计算机组成原理概念术语
计算机组成原理名词解释

主机:CPU、存储器和输入输出接口合起来构成计算机的主机。
CPU:中央处理器,是计算机的核心部件,由运算器和控制器构成。
运算器:计算机中完成运算功能的部件,则ALU 和寄存器构成。
外围设备:计算机的输入输出设备,包括输入设备、输出设备和外存储设备。
数据:编码形式的各种信息,在计算机中作为程序的操作对象。
指令:构成计算机软件的基本元素,表示成二进制数编码的操作命令。
透明:在计算机中,从某个角度看不到的特性称该特性是透明的。
位:计算机中的一个二进制的数据代码(0或1),是数据的最小表示单位。
字:数据运算和存储单位,其位数取决于计算机。
字节:衡量数据量以及存储器容量的基本单位,1字节等于8位二进制信息。
字长:一个数据字包含的位数,一般为8位、16位、32位和64位等。
地址:给主存储器不同的存储位置指定的一个二进制编号。
存储器:计算机中存储程序和数据的部件,分为内存和外存两种。
存储器的访问:对存储器中数据的读操作和写操作。
总线:计算机中连接功能单元的公共线路,是一束信号线的集合。
硬件:由物理元器件构成的系统,计算机硬件是一个能够执行指令的设备。
软件:由程序构成的系统,分为系统软件和应用软件两种。
兼容:计算机部件的通用性。
操作系统:主要的系统软件,控制其他程序的运行,管理系统资源并且为用户提供操作界面。
汇编程序:将汇编语言程序翻译成机器语言程序的计算机软件。
汇编语言:采用文字方式(助记符)表示的程序设计语言,其中大部分指令和机器语言中的指令一一对应。
编译程序:将高级语言的程序转换成机器语言程序的计算机软件。
解释程序:解释执行高级语言程序的计算机软件,,解释并执行源程序的语句。
系统软件:计算机系统的一部分,进行命令解释、操作管理、系统维护、网络通信、软件开发和输入输出管理的软件。
应用软件:完成应用功能的软件,专门为解决某个应用领域中的具体任务而编写。
指令流:在计算机的存储器与CPU之间形成的不断传递的指令序列。
计算机四级计算机组成原理知识点总结

计算机四级计算机组成原理知识点总结
计算机四级计算机组成原理涉及多个关键知识点,主要包括:
1.**计算机的基本组成**:计算机主要由运算器、控制器、存储器、输入设备和输出设备五大部件组成。
其中,运算器和控制器合称为中央处理器(CPU)。
2.**指令系统**:指令是计算机执行某种操作的命令,通常由操作码和操作数地址码组成。
指令系统是指一台计算机中所有指令的集合。
指令的长度取决于操作码的长度、操作数地址码的长度和操作数地址的个数,与机器字长没有固定的关系。
指令可以分为零地址指令、一地址指令等多种类型。
3.**计算机硬件层次结构**:计算机硬件层次结构可以分为微程序机器层(M0)、传统机器层(M1)、虚拟机器层(M2)、汇编语言机器层(M3)和高级语言机器层(M4)。
每一层都对应着不同的指令系统和执行方式。
4.**存储系统**:存储系统包括主存储器(内存)和辅助存储器(外存)。
主存储器是计算机直接访问的存储部件,其速度快,但容量小。
辅助存储器则容量大,速度慢,需要通过输入输出设备才能访问。
5.**输入输出系统**:输入输出系统负责计算机与外部世界的联系,包括输入设备和输出设备。
输入设备用于将外部信息输入到计算机中,输出设备用于将计算机的处理结果输出到外部世界。
6.**总线系统**:总线是连接计算机各部件的通信线路,包括数据总线、地址总线和控制总线。
总线系统负责在各部件之间传输数据和控制信号。
以上就是计算机四级计算机组成原理的主要知识点,掌握了这些知识,就能对计算机的基本组成和工作原理有深入的理解。
计算机组成原理名词解释

之阿布丰王创作主机:CPU、存储器和输入输出接口合起来构成计算机的主机.CPU:中央处置器,是计算机的核心部件,由运算器和控制器构成.运算器:计算机中完成运算功能的部件,则ALU和寄存器构成.外围设备:计算机的输入输出设备,包括输入设备、输出设备和外存储设备.数据:编码形式的各种信息,在计算机中作为法式的把持对象.指令:构成计算机软件的基本元素,暗示成二进制数编码的把持命令.透明:在计算机中,从某个角度看不到的特性称该特性是透明的.位:计算机中的一个二进制的数据代码(0或1),是数据的最小暗示单位.字:数据运算和存储单位,其位数取决于计算机.字节:衡量数据量以及存储器容量的基本单位,1字节即是8位二进制信息.字长:一个数据字包括的位数,一般为8位、16位、32位和64位等.地址:给主存储器分歧的存储位置指定的一个二进制编号.存储器:计算机中存储法式和数据的部件,分为内存和外存两种.存储器的访问:对存储器中数据的读把持和写把持.总线:计算机中连接功能单位的公共线路,是一束信号线的集合.硬件:由物理元器件构成的系统,计算机硬件是一个能够执行指令的设备.软件:由法式构成的系统,分为系统软件和应用软件两种.兼容:计算机部件的通用性.把持系统:主要的系统软件,控制其他法式的运行,管理系统资源而且为用户提供把持界面.汇编法式:将汇编语言法式翻译成机器语言法式的计算机软件.汇编语言:采纳文字方式(助记符)暗示的法式设计语言,其中年夜部份指令和机器语言中的指令一一对应.编译法式:将高级语言的法式转换成机器语言法式的计算机软件.解释法式:解释执行高级语言法式的计算机软件,,解释并执行源法式的语句.系统软件:计算机系统的一部份,进行命令解释、把持管理、系统维护、网络通信、软件开发和输入输出管理的软件.应用软件:完成应用功能的软件,专门为解决某个应用领域中的具体任务而编写.指令流:在计算机的存储器与CPU之间形成的不竭传递的指令序列.数据流:在计算机的存储器与CPU 之间形成的不竭传递的数据序列.接口:部件之间的连接电路,如输入输出接是主机与外围设备之间传递数据与控制信息的电路.存储器的容量:是衡量存储器容纳信息能力的指标.主存储器中数据的存储一般是以字为单位进行.存储器中存储的一个字的信息如果是数据则称为数据字,如果是指令则称为指令字.原码:带符号数据暗示方法之一,用一个符号位暗示数据的正负,0代表正号,1代表负号,其余的代码暗示数据的绝对值.阶码:浮点数据编码中,暗示小数点的位置的代码.尾数:浮点数据编码中,暗示数据有效值的代码.基数:浮点数据编码中,对阶码所代表的指数值的数据,在计算机中是一个常数,不用代码暗示.机器零:浮点数据编码中,阶码和尾数为全0时代表的0值.上溢:指数据的绝对值太年夜,以至年夜于数据编码所能暗示的数据范围.规格化数:浮点数据编码中,为使浮点数具有唯一的暗示方式所作的规定,规定尾数部份用纯小数形式给出,而且尾数的绝对值应年夜于1/R,即小数点后的第一位不为零.海明距离:在信息编码中,两个合法代码对应位上编码分歧的位数.冯诺依曼舍入法:浮点数据的一种舍入方法,在截去过剩位时,将剩下数据的最低位置 1.检错码:能够发现某些毛病或具有自动纠错能力的编码.纠错码:能够发现某些毛病并具有自动纠错能力的编码.海明码:一种纠错码,能检测出2位错,并能纠正1位错.循环码:一种纠错码,其合法码字移动任意位后的结果仍然是一个合法码字.桶形移位器:一种移位电路,具有移2位、移4位和移8位等功能.RAM:随机访问存储器,能够快速方便地访问任何地址中的内容,访问的速度与存储位置无关.ROM:只读存储器,只能读取数据不能写入数据的存储器.SRAM:静态随机访问存储器.它采纳双稳态电路存储信息.DRAM:静态随机访问存储器,它利用电容电荷存储信息.EDO DRAM:增强数据输出静态随机访问存储器,采纳快速页面访问模式,并增加了一个数据锁存器以提高数据传输速率.PROM:可编程的ROM,可以被用户编程一次.EPROM:可擦写可编程的ROM,可以被用户编程屡次.EEPROM:电可擦写只读存储器,能够用电子的方法擦除其中的内容.快闪存储器:一种非挥发性存储器,与EEPROM类似,能够用电子的方法擦除其中的内容.相联存储器:一种按内容访问的存储器,,每个存储单位有匹配电路,可用于cache中查找数据.多体交叉存储器:由多个相互自力、容量相同的存储体构成的存储器,每个存储体自力工作,读写把持重叠进行.访存局部性:CPU的访存规律,对存储空间的90%的访问局限于存储空间的10%的区域中,而另外10%的访问则分布在存储空间的其余90%的区域中.直接映象:cache的一种地址映象方式,一个主存块只能映象到cache中的唯一一个指定块.全相联映象:cache的一种地址映象方式,每个主存块都可映象就任何cache块.组相联映象:cache 的一种地址映象方式,将存储空间分成若干组,各组之间是直接映象,而组内各块之间则是全相联映象.全写法:cache命中时的一种更新战略,写把持时将数据既写cache又写入主存.写回法:cache命中时的一种更新战略,写cache时不写主存,而当cache数据被替换出去时才写回主存.虚拟存储器:在内存和外存间建立的条理体系,使得法式能够像访问主存储器一样访问外存储器,主要用于解决计算机中主存储器的容量问题.按写分配:cache不命中时的一种更新战略,写把持时把对应的数据块从主存调入cache.段式管理:一种虚拟存储器的管理方式,把虚拟存储空间分成段,段的长度可以任意设定,并可以放年夜和缩小.页式管理:一种虚拟存储器的管理方式,把虚拟存储空间等分成固定容量的页,需要时装入内存.段页式管理:一种虚拟存储器的管理方式,将存储空间按逻辑模块分段,每段又分成若干个页.块表:主存-cache地址映象机制,由查块表判定主存地址的存储单位是否在cache中以及在cache中的位置.页表:页式虚存管理用的地址映象表,其中包括每个页的主存页号、装入位和访问方式等.段表:段式虚存管理用的地址映象表,其中包括每个段的基址、段长、装入位和访问方式等.固件:固化在硬件中(如写入ROM)的固定不变的经常使用软件.助记符:汇编语言中采纳的比力容易记忆的文字符号,暗示指令中的把持码和把持数.伪指令:汇编语言法式中提供的有关该法式装入内存中的位置的信息,暗示法式段和数据段开始的信息以及暗示法式结束的信息等,它们其实不转成二进制的机器指令.寻址方式:对指令的地址码进行编码,以形成把持数在存储器中的地址的方式.年夜数端:高位数据和低位数据在存储器中的存储次第,将多字数据的最低字节存储在最年夜地址位置.小数端:高位数据和低位数据在存储器中的存储次第,将多字数据的最低字节存储在最小地址位置.RISC:精简指令系统计算机CISC:复杂指令系统计算机相对转移:一种形成转移目标地址的方式,转移指令的目标指令地址是由PC寄存器的值加上一个偏移量形成的.绝对转移:一种形成转移目标地址的方式,转移指令的目标指令地址是由有效地址直接指定,与PC寄存器的内容无关.条件转移:一种转移指令类型,根据计算机中的状态决定是否转移.无条件转移:一种转移指令类型,不论状态如何,一律进行转移把持.指令格式:是计算机指令编码的格式,指定指令中编码字段的个数、各个字段的位数以及各个字段的编码方式.指令周期:从一条指令的启动到下一条指令的启动的间隔时间.机器周期:指令执行中每一步把持所需的时间.指令仿真:通过改变微法式实现分歧机器指令系统的方式,使得在一种计算机上运行另一种计算机的指令代码.指令模拟:在一种计算机上用软件来解释执行另一台计算机的指令.硬连线逻辑:一种控制逻辑,用一个时序电路发生时间控制信号,采纳组合逻辑电路实现各种控制功能.微法式:存储在控制存储器中的完成指令功能的法式,由微指令组成.微指令:控制器存储的控制代码,分为把持控制部份和顺序控制部份.微地址:微指令在控制存储器中的存储地址.水平型微指令:一次能界说并执行多个并行把持把持控制信号的指令.垂直型微指令:一种微指令类型,设置微把持码字码,采纳微把持码编码法,由微把持码规定微指令的功能.控制存储器:微法式型控制器中存储微指令的存储器,通常是ROM.为什么用二进制?答:容易用数据电路暗示,数据运算和存储方式简单,是高效的数据暗示方式.运算器中有哪些寄存器?答:寄存器是运算器中临时寄存数据的的部件.运算器中有存储数据的寄存器,寄存一些中间运算结果等.保管指令的寄存器、运算状态的寄存器,保管存储器地址的寄存器.如何区分ASCII代码和汉字编码?答:ASCII代码是7位的代码,在存储时可以在它前面增加一位形成8位的代码,增加的位用0暗示是ASCII码,1暗示是汉字编码.为什么虚拟存储器中,页面的年夜小不能太小,也不能太年夜?答:当页面小时,平均页内剩余空间较少,可节省存储空间,但页表增年夜,页面太小时不能充沛利用访存的空间局部性提高命中率;当页面年夜时,可减少页表空间,但平均页内剩余空间较年夜,浪费较多存储空间,页面太年夜还使页面调入调出时间较长.基址寻址方式和变址寻址方式有什么优点?答:基址寻址方式用于法式定位,,可使法式装内存分歧的位置运行,只要相应地改变基址寄存器的值.基址寻址还支持虚存管理,以实现段式虚拟存储器.变址寻址方式适合于对一组数据进行访问,这时在访问了一个数据元素之后,只要改变变址寄存器的值,该指令就可形成另一个数据元素的地址.中央处置器有哪些基本功能?有哪些基本部件构成?答:基本功能(1)指令控制.即对法式运行的控制,保证指令序列的的执行结果的正确性.(2)把持控制.即指令内把持步伐的控制,控制把持步伐的实施.(3)数据运算.即对数据进行算术运行和逻辑运算.(4)异常处置和中断处置.如处置运算中的溢出等毛病情况以及处置外部设备的服务请求等.中央处置器主要由控制器和运算器两部份构成,另外在CPU中有多种寄存器,寄存器与运算之间传递信息的线路称为数据通路.微指令编码有哪三种方式?微指令格式有哪几种?微法式控制有哪些特点?答:微指令编码方式有三种:直接暗示法、编码暗示法、混合暗示法.微指令的格式年夜体分成两类:水平型微指令和垂直型微指令.水平型微指令又分为三种:全水平型微指令、字段编码的水平型微指令、直接和编码相混合的水平型微指令.微法式的控制器具有规整性、可维护性和灵活性的优点,可实现复杂指令的把持控制,使得在计算机中可以较方便地增加和修改指令,甚至可以实现其他计算机的指令.猝发传输方式:在一个总线周期内传输存储地址连续的多个数据字的总线传输方式四边缘协议:全互锁的总线通信同步方式,就绪信号和应答信号在上升边缘和下降边缘都是触发边缘.波特率:码元传输率,每秒钟通过信道的码元数.比特率:信息位传输率,每秒钟通过信道的有效信息量.位时间:码元时间,即传输一位码元所需要的时间,波特率的倒数.UAPT:通用异步接收器/发送器,一种典范的集成电路异步串行接口电路.主设备:负责在总线上数据传输的设备,如中央控制器、DMA控制器等.从设备:总线上具有对地址线,控制信号线进行译码的功能和与主设备传输数据功能的设备.总线事务:总线把持的请求主方与响应方之间的一次通信.总线协议:总线通信同步方式规则,规定实现总线数传输的按时规则.菊花链方式:各申请总线的设备合用一条总线作为请求信号线,而总线控制设备的响应信号线则串接在各设备间.自力请求方式:集中式总线判决方式之一,每一个设备都有一个自力的总线请求信送到总线控制器,控制器也给各设备分别发送一个总线响应信号.计数器按时查询方式:集中式总线判决方式之一,设备要求使用总线时通过一条公用请求线发出,总线控制器按计数器的值对各设备进行查询.系统总线:处置器总线,连接处置器和方存是计算机系统的主干线.信息之前要恢复到零电流.不归零制: 一种磁盘信息记录方式,磁头线圈上始终有电流,正向电射到纸上.绘图机:计算机图形输出设备,主要用于工程图纸的输出.数字化仪:一种二维坐标输入系统,主要用于输入工程图,包括一个游标和一个图形板.触摸屏:一种具有触摸式输入功能显示屏式者附加在显示屏上的输入设备,用于输入屏幕位置信息,通常与屏幕菜单配合使用.扫描仪:一种图像输入设备,主要用与各类计算机静态图象的输入.音频识别:一个对音频信息提练和压缩的过程,如将语音信号转化成文字信息以便于计算机的存储和处置.音频合成:使计算机能够朗读文本或者演奏出音乐的过程,如将文字信息转化成语音信息,或者将MIDI数据文件转经成音乐信号.音效处置:改进音频设备输出效果的过程,分为三种类型:混响和延时处置;声音的回放效果;环绕声的处置.CD-ROM:计算机中只读型光盘的主要标准.WORM:写一次读屡次型光盘,可由用户一次性写放信息,写入后可以反复读取.CD-R:可写光盘,WORM型光盘的标准.EFM码:通道码,CD-ROM 中的一个14位的代码,暗示8位的数据.磁光盘:一种可擦写光盘,在激光的作用下将信息以磁化形式记录在光盘上.统一编址:一种外围设备的寻址方式,将输入输出设备中的控制寄存器、数据寄存器、状态寄存器和内存单位一样看待,将它们和内存单位联合在一起编排地址.独自编址:一种外围设备的寻址方式,采纳专门的控制信号进行输入输出把持,内存的地址空间和输入输出设备的地址空间是分开的.单级中断:简单的处置中断方法,在处亘个中断时时间:二O二一年七月二十九日不响应另一个中断的请求,所以是单重中断.与多级中断对应,各和中断的优先级一样.多级中断:处置多重中断的方法,采纳按优先级的方法,在处置某级中断时,与它同级的中断或比它初级的中断请求不能中断它的处置,而比它优先级高的中断请求则能中断它的处置.中断屏蔽:在处置中断时阻止其他中断.DMA:直接存储器访问,一种高速输出方法.现场呵护:保管CPU的工作信息,如各寄存器的值.中断向量:由发出中断请求的设备通过输入输出总线主意向CPU发出一个识别代码.自陷:由CPU的某种内部因素引起的内部中断.软件中时间:二O二一年七月二十九日。
计算机组成原理习题解答(任国林)

第7 章1. 解释概念或术语:数据传输率、NRZ、RAID、I/O接口、I/O端口、中断、I/O中断、中断请求、中断响应、中断服务、中断返回、向量中断、中断向量表、中断判优、中断嵌套、中断屏蔽、DMA、周期窃取、DMA预处理、DMA后处理、通道。
答:略。
2. 现代计算机中,为什么I/O设备通常通过总线与主机连接?答:随着计算机应用的普及,现代计算机中I/O设备种类越来越多、速度大不相同,并且要求计算机可随时可接入这些设备。
由于总线连接方式具有可扩展性好、能够实现操作标准化等优点,可以满足相关应用需求,故I/O设备通常通过总线与主机连接。
3. 简述I/O设备有哪两种编址方式?它们对指令系统及总线信号线有哪些影响?答:I/O设备有统一编址和独立编址两种编址方式。
统一编址方式时存储器和I/O设备地址不重叠,只通过地址即可区分这两种部件,故指令系统无需任何变化,总线信号也不受任何影响(只需MEMR#、MEMW#两根控制线),只是系统可扩展性不够好、指令格式较长;独立编址方式的存储器和I/O设备地址重叠,只通过地址无法区分这两种部件,故指令系统需增设两条I/O指令,总线信号相应地也需增设IOR#、IOW#两根控制线。
4. I/O设备与主机交换信息时,共有哪几种控制方式?简述其特点。
答:I/O设备与主机交换信息时,共有程序查询、程序中断、DMA、通道等4种方式。
程序查询方式中,CPU不停地查询I/O设备状态,只有在设备就绪时才进行信息传送,其特点是I/O设备及主机组成简单,但CPU工作效率较低(CPU与外设串行工作);程序中断方式中,CPU启动I/O设备后,继续执行现行程序,I/O设备就绪后提出请求时,才响应请求进行信息传送,其特点是CPU工作效率较高(CPU与外设部分并行工作),但I/O设备及CPU需增设与中断相关软硬件;DMA方式中,I/O设备直接与存储器进行信息传送,传送无需CPU干预、只需CPU让出总线使用权,CPU仅负责传送准备及结束处理工作,其特点是CPU工作效率在程序中断方式基础上有进一步提高,但I/O设备硬件组成更复杂、CPU需增设DMA请求/响应机制。
计算机组成原理目录

计算机组成原理目录
一、基本概念和术语
1.计算机组成原理概述
2.计算机硬件和软件的关系
3.信息的表示和处理
4.计算机的运行原理
二、数字逻辑电路基础
1.布尔代数和逻辑门
2.组合逻辑电路
3.时序逻辑电路
4.存储器和寄存器
三、计算机的指令系统和运算
1.指令的表示和执行
2.数据的表示和运算
3.控制逻辑和控制单元
四、存储器和存储器层次结构
1.存储器的分类和特性
2.主存储器和辅助存储器
3.存储器的层次结构和存取方法
4.存储器的高速缓存和虚拟存储器
五、输入和输出设备
1.输入和输出设备的分类和特性
2.输入设备的接口和数据采集
3.输出设备的接口和数据显示
4.输入输出设备的控制和通信
六、总线和通信
1.计算机系统中的总线
2.总线的分类和特性
3.总线的传输方式和速度
4.总线的控制和仲裁
七、处理器的结构和设计原理
1.处理器的功能和组成
2.数据通路和控制单元的设计
3.内部寄存器和处理器的运行状态
4.处理器的性能评价和优化技术
八、计算机体系结构和指令集
1.计算机的级别和体系结构
2.CISC和RISC的比较
3.指令集的设计和实现
4.多核处理器和并行计算
九、系统总线和I/O设备接口
1.系统总线的结构和功能
2.总线的控制和仲裁机制
3.I/O设备的接口和通信
4.DMA和中断处理机制
十、计算机性能评价和提高技术
1.计算机性能的度量和评价
2.程序的优化和并行化技术
3.存储器层次结构的优化
4.编译器的优化技术。
详解计算机中的Byte、bit、字、字长、字节

详解计算机中的Byte、bit、字、字长、字节 最近突然有同事问我,关于计算机中的计量单位⼤B和⼩b的区别,以及KB到GB之间的换算问题,我当时觉得这问题简单,⼤B是byte,⼩b是bit,但是想到他俩之间的换算时,⼀时有些想不起来具体是1Byte=4bit,还是1Byte=8bit,再往上换算当然很明了,1KB=1024Byte,1MB=1024KB,1GB=1024MB。
周末回到家中后,⼜想起这件⼩事,感觉天天围着代码打转,⼀些基础概念在记忆中已变得模糊了,于是感觉还是写⼀下,加深⼀遍印象。
就找出⼀些计算机基础相关的书籍查阅了⼀下。
1. 字:⼀组或者⼀串bit2. 字长:字的位数叫做字长3. 字节:8个⼆进制位为⼀个字节 下边是引⽤[英]艾伦*克莱门茨著的《计算机组成原理》中的详细描述: 计算机内存储和处理信息的最⼩单位是位(bit,或⽐特),它是BInary digiT(⼆进制数)这个单词的缩写。
⼀个⽐特值可以是0或1,它是不可拆分的,不能再将其分为更⼩的信息单位。
数字计算机将信息以⼀组或⼀串⽐特(称作字)的形式保存在存储器中。
例如,串01011110表⽰⼀个8位的字。
按照惯例,我们以最低位在最右端的⽅式书写⼆进制串。
计算机通常不会每次只对⼀个⼆进制位进⾏操作,它们对⼀组⼆进制位进⾏操作。
8个⼆进制位为⼀个字节(byte)。
现在的微处理器都是⾯向字节的,其字长是8位的整数倍(即它们的数据和地址是8、16、32、64或128位),⼀个字可以是2个、4个或8个字节长,因为它的所有位可以被分别组织为2个、4个或8个8位的组。
⼀些计算机制造商⽤术语“字”(word)表⽰16位的值(与字节对应,字节是8位的值),长字表⽰32位的值。
还有⼀些制造商则⽤字表⽰32位的值,⽤半字表⽰16位的值。
随着速度越来越快,价格越来越低,⼀台计算机⼀次能处理的位的组数也越来越多。
20世纪70年代第⼀个微处理器⼀次只能处理4位数据,⽽到了20世纪90年代初,64位微机已开始进⼊个⼈电脑市场。
计算机组成原理笔记

计算机组成原理笔记
1. 计算机组成原理是研究计算机硬件和软件组成及其相互关系的学科领域。
2. 计算机由中央处理器(CPU)、存储器和输入输出设备组成,其中CPU是计算机的控制中心。
3. CPU由控制单元和算术逻辑单元组成,控制单元负责指令
的解析和执行,算术逻辑单元负责数据的运算。
4. 存储器用于存储计算机运行时所需的数据和指令,其中包括主存储器和辅助存储器。
5. 输入输出设备用于与外部世界进行信息交互,例如键盘、鼠标、显示器和打印机等。
6. 计算机执行程序时,先从辅助存储器中将程序加载到主存储器,然后由CPU依次执行指令。
7. 指令由操作码和操作数组成,操作码表示指令的类型,操作数表示指令所操作的数据。
8. 指令在执行过程中通过执行周期来完成,包括取指令、分析指令、执行指令和写回数据等阶段。
9. 计算机的性能可以通过时钟频率、指令执行速度和吞吐量等指标进行衡量。
10. 计算机的内部结构可以采用冯·诺依曼结构或哈佛结构,冯·诺依曼结构中指令和数据存储在同一存储器中,而哈佛结
构中指令和数据存储在不同的存储器中。
11. 计算机的指令集架构可以分为精简指令集(RISC)和复杂
指令集(CISC)两种类型。
12. 硬件和软件之间通过接口进行通信,例如操作系统作为硬
件和应用软件之间的接口。
13. 并行计算可以提高计算机的性能,包括并行指令和并行处理等技术。
14. 计算机组成原理还涉及到虚拟内存、缓存和流水线等重要概念和技术。
15. 计算机组成原理的研究对于理解计算机的工作原理和优化计算机性能具有重要意义。
计算机组成原理:第一章-计算机系统体系结构

一计算机系统体系结构1.1 什么是计算机体系结构本章的第一个概念是计算机系统(computer system)。
计算机系统包括读取并执行程序的中央处理单元(CPU,保存程序和数据的存储器以及将芯片转换为实用系统的其他子系统。
这些子系统会使CPU与显示器、打印机、Internet等外部设备之间的通信变得更加容易。
•cpu(处理器): 计算机实际执行程序的部分•微处理器: 在单个硅片上实现的CPU•微机: 围绕微处理器构建的计算机计算机的性能既取决于CPU;也取决于其他子系统。
如果不能高效进行数据传输,仅仅提高CPU的性能是毫无意义的。
Figure 1:•信息(程序和数据): 保存在存储器中;计算机会使用不同类型的存储器,达到不同的目的。
–如果不能叫信息保存在正确的存储器,那么CPU的速度再快也将毫无意义–Cache: 保存常用的数据是高速专用的存储器。
–主存: 存放大量的工作数据,断电消失–辅存: 指磁盘等,用于存储海量的数据。
永久存储•组成计算机的各个子系统通过总线连接在一起,数据通过总线从计算机中的一个位置传递到另一个位置。
什么是计算机Figure 2:•输入: 指用户交给计算机的信息•输出: 指计算机返回给用户的信息可编程计算机接收两种类型的输入: 它将要处理的数据,以及准确描述要如何处理输入数据的程序。
程序不过是计算机所执行的完成给定任务的操作序列。
Figure 3:•CPU读程序并完成程序指定的操作。
内部使用寄存器来保存数据•存储器系统保存两类信息:程序,程序处理或产生的数据计算机从存储器中读出指令并执行这些指令(即完成或执行指令定义的动作)。
执行指令时,可能要从存储器中读出数据,对数据进行操作,将数据写回存储器。
寄存器是CPU内部用来存放数据的存储单元。
时钟提供了脉冲流,所有内部操作都在时钟脉冲的触发下进行。
时钟频率是决定计算机速度的一个因素程序执行过程Figure 4:CPU先读取一条指令;在CPU分析或解码指令;从存储器中读出这条指令所需的所有数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理概念术语第一章1、主机:主机中包含了除输入输出设备以外的所有电路部件,是一个能够独立工作的系统。
2、CPU:中央处理器,是计算机的核心部件,同运算器和控制器构成。
3、运算器:计算机中完成运算功能的部件,由ALU和寄存器构成。
4、ALU:算术逻辑运算单元,执行所有的算术运算和逻辑运算。
5、外围设备:计算机的输入输出设备,包括输入设备,输出设备和外存储设备。
6、数据:编码形式的各种信息,在计算机中作为程序的操作对象。
7、指令:是一种经过编码的操作命令,它指定需要进行的操作,支配计算机中的信息传递以及主机与输入输出设备之间的信息传递,是构成计算机软件的基本元素。
8、透明:在计算机中,从某个角度看不到的特性称该特性是透明的。
9、位:计算机中的一个二进制数据代码,计算机中数据的最小表示单位。
10、字:数据运算和存储的单位,其位数取决于具体的计算机。
11、字节:衡量数据量以及存储容量的基本单位。
1字节等于8位二进制信息。
12、字长:一个数据字中包含的位数,反应了计算机并行计算的能力。
一般为8位、16位、32位或64位。
13、地址:给主存器中不同的存储位置指定的一个二进制编号。
14、存储器:计算机中存储程序和数据的部件,分为内存和外存。
15、总线:计算机中连接功能单元的公共线路,是一束信号线的集合,包括数据总线、地址总线和控制总线。
16、硬件:由物理元器件构成的系统,计算机硬件是一个能够执行指令的设备。
17、软件:由程序构成的系统,分为系统软件和应用软件。
18、兼容:计算机部件的通用性。
19、软件兼容:一个计算机系统上的软件能在另一个计算机系统上运行,并得到相同的结果,则称这两个计算机系统是软件兼容的。
20、程序:完成某种功能的指令序列。
21、寄存器:是运算器中若干个临时存放数据的部件,由触发器构成,用于存储最频繁使用的数据。
22、容量:是衡量容纳信息能力的指标。
23、主存:一般采用半导体存储器件实现,速度较高、成本高且当电源断开时存储器的内容会丢失。
24、辅存:一般通过输入输出部件连接到主存储器的外围设备,成本低,存储时间长。
25、操作系统:主要的系统软件,控制其它程序的运行,管理系统资源并且为用户提供操作界面。
26、汇编程序:将汇编语言程序翻译成机器语言程序的计算机软件。
27、汇编语言:采用文字方式(助记符)表示的程序设计语言,其中大部分指令和机器语言中的指令一一对应,但不能被计算机的硬件直接识别。
28、编译程序:将高级语言程序转换成机器语言程序的计算机软件。
29、解释程序:解释执行高级语言程序的计算机软件,解释并立即执行源程序的语句。
30、系统软件:计算机系统的一部分,进行命令解释、操作管理、系统维护、网络通信、软件开发和输入输出管理的软件,与具体的应用领域无关。
31、应用软件:完成应用功能的软件,专门为解决某个应用领域中的具体任务而编写。
32、指令流:在计算机的存储器与CPU之间形成的不断传递的指令序列。
从存储器流向控制器。
33、数据流:在计算机的存储器与CPU之间形成的不断传递的数据序列。
存在于运算器与存储器以及输入输出设备之间。
34、计算机的五个基本功能部件:输入设备、控制单元、存储单元、存储器、运算单元和输出设备。
这些部件相互配合,相互协调地完成运算任务。
输入设备用于接收外界信息,输出设备将计算的结果从计算机中输出,控制器完成操作步骤的控制和协调,存储器用于存储程序和数据,运算器则是完成计算工作的部件。
35、计算机中采用二进制计数器,因为二进制可以很容易的用数据电路表示,数据的运算和存储方式简单,是高效的数据表示方式。
36、计算机的系统软件是计算机系统不可缺少的一部分,因为计算机硬件的工作需要由系统软件控制。
计算机如果没有系统软件就无法工作,因为应用软件的输入、存储、装入和运行都需要系统软件的支持,用户向计算机发出的操作命令也需要由系统软件来执行。
37、软件与硬件之间的关系:软件和硬件在逻辑上是等效的,其区别在于速度、成本、可靠性、存储容量、变更周期等因素。
一般而言,用硬件实现的功能具有较高的执行速度,但同时成本也相对较高,而且硬件不易改变,灵活性差。
硬件是基础,通常实现一些最基本的系统功能,软件则实现一些比较复杂的功能,作为硬件的扩充。
第二章1、原码:带符号数据表示方法之一,一个符号位表示数据的正负,0代表正号,2代表负号,其余的代表数据的绝对值。
2、补码:带符号数据表示方法之一,正数的补码与原码相同,负数的补码是将二进制位按位取反后在最低位上加1。
3、反码:带符号数据的表示方法之一,正数的反码与原码相同,负数的反码是将二进制位按位取反。
4、移码:带符号数据表示方法之一,符号位用1表示正,0表示负,其余位与补码相同。
5、阶码:在浮点数据编码中,表示小数点的位置的代码。
6、尾数:在浮点数据编码中,表示数据有效值的代码。
7、基数:在浮点数据编码中,对阶码所代表的指数值的数据,在计算机中是一个常数,不用代码表示。
8、机器零:在浮点数据编码中,阶码和尾数都全为0时代表的0值。
9、上溢:指数的绝对值太大,以至大于数据编码所能表示的数据范围。
10、下溢:指数的绝对值太小,以至小于数据编码所能表示的数据范围。
11、规格化数:在浮点数据编码中,为使浮点数具有唯一的表示方式所作的规定,规定尾数部分用纯小数形式给出,而且尾数的绝对值应大于1/R,即小数点后的第一位不为零。
12、Booth算法:一种带符号数乘法,它采用相加和相减的操作计算补码数据的乘积。
13、海明距离:在信息编码中,两个合法代码对应位上编码不同的位数。
14、冯.诺依曼舍入法:浮点数据的一种舍入方法,在截去多余位时,将剩下数据的最低位置1。
15、检错码:能够发现某些错误或具有自动纠错能力的数据编码。
16、纠错码:能够发现某些错误并且具有自动纠错能力的数据编码。
17、海明码:一种常见的纠错码,能检测出两位错误,并能纠正一位错误。
18、循环码:一种纠错码,其合法码字移动任意位后的结果仍然是一个合法码字。
第三章1、RAM:随机访问存储器,能够快速方便的访问地址中的内容,访问的速度与存储位置无关。
2、ROM:只读存储器,一种只能读取数据不能写入数据的存储器。
3、SRAM:静态随机访问存储器,采用双稳态电路存储信息。
4、DRAM:动态随机访问存储器,利用电容电荷存储信息。
5、EDO DRAM:增强数据输出动态随机访问存储,采用快速页面访问模式并增加了一个数据锁存器以提高数据传输速率。
6、PROM:可编程的ROM,可以被用户编程一次。
7、EPROM:可擦写可编程的ROM,可以被用户编程多次。
靠紫外线激发浮置栅上的电荷以达到擦除的目的。
8、EEPROM:电可擦写可编程的ROM,能够用电子的方法擦除其中的内容。
9、SDRAM:同步型动态随机访问存储器,在系统时钟控制下进行数据的读写。
10、快闪存储器:一种非挥发性存储器,与EEPROM类似,能够用电子的方法擦除其中的内容。
11、相联存储器:一种按内容访问的存储器,每个存储单元有匹配电路,可用于是cache中查找数据。
12、多体交叉存储器:由多个相互独立、容量相同的存储体构成的存储器,每个存储体独立工作,读写操作重叠进行。
13、访存局部性:CPU的一种存特性,对存储空间的90%的访问局限于存储空间的10%的区域中,而另外10%的访问则分布在90%的区域中。
14、直接映象:cache的一种地址映象方式,一个主存块只能映象到cache 中的唯一一个指定块。
15、全相联映象:cache的一种地址映象方式,一个主存块可映象到任何cache 块。
16、组相联映象:cache的一种地址映象方式,将存储空间分成若干组,各组之间用直接映象,组内各块之间用全相联映象。
17、全写法(写直达法):cache命中时的一种更新策略,写操作时将数据既写入cache又写入主存,但块更时不需要将调出的块写回主存。
18、写回法:cache命中时的一种更新策略,写cache时不写主存,而当cache 数据被替换出去时才写回主存。
19、按写分配:cache不命中时的一种更新策略,写操作时把对应的数据块从主存调入cache。
20、不按写分配:cache不命中时的一种更新策略,写操作时该地址的数据块不从主存调入cache。
一般写回法采用按写分配法,写直达法则采用不按写分配法。
21、虚拟存储器:在内存与外存间建立的层次体系,使得程序能够像访问主存储器一样访问外部存储器,主要用于解决计算机中主存储器的容量问题。
22、层次化存储体系:把各种不同存储容量、不同访问速度、不同成本的存储器件按层次构成多层的存储器,并通过软硬件的管理将其组成统一的整体,使所存储的程序和数据按层次分布在各种存储器件中。
23、存储器访问时间:从启动访问存储器操作到操作完成的时间。
24、存储周期:从一次访问存储的操作到操作完成后可启动下一次操作的时间。
25、存储带宽:存储器在连续访问时的数据吞吐率。
26、段式存储管理:一种虚拟存储器的管理方式,把虚拟存储空间分成段,段的长度可以任意设定,并可以放大或缩小。
27、页式存储管理:一种虚拟存储器的管理方式,把虚拟存储空间和实际存储空间等分成固定容量的页,需要是装入内存,各页可装入主存中不同的实际页面位置。
28、段页式存储管理:一种虚拟存储器的管理方式,将存储空间逻辑模块分成段,每段又分成若干页。
29、块表:主存-cache地址映像机制,由查块表判定主存地址的存储单元是否在cache中以及在cache中的位置。
30、页表:页式虚拟存储器管理用的地址映象表,其中包括每个页的主存页号、装入位和访问方式等。
31、段表:段式虚拟存储器管理用的地址映象表,其中包括每个段的基地址、段长、装入位和访问方式等。
32、固件:固化在硬件中的固定不变的常用软件。
33、地址译码的方式有:单译码方式和双译码方式(行选通线又称字选通线,列选通线又称为位选通线)。
在单译码方式中的存储器中只用一个译码电路,将所有的地址信号转换成行选通信号,一一行内的各存储单元构成一个数据字的存储位置,适合于小容量的存储器芯片。
在双译码方式中,采用两个地址译码器,输入的地址信号分成两部分送到两个译码器中,分别产生行选通信号和列选通信号,行选取通和列选通都有效的存储单元被选中。
这种存储器芯片将一个数据字的同一位组织在一个阵列中,在多位的存储器芯片中就有多个这样的阵列,适合于容量较大的存储器芯片。
34、提高存储器工作速度的技术主要有芯片技术和结构技术:芯片技术:(1)快速页式动态存储器(FPM DRAM)存储器的下一次访问可以利用上一次访问的行地址,这样就可以减少两次输入地址带来的访问延迟。
(2)增强数据输出存储器(EDO DRAM)与FPM DRAM相似,增加了一个数据锁存器,并采用不同的控制逻辑连接到芯片的数据驱动电路中以提高数据传输速率。