C 选项正确;对于D 选项,111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=, 由于数列{}n a 是等比数列,则2213a a a =,即()2612r +=,解得13r =-,D 选项错误.故选:AC.【点睛】本题考查等比数列的定义、等比中项的性质以及等比求和相关命题正误的判断,考查计算能力与推理能力,属于中等题. 12.已知函数()2ln f x x x=+,则下列判断正确的是( ) A .存在()0x ∈+∞,,使得()0f x < B .函数()y f x x =-有且只有一个零点 C .存在正数k ,使得()0f x kx ->恒成立D .对任意两个正实数12,x x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD【分析】先对函数求导,结合导数与单调性关系分析函数的单调性及最值可检验选项A ; 求得()y f x x =-的导数可得单调性, 计算1,2x x ==的函数值,可判断选项B ;由参数分离和构造函数求得导数判断单调性,可判断选项C ;构造函数()(2)(2)g t f t f t =+--,结合导数分析()g t 的性质,结合已知可分析12x x +的范围即可判断选项D. 【详解】22122()x f x x x x-'=-=,易得, 当02x << 时,()0f x '<,函数单调递减, 当 2x > 时,()0f x '>,函数单调递增,故函数在2x =处取得极小值也是最小值(2)1ln 20f =+>, 不存在,()0x ∈+∞,使得()0f x <, 故选项A 错误;()y f x x =-的导数为22222191222410x x x y x x x x ⎛⎫-+ ⎪--⎝⎭'=--==-<恒成立, 所以 ()y f x x =-递减,且(1)110f -=>,(2)21ln 22ln 210f -=+-=-<,可得 ()y f x x =- 有且只有一个零点,介于(1,2), 故选项B 正确;()f x kx > 等价为 2ln 0x kx x+-> ,设()2ln e h x x x =>,则()10h x x '=, 故()h x 在()2e ,+∞上为减函数,故()2lne e 2e 0h x <-=-<,故2ln e x x <>,故当22max e ,x ⎧⎫⎪⎪>⎨⎬⎝⎭⎪⎪⎩⎭,2ln 20x kx kx x +-<-<,所以()k g x <不恒成立,故选项C 错误; 设(0,2)t ∈,则2(0,2),2(2,4)t t -∈+∈, 令22242()(2)(2)ln(2)ln(2)ln 2242t t g t f t f t t t t t t t+=+--=+--+-=++---, 则 ()()222222241648()0444t t g t t t t --'=+=-<---, 故()g t 在(0,2)上单调递减,()(0)0g t g <=,不妨设12x t =-,因为()()12f x f x =,所以22x t >+, 则12224x x t t +>-++=,故选项D 正确. 故选:BD.【点睛】本题考查导数的运用,求单调性和极值、最值,以及函数的零点和不等式恒成立问题解法,考查转化思想和运算能力、推理能力,属于难题.三、填空题13.已知()tan f x x =,则=3f π⎛⎫⎪⎝⎭'______.【答案】4【详解】试题分析:因为()tan f x x =,所以2222sin cos sin 1'()(tan )'()'cos cos cos x x x f x x x x x+====,所以21'()43cos 3f ππ== 【解析】1.导数的运算;14.两条平行直线433x y ++=0与869x y +-=0的距离是________. 【答案】32【解析】将直线869x y +-=0化为94302x y +-=,再根据平行线间距离公式即可求解. 【详解】可将直线869x y +-=0化为94302x y +-=, 所以两条平行直线间的距离为229323243⎛⎫-- ⎪⎝⎭=+. 故答案为:32.【点睛】本题考查平行线间距离公式,属于基础题.15.已知圆221O x y +=:,圆()()2241M x a y a -+-+=:.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为,A B ,使得60APB ∠=︒,则实数a 的取值范围为________. 【答案】222,222⎡⎤-+⎢⎥⎣⎦【分析】由题意画出图形,利用两点间的距离关系求出OP 的距离,再由题意得到关于a 的不等式求得答案.【详解】解:如图,圆O 的半径为1,圆M 上存在点P , 过点P 作圆O 的两条切线,切点为,A B ,使得60APB ∠=︒, 则30APO ∠=︒,在Rt PAO ∆中,=2PO , 又圆M 的半径等于1,圆心坐标(),4M a a -,min 1PO MO ∴=-,max 1PO MO =+,()224MO a a =++,∴由()()222241241a a a a ++-≤≤+++,解得:222222a -≤≤+. 故答案为:222,222⎡⎤-+⎢⎥⎣⎦.【点睛】本题考查直线和圆的位置关系的应用,利用数形结合将条件进行等价转化是解决本题的关键.16.已知函数2(1)e 1,0()2,0x x x f x x x x ⎧+-≤=⎨->⎩,(e 是自然对数的底数),若函数()()10f f x a -+=有4个不同的零点,则实数a 的取值范围是__________. 【答案】()0,1【分析】利用导函数画出()f x 的图像,由图像可得当(())1f f x a -=-时,()1f x a 或1-,再利用图像求()1f x a =±有四个交点时a 的范围即可.【详解】令()(1)e 1(0)x g x x x =+-≤得()(2)e x g x x '=+, 所以()g x 在(,2)-∞-单调递减,在(2,0]-单调递增, 且当x →-∞时()1g x <-,2(2)e 11g --=--<-,(1)1g -=-, 所以()f x 图像如图所示:由图像可得令()1f t =-解得1t =或1-, 令()f x k =,由图像可得当0k >时,有一个解;当0k =时,有两个解;当10k -<<时有三个解;当1k =-时有两个解;当2e 11k ---<<-时有两个解;当2e k -=-时有一个解;当2e k -<-时,无解; 所以当()f x t a =+有四个不同的解时,(0,1)a ∈, 故答案为:()0,1四、解答题17.已知函数32()f x x ax =-,a ∈R ,且(1)3f '=.求: (1)a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (2)函数()f x 在区间[]0,2上的最大值. 【答案】(1)320x y --= (2)8【分析】(1)由题意,求出a 的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性的关系,判断函数()f x 在区间[0,2]上的单调性,从而即可求解. 【详解】(1)由题意,2()32f x x ax '=-, 因为()13f '=,所以23123a ⨯-=,解得0a =, 所以3()f x x =,2()3f x x '=, 因为(1)1f =,(1)3f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为()131y x -=-,即320x y --=; (2)因为2()30f x x '=≥,且[0,2]x ∈, 所以()f x 在[]0,2上单调递增,所以max ()(2)8f x f ==,即函数()f x 在区间[0,2]上的最大值为8.18.在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明见解析;(2)2(1)nn +.【分析】(1)由21(1)22n n na n a n n +-+=+,两边同除以n (n +1)可得:121n n a a n n +-=+,且141a=,即可证得. (2)由(1)可得:22na n n =+,可得1111()21na n n =-+,再利用裂项求和方法即可得出. 【详解】(1)在数列{}n a 中,满足21(1)22n n na n a n n +-+=+,同时两边除以(1)n n +,得121n n a a n n +-=+,且141a =,所以数列n a n ⎧⎫⎨⎬⎩⎭是以4为首项,以2为公差的等差数列. (2)由(1)得,()4+2122n a n n n=-=+,所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-===-+++, 所以111111[(1)()()]22231n S n n =-+-+⋯+-+1111111[(1)()]223231n n =+++⋯+-++⋯++11(1)212(1)n n n =-=++. 【点睛】本题考查了数列递推关系、等差数列的定义通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.19.已知圆F : 22(3)1x y ++=,直线:2,l x =动圆M 与直线l 相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C , 求曲线C 的方程;(2)若直线260x y -+=与曲线C 相交于A ,B 两点,求AB 的长.【答案】(1)212y x =-(2)15【分析】(1)设(,)M x y ,用坐标表示题设条件化简可得;(2)设交点为11(,)A x y ,22(,)B x y ,直线方程与曲线C 方程联立消元,应用韦达定理得1212,x x x x +,然后由弦长公式求得弦长.【详解】(1)设(,)M x y ,显然点M 在直线2x =左侧,22x x -=-,12x =+-123x x =+-=-,平方整理得212y x =-,所以M 的轨迹方程是212y x =-;(2)联立方程组212260y x x y ⎧=-⎨-+=⎩,化简得,++=2x 9x 90, 设直线260x y -+=与曲线C 相交于A ,B 两点,11(,)A x y ,22(,)B x y ,则129x x +=-,129x x ⋅=,15AB .20.已知等差数列{}n a 的前n 项和为78,13,64n S a S ==.(1)求数列{}n a 的通项公式;(2)设3n n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)13(1)3n n T n +=+-⋅【分析】(1)根据等差数列的通项公式与求和公式列方程组,求解1,a d ,即可得通项公式;(2)利用错位相减法代入计算{}n b 的前n 项和n T .【详解】(1)因为数列{}n a 为等差数列,设等差数列{}n a 的公差为d ,所以1116131828642a d a a d d +==⎧⎧⇒⎨⎨+==⎩⎩,所以数列{}n a 的通项公式为()12121n a n n =+-=-; (2)由(1)得(21)3n n b n =-,∴121333(21)3n n T n =⨯+⨯++-⋅,23131333(21)3n n T n +=⨯+⨯++-⋅.∴1212132323(21)3n n n T n +-=⨯+⨯++⨯--⋅()12123333(21)3n n n +=+++---⋅162(1)3n n +=---⋅.∴13(1)3n n T n +=+-⋅21.淮北市政府响应习总书记在十九大报告中提出的“绿水青山就是金山银山”,对环境进行了大力整治,目前淮北市的空气质量位列全省前列,吸引了大量的外地游客。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
B. ab 的最小值是 1 8
D. 1 + 1 的最小值是 4 2 ab
11.据美国学者詹姆斯·马丁的测算,近十年,人类知识总量已达到每三年翻一番,到 2020 年甚至要达到
每 73 天翻一番的空前速度.因此,基础教育的任务已不是教会一切人一切知识,而是让一切人学会学习.已
知 2000 年底,人类知识总量为 a ,假如从 2000 年底到 2009 年底是每三年翻一番,从 2009 年底到 2019 年
19.(本小题满分 12 分)已知直线 l 与抛物线 C : y2 = 4x 交于 A , B 两点. (1)若直线 l 的斜率为-1,且经过抛物线 C 的焦点,求线段 AB 的长; (2)若点 O 为坐标原点,且 OA ⊥ OB ,求证:直线 l 过定点.
20.(本小题满分 12 分)在正三棱柱 ABC − A1B1C1 中, AB = AA1 = 2 ,点 P , Q 分别为 A1B1 , BC 的中
又因为 a3 = 6 ,所以 d = −2 .所以 an = −2n + 12 .
5分
又因为 bn = 2an ,所以 bn = 2−2n+12 = 212 2−2n ,
10 分
( ) Tn = b1 + b2 + + bn = 212
4−1 + 4−2 + + 4−n
=
212
1 4

A(
x1,
y1
)

B
(
x2 ,
y2
)
,由
y = −x + y2 = 4x
1
得:
x2

6x
+
1
=
0

2分
可得 x1 + x2 = 6
4分
由抛物线定义可得| AB |= x1 + x2 + 2 ,所以| AB |= 8
6分
(2)证明:设直线 AB 方程为:x = my + n ,设 A( x1, y1 ) ,B ( x2, y2 ) ,因为 OA ⊥ OB ,所以 OA OB = 0 .所
问题中,并完成解答.
问题:已知等差数列an 的前 n 项和为 Sn ,a3 = 6 ,________,若数列bn 满足 bn = 2an ,求数列bn 的
前 n 项和 Tn .
注:如果选择多个条件分别解答,按第一个解答计分.
18.(本小题满分 12 分)已知 m, n, a R ,函数 f (x) = x3 − 3x2 的单调递减区间 A = [m, n] ,区间 B = [2a −1, a + 3] . (1)求 m 和 n 的值; (2)“ x A ”是“ x B ”的充分条件,求 a 的取值范围.
6分
(2) B = [2a −1, a + 3] ,有 2a − 1 a + 3得 a 4 .
又 x A 是 x B 的充分条件,可知 A B ,
a 4

a + 3 2 2a −1 0
,得
−1
a
1 2
,故实数
a
的取值范围为
−1,
1 2
12 分
19.解:(1)抛物线为 y2 = 4x ,所以焦点坐标为 (1,0) ,直线 AB 斜率为-1,则直线 AB 方程为:y = −x + 1,
1.命题“ x R , x2 + x + 1 0 ”的否定是( ).
A. x R , x2 + x + 1 0
B. x R , x2 + x + 1 0
C. x R , x2 + x + 1 0
D. x R , x2 + x + 1 0
2.函数 y = x + 16 , x (−2, +) 的最小值是( ). x+2
底是每一年翻一番,2020 年(按 365 天计算)是每 73 天翻一番,则下列说法正确的是( ).
A.2006 年底人类知识总量是 2a
B.2009 年底人类知识总量是 8a
C.2019 年底人类知识总量是 213 a
D.2020 年底人类知识总量是 218 a
12.下列曲线中,与直线 l : 2x − y + 3 = 0 相切的是( ).
2020-2021 学年第一学期期末调研考试 高二数学试题
注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改 动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在 本试卷上无效. 3.考试结束后,将答题卡交回. 一、单项选择题(本大题共 8 个小题,每小题 5 分,共 40 分,在每小题给出的四个选项中, 只有一项是符合题目要求的)
= 4 4n −1 . 3
10 分
(2)选择②,设公差为 d 因为 S5 = 6a2 ,所以可得 5a3 = 6a2
又因为 a3 = 6 ,所以 a2 = 5 ,所以 d = 1 ,所以 an = n + 3 .
5分
又因为 bn = 2an ,所以 bn = 2n+3 = 8 2n ,
所以数列bn 是以 16 为首项,2 为公比的等比数列,
+
1 42
+
+
1 4n
=
212
1 4
1

1 4
1− 1
n
=
212 3
1 −
1 4
n

4
10 分
18.解:(1) f (x) = 3x2 − 6x
2分
由 f (x) 0 ,有 3x2 − 6x 0 ,得 0 x 2
又 f (x) = x3 − 3x2 的单调递减区间为 A = [m, n] ,所以 m = 0 , n = 2 .
8.已知函数 f (x) = ln x − a 有两个不同的零点,则实数 a 的取值范围是( ). x
A. (0,e)
B. (−,e)
C.
0,
1 e
D.
−,
1 e
二、多项选择题(本大题共 4 个小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多 项是符合题目要求.全选对的得 5 分,部分选对的得 3 分,有选错的得 0 分) 9.已知曲线 C : mx2 + ny2 = 1(m, n R) ,则下列说法正确的是( ).
A.曲线 C1 : y2 = 24x
C.曲线 C3
: x2

y2 4
=1
B.曲线 C2 : y = ln 2x + 4 D.曲线 C4 : y = 2x3 − 5x2 + 6x + 2
三、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13.函数 f (x) = (x + 1) ex 的最小值是________.
(2)过点 F 作两条互相垂直的弦 AB , CD ,设 AB , CD 的中点分别为 P , Q ,求 FPQ 面积的最大
值.
22.(本小题满分 12 分)已知函数 f (x) = x2 + bx + c , g(x) = ln x . (1)令 h(x) = f (x) + g (x) ,求函数 h(x) 的单调递增区间; (2)当 b = −1, c 0 时,求证:与函数 f (x) , g(x) 图象都相切的直线 l 有两条.
直,则| a |= ( ).
A.4
B. 2 2
C.2
D. 3
6.某港口在一天 24 h 内潮水的高度 S (单位: m )随时间 t (单位: h ; 0 t 24 )的变化近似满足关
系式
S (t )
=
3sin
12
t
+
5 6
,则
17
点时潮水起落的速度是(
).
A. m/ h 8
B. 2 m/ h 8
A.若 m 0 , n 0 ,则曲线 C 是椭圆
B.若 m n 0 ,则曲线 C 是焦点在 y 轴上的椭圆
C.若 m 0 n ,则曲线 C 是焦点在 x 轴上的双曲线
D.曲线 C 可以是抛物线
10.已知正数 a , b 满足 a + 2b = 1 ,则下列说法正确的是( ).
A. 2a + 4b 的最小值是 2 2 C. a2 + 4b2 的最小值是 1
14.以椭圆 x2 + y2 = 1的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程是________. 85
15.已知数列an 满足 a1
= 1,且
an +1

an
=
n
+
1,则数列
1 an
的前
100
项和为________.
16.在正方体 ABCD − A1B1C1D1 中, E , F ,G , H , K , L 分别是 AB , BB1 ,B1C1 ,C1D1 ,D1D ,

x1x2
+
y1 y2
=
0
,由
x y
= my + 2 = 4x
n
得:
y2

4my

4n
=
0
8分
所以, y1y2 = −4n ; x1x2 = n2 ;所以 n2 − 4n = 0 ,解得 n = 0 ,或 n = 4
10 分
当 n = 0 时,直线 AB 过原点,不满足题意;当 n = 4 时,直线 AB 过点 (4,0)
相关文档
最新文档