材料表界面范围

材料表界面范围
材料表界面范围

第一章绪论

名词解释:表、界面;物理表面

表界面是指由一个相到另一个相的过渡区域。

物理表面:三维规整点阵到体外空间之间的过渡区域;厚度随材料种类而异,从一个到多

个原子层不等。

基本知识点:

1、表、界面现象的研究对象通常为具有多相性的不均匀体系,即体系中一般存在两个或两个以上不同性能的相。

2、表界面指相与相之间的过渡区域,因此表界面区的结构、能量、组成等都呈现连续的梯度变化。

3、按照扩散的微观机制可将表面扩散分为两类:自扩散和互扩散。

4、固体中的扩散是通过原子的随机运动进行的,因此扩散的前提是有可供原子运动的空间。

5、扩散过程的微观机制是缺陷的运动。

6、晶界迁移是重要的界面扩散传质现象,可由不同的驱动力引起;晶界迁移的特点与处于一定能量状态的晶界原子结构特点密切相关,其过程的本质是晶界能量的下降。

公式:

第二章液体界面

名词解释:表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力表面

自由能:广义,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。狭义,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能。

特劳贝(Traube)规则;在同系物溶液中,欲使表面张力降低得一般多,所需溶液浓度因分子中每增加一个亚甲基-ch2-而减少为原来的三分之一。

基本知识点:

1、表面张力本质上是由分子间相互作用力,即范德瓦尔斯力产生的;

2、表面张力产生的根本原因是分子间相互作用力不平衡引起的;

3、处在液体表面层的分子与其内部分子所受力场相同(错);

4、气液界面的分子净受到指向液体内部的引力,该引力主要是范德华力;(对)

5、由于系统的能量越低越稳定,所以液体表面有自动收缩的能力;(对)

6、表面弯曲的液体在表面张力的作用下,表面上承受着附加压力,且方向总是指向液体内部;(错)

7、跨过平液面不存在压差;(对)

8、毛细管法测液体表面张力时,要求毛细管被所测液体完全浸润。(错)

9、Kelvin公式表明:液滴的半径越小,其蒸汽压越大;气泡的半径越小,其蒸汽压越小。

10、利用毛细管法测液体表面张力时,当毛细血管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形;若液体不能浸润管壁,则液面下降呈凸液面。

11、跨过一个平表面不存在压力差,而跨过曲面必然存在压力差。(对)

12、弯曲表面,△P与表面张力成正比,而与曲率半径成反比;(错)

13、人工降雨利用凸液面饱和蒸气压大于平液面蒸气压的原理,向云层提供凝结中心达到降雨目的;(对)

简答题:

1、应用Kelvin公式解释以下现象:①人工降雨;②过热液体;③过饱和溶液。

根据公式:

(1)当空气中的水蒸气凝结时,首先形成非常小的液核,在液核存在的基础上继而长大形成大的液滴,从而发生水蒸气的凝结。初始形成的液核半径非常小,对应的饱和蒸气压远

远大于平液面水的饱和蒸气压,液核很难形成,空气中水蒸气过饱和。空气中存在凝结中心时,如灰尘,会使水滴初始凝结曲率半径变大,当相应的饱和蒸气压小于高空中有的水蒸气压力时,蒸汽会凝结成水。人工降雨是利用这种原理,通过向云层中的过饱和水气提供凝聚中心以达到人工增雨的目的。

(2)液体沸腾时在液体表面进行气化,而且在液体内部要自动形成小气泡。根据开尔文公式

对于这样的气泡其饱和蒸气压小于平面液体的饱和蒸气压,而且气泡半径越小,泡内饱和蒸气压越小。在沸点时,最初形成的半径极小的气泡内的饱和蒸气压远小于外压,因此在外压的压迫下,小气泡难以形成,以致液体不易沸腾。

(3)公式:

生成高度分散的微小晶体具有较大的溶解度,晶体的曲率半径越小,相应的溶解度就越大,因此产生过饱和现象。

2、书后及课件计算题

第三章固体表面

简答题:

1、讨论固体的表面特性;固体表面分子的运动受缚性,固体表面的不均一性,吸附性。对固体形成新表面时,表面的分子或原子重排,迁移到平衡位置过程难完成,产生表面应力。

固体表面凹凸不平,晶体晶面的不均一性,固体表面污染。

正由于固体表面原子受力不对称和表面结构不均匀性,它可以吸附气体或液体分子,使表面自由能下降,而且不同的部位吸附和催化的活性不同。

2、比较物理吸附和化学吸附的区别与联系;

物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生成与破坏,也没有原子重排等。化学吸附相当于吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外-可见光谱中会出现新的特征吸收带。

3、Langmuir理论;BET多分子吸附理论

langmuir理论基本观点:固体表面存在一定数量的活化位置,当气体分子碰撞到固体表面时,就有一部分气体被吸附在活化位置上,并放出吸附热。已吸附在固体表面上的气体分子又可重新回到气相,即存在凝聚与逃逸的平衡,是一个动态平衡的过程。

bet:接受了langmuir理论中关于固体表面是均匀的,吸附作用是吸附和解吸的平衡等观点。吸附是多分子层的,各相邻吸附层之间存在着动态平衡。第一层吸附是固体表面与气体分子之间的相互作用,其吸附热为q1,第二层以上的吸附都是吸附质分子之间的相互作用,吸附热接近被吸附分子的凝聚热qL。

基本知识点:

1、固体表面的分子(原子)具有迁移性。(错)

2、固体表面的分子(原子)在一定条件下具有迁移性。(对)

3、固体表面的最突出特性之一是不均一性。(对)

4、固体表面的不均一性的原因包括:固体表面的凹凸不平、固体中晶体晶面的不均一性和固体表面易污染。

5、根据力的本质,可将固体表面的吸附作用分为物理吸附和化学吸附。

6、以提高固体比表面积来提高固体的吸附能力的方法包括:使固体具有多孔性和微粒化。

第四章液固界面

名词解释:接触角:在气、液、固三相交界点,自固-液界面经过液体内部到气-液界面的夹角称为接触角。;

粘附功:在等温等压条件下,单位面积的液面与固体表面粘附时对外所作的最大功称为粘附功;

内聚能:等温、等压条件下,两个单位液面可逆聚合为液柱所作的最大功称为内聚能,是

液体本身结合牢固程度的一种量度;

基本知识点:

1、接触角的测定方法:停滴法;吊片法;电子天平法。

2、接触角滞后的原因是由于液滴的前沿存在着能垒。

3、当θy<90°时,表面粗糙化将使接触角更小,润湿性更好;当θy>90°时,表面粗糙化将使接触角变大。润湿性更差。

4、前进角往往反映表面能较低的区域,或反映与液体亲和力弱的那部分固体表面的性质;而后退角往往反映表面能较高的区域,或反映与液体亲和力强的那部分固体表面的性质。

5、表面污染往往来自液体和固体表面的吸附作用,从而使接触角发生显著变化。

6、习惯上规定θ=90°为润湿与否的标准,即θ>90°为不润湿;θ<90°为润湿,θ越小润湿越好;当平衡接触角θ=0°或不存在时为铺展。

简答题:

1、引起接触角滞后的原因?

固体表面的粗糙度,固体表面的不均匀性和多相性,固体表面的污染。

2、润湿过程的三种类型是什么?为什么铺展是润湿的最高形式?

粘附湿润过程,浸湿过程,铺展湿润过程。因为凡能铺展的必定能粘附润湿与浸湿。

3、什么是杨氏方程?接触角大小与液体对固体的润湿性好坏有怎样的关系?

(1)固体被液体完全润湿

(2)固体完全不为液体润湿

(3) W固液越大。湿润性能越好

第五章表面活性剂

名词解释:表面活性剂:能显著降低水气界面和水油界面的界面张力的物质称为表面活性剂

HLB:亲疏平衡值,用来表示表面活性物质的亲水性的相对值

CMC:表面活性剂溶液中开始形成胶束的最低浓度

PIT:非离子型表面活性剂在低温下形成水包油(O/W)型乳状液,升温到达相转型温度时,乳状液从原来的O/W型转变为油包水型(W/O)

简答题:

1、表面活性剂的浓度对溶液的表面张力有怎样的影响?为什么有这样的影响?

表面活性剂加于水中,一开始表面张力随表面活性剂浓度增加而急剧下降,以后则大体保持不变。表面活性剂分子聚集在水面,亲水端向水,亲油端向空气分子会聚集在表面,使空气和水的接触面减少,表面张力急剧下降。水溶液表面聚集了足够多的表面活性剂,无间隙的布满在水表面上,形成了单分子膜,空气和水的接触面积不会再缩小,因此也就不能再降低表面张力。

2、表面活性剂按亲水基分类法总结,书P65;看书画

3、讨论影响CMC的因素;

(1)疏水基的影响:在C8—C16范围内表面活性剂疏水基烃链长度增加,CMC下降

(2)亲水基的影响:亲水基团越多,CMC值越大,种类影响不大

(3)温度:开始时CMC随温度升高而下降,中间经过一最小值,然后随温度升高而增大(4)其他:电解质的影响,添加电解质使CMC下降,有机物的加入

基本知识点:

1、HLB值的大小表示表面活性剂亲水亲油性的相对大小,HLB值越大,该表面活性剂的亲水性越强;HLB值越低,则亲油性越强。

2、PIT与HLB的关系近乎直线,HLB值越大,其亲水性强,其PIT越高,故需在较高的温度下才能转相;

3、PIT的测定可用电导法;

4、在CMC附近,表面活性剂溶液的许多性质都会出现转折;

5、CMC越小,该表面活性剂的活性越大;

6、离子型表面活性剂的溶解度随温度升高而增大,当温度达到某一定值后,溶解度会突然增大;该温度称为Krafft点,Krafft点是分子溶解和胶束溶解的分界点;

7、非离子型表面活性剂的溶解度随温度升高而下降;

第七、八章复合材料的界面及分析表征

基本知识点:

1. 复合材料的结构——基体相、增强剂相、相与相之间存在界面。

2. 界面是复合材料产生协同效应的根本原因;

3. 界面相内的化学组分,分子排列,热性能,力学性能呈现连续的梯度性变化;

4. 聚合物基复合材料增强材料包括——纤维增强材料,片状增强材料,颗粒状增强材料。

5. 按化学组成,偶联剂主要可分为硅烷类、有机铬络合物类、钛酸酯类偶联剂。

6. 硅烷偶联剂在玻璃纤维表面以-Si-O-Si-化学键结合,同时在玻璃纤维表面缩聚成膜,形成有机基团R朝外的结构。

7. 真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构。

8. 复合材料界面上特有的晶态结构是横晶,其形成与化学键以及基体的收缩有关。

9. 聚合物基复合材料的树脂基体可分为热固性树脂和热塑性树脂;用作复合材料基体的热固性树脂最主要的是不饱和聚酯树脂、环氧树脂和酚醛树脂。

10. 玻璃纤维增强塑料俗称玻璃钢,是由玻璃纤维和基体树脂组成的复合材料。

12. 若纤维与基体界面结合适度,当复合材料破坏时,界面脱粘和基体破坏同时发生,从基体中拔出的纤维表面,可粘附有许多基体树脂残迹。

13.增强纤维经表面处理后,表面的化学组成发生变化,表面产生了一些活性功能团,通过功能团的化学反应,增强了与基体树脂的界面结合。

简答题:

1.解释协同效应?复合材料为什么会产生协同效应?

复合材料的性能不是组成材料性能的简单加和,而产生了1+1>2的作用,称为协同效应。界面是复合材料产生协同效应的根本原因。裂纹在基体中发展,遇到纤维可能发生界面脱粘、基体和纤维的断裂、纤维拔出等过程,吸收了大量能量;并且裂纹发展未必在一个平面上,可沿着材料中不同的平面发生如上过程,直到裂纹贯穿了某一平面材料才破坏;这就使得复合材料的断裂能大大高于各组分材料的断裂能的加和,充分体现出复合材料的协同效应。

2. 什么是偶联剂?说明硅烷偶联剂对玻璃纤维增强塑料的作用机理?

偶联剂是分子中含有两种不同性质化学基团的化合物,其中一种基团可与增强材料发生化学或物理的作用,另一种基团可与基体发生化学与物理作用。

X基团水解,形成硅醇;硅醇的硅羟基之间以及硅醇硅羟基与玻璃纤维表面硅羟基之间形成氢键;硅羟基之间脱水形成—si—o—si—键

3. 高性能的有机纤维有哪些?具有什么特点?

Kevlar纤维、聚酯纤维、超高相对分子质量聚乙烯纤维

(1)低密度、高强度、高模量

(2)刚性链、高度取向、分子链堆砌密度大

(3)分子链排列呈表芯结构

4. 界面对复合材料的性能起重要作用的原因?

界面相很薄,是亚微观的,却有极其复杂的结构;在两相复合过程中,会出现热应力效应,界面化学效应和界面结晶效应,这些效应引起的界面微观结构和性能特征,对复合材料的宏观性能产生直接的影响。

5. 用偶联剂进行表面处理有哪些方法?

后处理法,前处理法,迁移法。

第九章生物材料界面

名词解释:

生物医用材料的一般定义

生物相容性

细胞外基质

基本知识点:

1. 天然生物材料具有细胞信号识别能力,具有良好的生物相容性和生物降解性,显示出合

成材料无可比拟的优势。

2. 生物材料按照材料与机体组织作用方式可分为生物惰性材料和生物活性材料;

3. 生物材料表面工程的一个重要研究方向是——通过表面修饰使人工细胞外基质的仿生化。

4. 表面自由能高的表面有利于细胞的黏附和延展,表面自由能低的则相反。

5. 生物材料的生物活性化的一个重要手段——支架材料与生物活性分子相结合。

6. 生物材料表面的拓扑结构无论在血液相容性还是在人工细胞外基质中都起着至关重要的

作用。

简答题:

1、生物医用材料的基本性能有哪些?

2、作为组织工程用细胞外基质材料的特征有哪些?

道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结构形式。 路面结构由下而上有:垫层,基层,面层。 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 砂石材料是石料和集料的统称 岩石物理常数为密度和孔隙率 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛体积的质量。 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 吸水性:岩石吸入水分的能力称为吸水性。 吸水性的大小用吸水率与饱和吸水率来表征。 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 沥青混合料 水泥混合料

表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质 量。 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分 率。1000 1 ?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层的关键指标。 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标对道路表层用料非常重要。 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 级配参数: ?? ? ??分率。 质量占试样总质量的百是指通过某号筛的式样通过百分率和。 筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。 量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 天然砂的细度模数,系度模数越大,表示细集料越粗。 根据矿质集料级配曲线的形状,将其划分为连续级配和间断级配。 在连续级配类型的集料中,由大到小且各级粒径的颗粒都有,各级颗粒按照一定的比例搭配,绘制出的级配曲线圆滑不间断;在间断级配集料中,缺少一级或几个粒级的颗粒,大颗粒与小颗粒之间有较大的“空档”,所做出的级配曲线是非连续的。 第二章 沥青按照形态分类:粘稠沥青、液体沥青。 沥青按照用途分类:道路沥青、建筑沥青、水工沥青、防腐沥青、其他沥青。 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

工程材料知识点总结

第二章材料的性能 1、布氏硬度 布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。 适于测量退火、正火、调质钢, 铸铁及有色金属的硬度(硬度少于450HB)。 2、洛氏硬度 HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。 HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。 HRC用于测量中等硬度材料,如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。 缺点:测量结果分散度大。 3、维氏硬度 维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。 4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。 分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。 5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。 6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。 7、应力强度因子:描述裂纹尖端附近应力场强度的指标。 第三章金属的结构与结晶 1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。 晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。 由任意两个原子之间连线所指的方向称为晶向。 组成晶格的最小几何组成单元称为晶胞。 晶胞的棱边长度、棱边夹角称为晶格常数。 ①体心立方晶格 晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。属于体心立方晶格的金属有铁、钼、铬等。 ②面心立方晶格 原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个) 典型金属(金、银、铝、铜等)。 ③密排六方晶格 每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。 典型金属锌等。 2、各向异性:晶体中不同晶向上的原子排列紧密程度及不同晶面间距是不同的,所以不同方向上原子结合力也不同,晶体在不同方向上的物理、化学、力学间的性能也有一定的差异,此特性称为各向异性。

材料表界面范围

第一章绪论 名词解释:表、界面;物理表面 表界面是指由一个相到另一个相的过渡区域。 物理表面:三维规整点阵到体外空间之间的过渡区域;厚度随材料种类而异,从一个到多 个原子层不等。 基本知识点: 1、表、界面现象的研究对象通常为具有多相性的不均匀体系,即体系中一般存在两个或两个以上不同性能的相。 2、表界面指相与相之间的过渡区域,因此表界面区的结构、能量、组成等都呈现连续的梯度变化。 3、按照扩散的微观机制可将表面扩散分为两类:自扩散和互扩散。 4、固体中的扩散是通过原子的随机运动进行的,因此扩散的前提是有可供原子运动的空间。 5、扩散过程的微观机制是缺陷的运动。 6、晶界迁移是重要的界面扩散传质现象,可由不同的驱动力引起;晶界迁移的特点与处于一定能量状态的晶界原子结构特点密切相关,其过程的本质是晶界能量的下降。 公式: 第二章液体界面 名词解释:表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力表面 自由能:广义,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。狭义,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能。 特劳贝(Traube)规则;在同系物溶液中,欲使表面张力降低得一般多,所需溶液浓度因分子中每增加一个亚甲基-ch2-而减少为原来的三分之一。 基本知识点: 1、表面张力本质上是由分子间相互作用力,即范德瓦尔斯力产生的; 2、表面张力产生的根本原因是分子间相互作用力不平衡引起的; 3、处在液体表面层的分子与其内部分子所受力场相同(错); 4、气液界面的分子净受到指向液体内部的引力,该引力主要是范德华力;(对) 5、由于系统的能量越低越稳定,所以液体表面有自动收缩的能力;(对) 6、表面弯曲的液体在表面张力的作用下,表面上承受着附加压力,且方向总是指向液体内部;(错) 7、跨过平液面不存在压差;(对) 8、毛细管法测液体表面张力时,要求毛细管被所测液体完全浸润。(错) 9、Kelvin公式表明:液滴的半径越小,其蒸汽压越大;气泡的半径越小,其蒸汽压越小。 10、利用毛细管法测液体表面张力时,当毛细血管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形;若液体不能浸润管壁,则液面下降呈凸液面。 11、跨过一个平表面不存在压力差,而跨过曲面必然存在压力差。(对) 12、弯曲表面,△P与表面张力成正比,而与曲率半径成反比;(错) 13、人工降雨利用凸液面饱和蒸气压大于平液面蒸气压的原理,向云层提供凝结中心达到降雨目的;(对) 简答题: 1、应用Kelvin公式解释以下现象:①人工降雨;②过热液体;③过饱和溶液。 根据公式: (1)当空气中的水蒸气凝结时,首先形成非常小的液核,在液核存在的基础上继而长大形成大的液滴,从而发生水蒸气的凝结。初始形成的液核半径非常小,对应的饱和蒸气压远

材料表界面思考

第二章液体表面 1.表面张力产生的原因是什么? 2.表面张力与温度的关系是什么? 3.表面张力的两种定义以及相关计算。 4.拉普拉斯方程以及相关计算。 5.液体表面张力的测定方法有哪些? 6.毛细管法测定表面张力的公式(注意式中的r代表什么) 7.开尔文公式以及相关计算(过饱和度、毛细管液体饱和蒸气压) 8.试着利用开尔文公式解释人工降雨、过热液体、过冷水、过饱和液体现象。 9.为什么对毛细管法要进行修正? 10.吉布斯吸附等温式以及相关计算。 11.三类物质。 第三章固体表面 1.固体表面的三大特性是什么? 2.比较物理吸附和化学吸附的区别。 3.朗格缪尔吸附等温式及BET吸附等温式(计算)。 4.朗格缪尔吸附等温式的缺点(3点) 5.如何用BET吸附等温式求得比表面积?(计算) 第四章固-液界面 1.杨氏方程的掌握(计算),润湿程度的判别(利用接触角θ)。

2.粘附功和内聚能的定义。 3.杨-杜方程的掌握,如何测定固液界面的粘附功?(停滴法) 4.接触角的测定方法主要有哪些? 5.接触角的滞后现象,前进角和后退角各反映了什么区域(表面能)? 6.为什么说铺展润湿是润湿的最高形式? 7.润湿的三种类型,以及相应的判别公式。 8.水能否在汞表面铺展?(类似题目的计算,可利用铺展系数或者杨氏方程判别) 第五章表面活性剂 1.什么是表面活性剂?分子结构上特点是什么? 2.简述表面活性剂的浓度对溶液的表面张力的影响,为什么会有这样的影响? 3.表面活性剂按照亲水基可分为哪些? 4.阳离子、两性表面活性剂的各自的特点是什么? 5.非离子表面活性剂的特点以及下属的分类(聚乙二醇型和多元醇型)。 6.非离子表面活性剂的亲水基团是什么? 7.为什么聚乙二醇的醚键具有亲水性?(提示:锯齿型→ 曲折型) 8.氟系表面活性剂的特点。(为什么碳氟链有良好的防水、防油、易清洗的优点?) 9.冠醚类大环化合物主要的应用是什么?(相转移催化机理是什么?) 10.HLB是什么?HLB的大小代表什么? 11.非离子型中聚乙二醇型的HLB计算公式以及多元醇型HLB计算公式。 12.其它类型的表面活性剂的HLB计算公式又是什么? 13.什么是相转型温度?和HLB相比,PIT有什么优点?(HLB有什么不足之处)

哈工大材料学院-材料表界面复习资料

复习内容: 一液体表面 1研究液体结构的基本假设。 (1)组成液体的原子(或分子)分布均匀、连贯、无规则;(2)液体中没有晶态区域和能容纳其他原子或分子的孔洞;(3)液体的结构主要由原子间形成的排斥力决定。 2间隙多面体,径向分布函数。 液体结构的刚性球自由密堆可以用间隙多面体来表示,其中原子处在多面体间隙的顶点。液体自由密堆结构的5种理想间隙:(a)四面体间隙;(b) 八面体间隙;(c)三棱柱的侧表面被覆盖3个半八面体间隙;(d)阿基米德反棱柱被覆盖2个半八面体间隙;(e)正方十二面体 四面体间隙占了主要地位,所以四面体间隙配位是液体结构的另一特征,四面体配位中的各相邻原子的间距就成为液体结构的最近邻原子间距。 随着温度升高(低于材料熔点Tm),原子间距增加,原子震动幅度提高,但仍然保持有序结构。这时的原子数量的变化不再是一系列离散的线,所以再用原子数量(N(r))来表示不同径向距离(r)处原子的分布就显得不太合适,而通常采用的方法是用在不同径向距离(r)处原子出现的密度来表示。用密度分布函数ρ(r)来代替离散的数量值N(r)时,分布函数的峰值就代表了在距离中心原子r处原子出现的概率。 3液体原子结构的主要特征。 (1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大; (2)在液体原子的自由密堆结构中,四面体间隙占了主要地位。 (3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。 4 液体表面张力的概念及影响因素。 液体表面分子或原子受到内部分子或原子的吸引,趋向于挤入液体内部,使液体表面积缩小,因而在液体表面切向方向始终存在一种使液体表面积缩小的力,液体表面这种沿着切向方向,合力指向液体内部的作用力,就称为液体表面张力。 液体表面张力影响因素很多,如果不考虑液体内部分子或原子向液体表面的偏聚和外部原子或分子对液体表面的吸引,影响液体表面张力的因素主要有: (1)液体自身结构:液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。一般来说,液体中原子或分子的结合能越大,液体表面张力越大,一般液体表面张力随结构不同变化趋势是:金属键结合物质>离子键结合物质>极性共价键结合物质>非极性共价键结合物质 (2)表面所接触的介质:液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。一般来说,介质物质的原子或分子与液体表面原子或分子结合能越大,液体表面能越小,反之越大 (3)温度:随着温度的升高,液体密度下降,液体内部原子或分子间的作用力降低,液体内部原子或分子对表面原子或分子的吸引力减弱,液体表面张力下降。最早给出的预测液体表面张力与温度关系的半经验表达式为: γ= γ0(1-T/T c)n 式中T c为液体的气化温度,γ0为0K时液体的表面张力。 5液体表面偏聚。 液体中溶质原子向液体表面偏聚可以降低液体的表面能,因此是自发进行的过程。表面能随组成液体的比例变化越大,产生表面偏聚倾向性越大。

材料表面与界面课后思考题胡福增

第一章 1.试述表面张力(表面能)产生的原因。怎样测试液体的表面张力 (1)原因 液体表面层的分子所受的力不均匀而产生的。液体表面层即气液界面中的分子受到指向液体内部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。这里的分子间作用力为范德华力。 (2)测试 ①毛细管上升法 测定原理 将一支毛细管插入液体中, 液体将沿毛细管上升, 升到一定高度后, 毛细管内外液体将达到平衡状态, 液体就不再上升了。此时, 液面对液体所施加的向上的拉力与液体总向下的力相等。则γ=1 /2(ρl-ρg)ghrcosθ (1) (1)式中γ为表面张力, r为毛细管的半径, h为毛细管中液面上升的高度,ρl为测量液体的密度,ρg为气体的密度( 空气和蒸气) , g为当地的重力加速度, θ为液体与管壁的接触角。若毛细管管径很小, 而且θ=0 时, 则上式(1)可简化为γ=1/2ρghr (2) ②Wilhelmy 盘法 测定原理

用铂片、云母片或显微镜盖玻片挂在扭力天平或链式天平上, 测定当片的底边平行面刚好接触液面时的压力, 由此得表面张力, 公式为: W总-W片=2γlcosφ 式中,W总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l为薄片的宽度, 薄片与液体的接触的周长近似为2l, φ为薄片与液体的接触角。 ③悬滴法 测定原理 悬滴法是根据在水平面上自然形成的液滴形状计算表面张力。在一定平面上, 液滴形状与液体表面张力和密度有直接关系。由Laplace 公式, 描述在任意的一点P 曲面内外压差为 式中R1, R2 为液滴的主曲率半径; z 为以液滴顶点O为原点, 液滴表面上P 的垂直坐标; P0 为顶点O处的静压力。 定义S= ds/de式中de为悬滴的最大直径, ds为离顶点距离为de处悬滴截面的直径再定义H=β(de/b)2 则得γ= (ρl-ρg)gde2/H 式中b为液滴顶点O处的曲率半径。若相对应与悬滴的S值得到的1/H为已知, 即可求出表(界) 面张力。即可算出作为S的函数的1/H值。因为可采用定期摄影或测量ds/de 数值随时间的变化, 悬滴法可方便地用于测定表(界)面张力。 ④滴体积法 测定原理

材料表面界面考试知识点整理

1.原子间的键合方式及性能特点 原子间的键合方式包括化学键和物理键,其中化学键又分为离子键,共价键和金属键,物理键又包括分子键和氢键. 2.原子的外层电子结构,晶体的能带结构。 3.晶体(单晶、多晶)的基本概念,晶体与非晶体的区别。 单晶:质点按同一取向排列,由一个核心(晶核)生长而成的晶体;多晶:由许多不同位向的小晶体(晶粒)所组成的晶体.

4.空间点阵与晶胞、晶面指数、晶面间距的概念,原子的堆积方式和典型的晶体结构。 空间点阵:呈周期性的规律排列的阵点所形成的具有等同的周围环境的三维阵列; 晶胞:在空间点阵中,能代表空间点阵结构特点的最小平行六面体,反应晶格特性的最小几何单元; 晶面指数: 在晶格中,通过任意三个不在同一直线上的格点作一平面,称为晶面,描写晶面方位的一组数称为晶面指数.一般选取晶面在三个坐标轴上的截距,取倒数作为晶面指数; 晶面间距:两近邻晶面间的垂直距离; 原子的堆积方式:六角堆积和立方堆积; 典型的晶体结构:面心立方结构,体心立方结构,密排六方结构. 5.表面信息获取的主要方式及基本原理 可以通过光子,电子,离子,声,热,电场和磁场等与材料表面作用,来获取表面的各种信息,或者利用原子线度的极细探针与被测材料的表面近距离接近,探测探针与材料之间的信号,来获取表面信息. 电子束技术原理: 离子束技术原理:离子比光子电子都重,它轰击表面时产生的效应非常明显.离子不但具有电荷还有电子结构和原子结构,当离子与表面接近时,除具有静电场和接触电势差作用外,它本身还可以处于不同的激发电离态,离子还可以与表面产生各种化学反应,总之,离子与表面作用后,提供的信息非常丰富. 光电子能谱原理: 扫描探针显微镜技术原理: 6.为什么XPS可获得表面信息,而X射线衍射只能获得体信息? [略] X射线衍射(XRD)是利用晶体形成X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法.将具有一定波长的X射线照射到晶体上时,X射线因在晶体内遇到规则排列的原子或离子而发生散射,

《材料表面界面和微结构分析表征》复习提纲1

《材料表面界面和微结构分析表征》复习提纲 绪论 掌握现代分析技术的原理、特点和分类。 作业与思考: 试述体分析,表面分析和微区分析的概念并举例. 第一章表面科学与表面分 1. 了解表面分析仪的组成、各部分的功能和要求; 2. 掌握X-射线发射机理、命名、谱线波长和相对强度变化规律。 3. 掌握电子能量分析器工作原理以及表述方法。 作业与思考: 1. 画图并通过数学推导详述CHA电子能量分析的工作原理; 2. 画图并说明特征X-射线发射机理; 3. 画图并说明特征X-射线的命名、谱线波长和相对强度的变化规律。 第二章俄歇电子能谱 1. 掌握Auger效应,Auger 跃迁的过程和Auger 电子的命名 2. 了解Auger电子能谱的认识 3. 掌握决定Auger 峰能量的因素 4. 了解Auger峰精细结构与化学状态分析 5. 掌握Auger信号强度与AES 定量分析(概念、方法和公式等)。作业与思考:

1.分别画图并说明电子和X-射线与物质相互作用产生Auger 电子跃迁的过程; 2.决定Auger 信号强度的主要因素有哪些? (1)元素电离几率;(2)Auger跃迁几率;(3)Auger的逃逸深度。 入射电流强度IP 电离几率σax (1+γm ) 俄歇跃迁几率PA 仪器因素T & D 原子浓度NA 信息深度Z 3 AES 定性分析的依据是什么? (1)峰位(能量) ,由特定元素原子结构确定; (2)元素的峰数,由特定元素原子结构确定(可由量子力学估计); (3)各峰相对强度大小也是该元素特征; 以上三条是俄歇能谱定性分析的依据,这些数据均有手册可查。 4. AES 定量分析方法和对应公式是什么? 标样法 灵敏度因素法 5.根据不锈钢样品的AES谱图,量得Cr529(eV)、Fe703(eV) 和Ni848(eV)的Auger 峰高分别为4.6、9.8 和1.6,查表得Cr、Fe和Ni对应的灵敏度因子分别为0.28、0.19 和0.26,试计算该不锈钢样品表面的Fe、Cr 和Ni 的含量(%)。

江苏大学_材料表界面_期末知识点——wjl版

1.表面能:系统增加单位面积时所需做的可逆功J/m*m 2.吸附热:吸附过程中的热效应。物理吸附热效应相当于气体的凝聚热, 化学相当于化学键能 3.物理吸附:吸附作用力为范德瓦尔分子力,由表面原子和吸附原子之间 的极化作用而产生。 4.化学吸附:静电库仑力,发生电子转移,改变吸附分子结构。 5.毛细现象:吸附压力引起的毛细管内外页面的高度差的现象 6.超疏水:表面与水的接触角大于150,滚动角小于10 7.润湿:固体表面上的气体或液体被液体或另一种液体取代的现象,原因, 接触后吉布斯自由能小于0 8.亲水物质:能被水润湿的物质,如玻璃、石英 9.疏水物质:不能被水润湿的物质,如石墨、硫磺 10.接触角:三相交界处自固液界面经过液体内部到气液界面的夹角叫接触 角 11.粘附功:液柱由两液体构成,拉开后原来AB 界面消失,出现新的A\B,消耗的能量称为粘 附功 12.内聚能:均相物质分离成两部分,产生两个新界面,消耗的能量称为内

聚能 13.接触角滞后现象:于粗糙或不均匀表面上,液滴可以处于稳定平衡态或 者亚稳定平衡态。 14.粘附润湿:液体接触固体,变气液表面和气固表面为液固表面的过程。 15.浸湿过程:气固为液固所取代的过程 16.铺展润湿:液体于固体表面接触后,于固体表面上排除空气而自行铺展 的过程,也是一个以液固界面取代气固界面同时液体表面随之扩展的过程。 17.静接触角:当液体在固体表面达到平衡时,气液的界线与液固的界线之 间的夹角称为接触角,此时为静态接触角 18.动态接触角:液体在固体表面接触角随时间变化而变化的过程,是动态 接触角 19.表面活性剂:加入少量时能显著降低溶液表面张力并改变体系界面状态 的物质。 20.Krafft 温度:离子型表面活性剂的溶解度随温度变化的特点是在足够低 的温度下,溶解度随温度升高而慢慢增大,当温度达到某一定值后,溶解度会突然增大。溶解度开始突然增大的温度叫Krafft 温度。 21.表面接枝:表面接枝是通过紫外光、高能辐射、电子束、等离子体等技 术,是聚合物表面产生活性中心,引发乙烯基单体在聚合物表面接枝聚合,或利用聚合物表面的活性基团通过化学反应接枝。表面接枝聚合,大分子偶合反应,以及添加接枝共聚物。 22.金属的腐蚀:金属及合金在外围介质的化学或电化学作用下发生破坏的 过程称为金属腐蚀。 23.玻璃相:陶瓷配料中除主晶相以外的其他组分(有时包括)在一定温度 下共熔,然后“冻结”成非晶态固体。 24.复合材料:复合材料是以两种或两种以上不同材料通过一定的工艺复合 而成的多相材料。 25.增强材料:在复合材料中,凡能提高机体的机械强度、弹性模量等力学 性能的材料称为增强材料。

材料表界面

一、答:表、界面是指由一个相到另一相的过渡区域,通常把凝固相和气相之间的分界面称为表面,把凝固相之间的分界面称为界面。分为两大类:物理表面和材料表面。物理表面又分为:理想表面、清洁表面、吸附表面;材料表面有如下几类:机械作用界面、化学作用界面、固态结合界面、液相或气相沉积界面、凝固共生界面、粉末冶金界面、粘结界面、熔焊界面等。 在国民经济建设各领域,表、界面科学亦显示出愈来愈重要的作用。主要应用在食品、土壤化学、造纸、涂料、橡胶、建材、冶金、能源、电子工业和航天技术等领域。 二、答:溶质的浓度对溶剂表面张力的影响有三种类型,第一类物质的加入会使溶剂的表面张力略为升高,属于此类物质有强电解质(如无机盐、酸、碱);第二类物质的加入会使溶剂的表面张力逐渐降低(如低碳醇、羧酸等有机物);第三类物质少量加入就会使溶剂表面张力急剧下降,但到一定浓度后,表面张力变化很缓慢或几乎不下降,趋于一个稳定值。 我们把能使溶剂(通常为水)表面张力降低的物质称为具有表面活性的物质,如第二类和第三类物质都能使溶剂表面张力降低,它们都具有表面活性。 表面活性剂的种类很多,按亲水基类型分类是表面活性剂分类的主要方法,表面活性剂溶于水能电离生成离子的叫做离子型表面活性剂;不能电离的叫非离子型表面活性剂。离子型表面活性剂按生成离子的性质可分成阴离子、阳离子和两性表面活性剂。按相对分子质量分类:低分子表面活性剂,相对分子质量200-1000;中分子表面活性剂,相对分子质量1000-10000;高分子表面活性剂,相对分子质量10000以上。按工业用途分类:表面活性剂可分为渗透剂、润湿剂、乳化剂、分散剂、起泡剂、消泡剂、净洗剂、杀菌剂、匀染剂、缓染剂、柔软剂、平滑剂、抗静电剂防锈剂等。有的表面活性剂可同时具有几种功能。 三、答:陶瓷材料为无机非金属粉末晶体在一定条件下形成的多晶聚集体。表面结构:由于表面处原子周期性排列突然中断,形成了附加表面能,表面原子的排

材料表界面

一、20℃时汞的表面张力为4.85×10-1 Jm-2,求在此温度及101.335 kPa 的压力下,将半径1mm 的汞滴分散成半径10-5 mm 的微小汞滴,至少需要消耗多少功 解:已知:σ=4.85×10-1 Jm-2 r1=1mm, r2=10-5 mm 二、25℃,在101.325kPa 下将直径为1μm 的毛细管插入水中,问需要外加多大的压力才能防止水面上升?(已知25℃时水的表面张力 为71.97×10 -3 N*m-1 ) 解: 21212112 223312W=()4;4443 3A A dA A A A r A N r r r N σσππππ=-===?31223211221222112123251()4()4()4(1)4.85104 3.1416(10)(101) 6.0910r N r r r A r r r r r W r r Jm m J ππσπ----====?-= ?????-=?-31652 Δp=2σ/r 2(71.9710)=0.5102.8810288N m m N m kPa ---???=??=

三、25℃时,水的饱和蒸气压为3.168kPa ,求该温度下比表面积为106 m2 *kg-1时球形水滴的蒸气压(水在25℃时的表面张力为71.97 ×10-3 N*m-1). 解:先求水滴半径: 代入Kelvin 公式: 332233362 193443 3344433(10)(10)3103V N r r A N r r r r r A kg m m kg m nm πρππππρρρ---===?=?===??=?=0-32631) 1190-3-22ln 2(71.9710)(1810=(8.314)(298)(310)=0.3486 p =1.417p=1.417 3.16810N m =4.489kPa P V P RTr J m m mol J mol K K p σ------=??????????

《材料成型》基础知识点

《材料成型》基础知识点 1.简述铸造生产中改善合金充型能力的主要措施。 (1)适当提高浇注温度。 (2)保证适当的充型压力。 (3)使用蓄热能力弱的造型材料。如砂型。 (4)预热铸型。 (5)使铸型具有良好的透气性。 2.简述缩孔产生的原因及防止措施。 凝固温度区间小的合金充满型腔后,由于逐层凝固,铸件表层迅速凝固成一硬壳层,而内部液体温度较高。随温度下降,凝固层加厚,内部剩余液体由于液态收缩和补充凝固层的凝固收缩,体积减小,液面下降,铸件内部产生空隙,形成缩孔。 措施:(1)使铸件实现“定向凝固”,按放冒口。 (2)合理使用冷铁。 3.简述缩松产生的原因及防止措施。 出现在呈糊状凝固方式的合金中或断面较大的铸件中,被树枝状晶体分隔开的液体区难以得到补缩所致。 措施:(1)、尽量选用凝固区域小的合金或共晶合金。 (2)、增大铸件的冷却速度,使铸件以逐层凝固方式进行凝固。 (3)、加大结晶压力。(不清楚) 4.缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 缩孔和缩松使铸件的有效承载面积减少,且在孔洞部位易产生应力集中,使铸件力学性能下降;缩孔和缩松使铸件的气密性、物理性能和化学性能下降。 缩孔可以采用顺序凝固通过安放冒口,将缩孔转移到冒口之中,最后将冒口切除,就可以获得致密的铸件。而铸件产生缩松时,由于发达的树枝晶布满了整个截面而使冒口的补缩通道受阻,因此即使采用顺序凝固安放冒口也很无法消除。 5.什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固 原则各适用于哪种场合? 定向凝固就是在铸件上可能出现缩孔的厚大部位安放冒口,使铸件上远离冒口的部位先凝固然后是靠近冒口的部位凝固,最后才是冒口本身的凝固。 同时凝固,就是采取必要的工艺措施,使铸件各部分冷却速度尽量一致。 实现定向凝固的措施是:设置冒口;合理使用冷铁。它广泛应用于收缩大或壁厚差较大的易产生缩孔的铸件,如铸钢、高强度铸铁和可锻铸铁等。 实现同时凝固的措施是:将浇口开在铸件的薄壁处,在厚壁处可放置冷铁以加快其冷却速度。它应用于收缩较小的合金(如碳硅质量分数高的灰铸铁)和结晶温度范围宽,倾向 于糊状凝固的合金(如锡青铜),同时也适用于气密性要求不高的铸件和壁厚均匀的薄壁 6.铸造应力有哪几种?形成的原因是什么? 铸造应力有热应力和机械应力两种。 热应力是铸件在凝固和冷却过程中,由于铸件的壁厚不均匀、各部分冷却速度不同,以至在同一时期内铸件各部分收缩不一致而引起的。 机械应力是铸件在冷却过程中因固态收缩受到铸型或型芯的机械阻碍而形成的应力。 7.铸件热应力分布规律是什么?如何防止铸件变形? 铸件薄壁处受压应力,厚壁处受拉应力。 (1)减小铸造应力。 合理设计铸件的结构,铸件尽量形状简单、对称、壁厚均匀。

材料表界面知识点总结

第九章玻璃表界面 4 玻璃的表面反应 玻璃成型后一段时间就容易被周围环境介质所侵蚀,侵蚀情况主要取决于玻璃的本质(组成)和介质的种类。 4.1 水对玻璃的侵蚀 开始于水中的H+和玻璃中的Na+进行离子交换: 离子交换反应停止的真正原因: ?Na+含量的降低; R n+(n>1)抑制效应 4.2酸对玻璃的侵蚀 除氢氟酸外,一般酸并不直接与玻璃起反应,而是通过水的作用侵蚀玻璃。 浓酸对玻璃的侵蚀能力低于稀酸。 酸对玻璃的作用与水对玻璃作用又有所不同。 高碱玻璃的耐酸性小于耐水性,高硅玻璃的耐酸性大于耐水性。 4.3 碱对玻璃的侵蚀 硅酸盐玻璃一般不耐碱。 碱对玻璃的侵蚀是通过OH-破坏硅氧骨架(≡Si-O-Si ≡),使Si-O键断裂,SiO2溶解在碱液中。 碱的大量存在使得中和反应能够不断进行,所以,侵蚀不是形成硅酸凝胶薄膜,而是玻璃表面层不断脱落。

碱对玻璃的侵蚀程度与下列因素有关: 侵蚀时间 OH-离子的浓度 阳离子的种类 侵蚀后玻璃表面的硅酸盐在碱溶液中的溶解度 玻璃受碱侵蚀分为以下三个阶段: ?第一阶段,碱溶液中的阳离子首先吸附在玻璃表面; ?第二阶段,阳离子束缚周围的OH-离子,OH-离子攻击玻璃表面的硅氧键。 ?第三阶段,硅氧骨架破坏后变成硅酸离子,和吸附在玻璃表面的阳离子形成 硅酸盐,并逐渐溶解在碱溶液中。 碱性溶液对玻璃的侵蚀机理与水或酸不同 ?水或酸(包括中性盐或酸性盐)对玻璃的侵蚀只是改变、破坏或溶解(沥滤) 玻璃结构组成中R2O、RO等网络外体物质。 ?碱性溶液不仅对网络外体氧化物起作用,而且也对玻璃结构中的硅氧骨架起 溶蚀作用。 大气对玻璃的侵蚀 先是以离子交换为主的释碱过程后逐步过渡到以破坏网络为主的溶蚀过程。 4.4 影响玻璃表面反应性的因素 1) 化学组成的影响 硅酸盐玻璃的耐水性和耐酸性主要取决于硅氧和碱金属氧化物的含量。 玻璃中同时存在两种碱金属氧化物时,由于“混合碱效应”使玻璃的化学稳定性出现极值。

天津工业大学材料表界面作业题汇总解答

课后习题解答 第一次作业 1、表面张力产生的原因? 液体表面层的分子所受的力不均匀而产生的。液体表面层即气液界面中的分子受到指向液体内部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。这里的分子间作用力为范德华力。 2、毛细管插入汞中,管中汞柱表面呈凸形,管中液面比管外液面低。若在常压下,气温降低了,此时毛细管中汞面是上升、不变、还是下降?为什么? (提示:表面张力随温度的降低而升高) 毛细管中汞面是下降。因为气温降低,表面张力将升高,根据Laplace 方程,r p /2σ=?,对于凸液面,表面张力增大,液面下降。下降高度pgh h ?=σ2。 第二次作业 1、请解释下列现象中的任一个: (1)过冷水 (2)过热液体 (3)过饱和液体 (1)根据Kelvin 公式,微小晶体的蒸气压要比大晶体的蒸气压大,故小晶

体的蒸气压曲线在上方,它与过冷水曲线的交点即为小晶体的熔点。小晶体的熔点低于O点对应的温度,所以对液态水来说,温度到达O点对应的温度不会结晶,形成虚线所示的过冷水。 (2)沸腾时,气泡的形成必须经过从无到有,从小到大的过程。而最初形成的半径极小的气泡内的饱和蒸汽压远小于外压, 液体中的小气泡,其曲率半径是负的,根据Kelvin公式,其半径越小,气泡内的饱和蒸气压越小。 小气泡内部承受的压力=p外+?p = p外+2γ/r 因此在外压的压迫下,小气泡难以形成,液体不能沸腾,要想沸腾,必须过热,使小气泡的饱和蒸气压等于外压而沸腾。过热较多沸腾时,容易暴沸。 (3)根据Kevlin公式,微小晶体颗粒的饱和浓度大于普通晶体的饱和浓度,晶体颗粒越小,溶解度越大。当溶液在恒温下浓缩时,溶质的浓度逐渐增大,达到普通晶体的饱和度时,对微小晶体仍未达到饱和,所以不析出微小晶体,溶液称为过饱和溶液。 在一个饱和溶液中,若有大小不同的粒子存在,对于大粒子已饱和的溶液,对小粒子仍未达到饱和,所以陈放一段时间,小粒子将消失,大粒子略有增大,这就是重量分析中的陈化过程。 第三次作业 1

工程材料知识点总结(全)重点

第二章 材料的性能 1、布氏硬度 布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压 头还硬的材料。 适于测量退火、正火、调质钢 , 铸铁及有色金属的硬度(硬度少于 2、洛氏硬度 HRA 用于测量高硬度材料 , 如硬质合金、表淬层和渗碳层。 HRB 用于测量低硬度材料 , 如有色金属和退火、正火钢等。 HRC 用于测量中等 硬度材料,如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。 缺点:测量结果分散度大。 3、维氏硬度 维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度, 载荷可调范围大,对软硬材料都适用。 4、耐磨性 是材料抵抗磨损的性能,用磨损量来表示。 分类有黏着磨损(咬合磨损) 5、接触疲劳 :(滚动轴承、 损坏的现象。 6、蠕变 :恒温、恒应力下, 7、 应力强度因子 :描述裂纹 尖端附近应力场强度的指标。 第三章 金属的结构与结晶 1 、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。为便于描述晶体结构, 把每个原子 抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为 晶格 。 晶格中每个点称为结点,由一系列原子所组成的平面成为 晶面 。 由任意两个原子之间连线所指的方向称为 晶向 。 组成晶格的最小几何组成单元称为 晶胞 。 晶胞的棱边长度、棱边夹角称为 晶格常数 。 ① 体心立方晶格 晶格常数用边长 a 表示,原子半径为2 3a/4,每个晶胞包含的原子数为 1/8 X 8+1=2 (个)。 属于体心立方晶格的金属有 铁、钼、 铬等。 ② 面心立方晶格 原子半径为2 2a/4,每个面心立方晶胞中包含原子数为 典型金属(金、银、 铝、铜 等)。 ③ 密排六方晶格 每个面心立方晶胞中包含原子数为为 典型金属 锌 等。 2、各向异性 :晶体中不同晶向上的原子排 列紧密程度及不同晶面间距是不同的,所以不同 方向上原子结合力也不同, 晶体在不同方向上的物理、 化学、力学间的性能也有一定的差异, 此特性称为各向异性。 晶体中的缺陷 1) 点缺陷包括 空位、间隙原子、置换原子 。 点缺陷的形成主要是由于原子在以各自的平衡位置为中心不停的作热振动的结果。 2) 线缺陷:在三维空间中两维方向尺寸较小,另一维方向的尺寸相对较大的缺陷。 位错是晶格中的某处有一列或若干列原子发生了某些有规律的错排现象。 位错的基本形式: 刃型位错、螺型位错。 提高位错密度是金属强化对重要途径之一。 450HB )。 、磨粒磨损、腐蚀磨损。 齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落 随着时间的延长,材料发生缓慢塑变的现象。 1/8 X 8+1/2 X 6=4 (个) 12X 1/6+2*1/2+3=6 个)。

材料科学与工程基础习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案 第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。 2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO2的分子键合(2)甲烷CH4的分子键合 (3)乙烯C2H4的分子键合(4)水H2O的分子键合 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象? 2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少? 2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比? 2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论? 2-15.铁的单位晶胞为立方体,晶格常数a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。

材料表界面知识点汇总教学文案

材料表界面知识点汇总 1.表,界面是指一个相到另一个相的过渡区域。 2.表界面可以分为一下五类:固-气,液-气,固-液,液-液,固-固。 3.把凝聚相和气相之间(固-气,液-气)的分界面称为表面;把凝聚相之间(固-液,液-液,,固-固)的分界面称为界面。 4.理想表面的定义:指除了假设确定的一套边界条件外,系统不发生任何变化的表面。特点:表面的原子位置和电子密度都和在体内一样,且在实际生活中理想表面是不可能存在的。 5.清洁表面的定义:指不存在任何污染的化学纯表面,即不存在吸附,催化反应或杂质扩散等一系列物理,化学效应的表面。特点:可以发生多种与体内不同的结构和成分变化。 6.吸附表面的定义:吸附有外来原子的表面称之为吸附表面。特点:吸附原子可以形成无序的或有序的覆盖层。 7.材料表面的分类:机械作用界面,化学作用界面,固态结合界面,液相或气相沉积界面,凝固共生界面,粉末冶金界面,粘接界面,熔焊界面。 8.表面张力的定义:在液体表面膜中,存在着使液体表面积缩小的张力,这种张力称为表面张力。 9.吸附是组分在热力学体系的各相中偏离热力学平衡组成的非均匀

分布现象。通常将被吸附的分子成为吸附质,固体则称为吸附剂。 10.吸附类型分为物理吸附和化学吸附。 11.表面张力计算公式: 12.表面张力产生的根本原因是分子间相互作用力的不平衡引起的。 13.表面张力本质上是由分子间相互作用力,即范德瓦尔斯力,单位为:J/m2 https://www.360docs.net/doc/181560104.html,place方程:附加压力的方向总是指向曲率中心一边,且与曲率大小有关。 https://www.360docs.net/doc/181560104.html,place方程:球面:与曲率半径成反比 任意曲面:;对于平液面,两个曲率半径都为无限大,p=0,表示跨过平液面不存在压差。 16.当毛细管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形。反之,若液体不能浸润管壁,则液面下降呈凸液面。 17.Kelvin公式:po为T温度下,平液面的蒸汽压;P为T温度下,弯液面的蒸汽压;V为液体摩尔体积;r为弯液面的曲率半径。 18.Kelvin公式表明,液滴的半径越小,其蒸汽压越大。

材料科学基础108个重要知识点

材料科学基础108个重要知识点 1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。 4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。 5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程) 6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。 7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。 8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种

现象称为过时效。 9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。 10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。 11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。 12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。 14.螺型位错--位错线附近的原子按螺旋形排列的位错称为螺型位错。 15.包晶转变--在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 16.共晶转变--由一个液相生成两个不同固相的转变。 17.共析转变--由一种固相分解得到其他两个不同固相的转变。 18.上坡扩散--溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。表明扩散的驱动力是化学位梯度而非浓度梯度。 19.间隙扩散--这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。 20.成分过冷--界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

相关文档
最新文档