(完整)八年级上数学定义公式

合集下载

八年级上数学定义公式

八年级上数学定义公式

第十一章三角形1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;2、三角形两边的和大于第三边;三角形的两边的差小于第三边;3、判定三条线段能否围成三角形的简易方法:较小两边之和大于第三边最大边;4、三角形四心:1重心:三条中线交点;2垂心:三条高的交点;3内心:三个角平分线的交点;4外心:三边垂直平分线的交点;5、三角形内角和定理:三角形三个内角的和等于180o;6、直角三角形的性质:直角三角形的两个锐角互余;7、直角三角形的判定定理:有两个角互余的三角形是直角三角形;8、三角形的一边与另一边延长线组成的角,叫做三角形的外角;9、三角形的外角等于和它不相邻的两个内角的和;10、由一些线段首尾顺次相接组成的封闭图形叫做多边形;11、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线;多边形一个顶点对角线为:n-3条多边形对角线总条数为:nn -3÷2 条12、正多边形定义:各个角都相等,各条边都相等的多边形叫做正多边形;13、多边形内角和公式:n边形内角和等于n-2×180 o14、多边形的外角和等于360 o;第十二章全等三角形1、全等形:能够完全重合的两个图形叫做全等形;2、全等三角形:能够完全重合的两个三角形叫做全等三角形;3、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角;4、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等;5、三角形全等的判定定理:1SSS三边分别相等的两个三角形全等;2SAS两边和它们的夹角分别相等的两个三角形等;3ASA两角和它们的夹边分别相等的两个三角形全等;4AAS两角和其中一个角的对边分别相等的两个三角形全等;5HL斜边和一条直角边分别相等的两个直角三角形全等;直角三角形的判定6、角的平分线的性质:角的平分线上的点到角的两边的距离相等;1角相等且两垂直;2垂线段相等7、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上;1两垂直且垂线段相等;2角相等第十三章轴对称1、一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形这条直线就是它的对称轴;一个图形2、一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;两个图形3、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;4、线段垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;5、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的重直平分线;两个图形6、轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;一个图形7、线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;8、线段的垂直平分线的判定定理:与一条线段的两个端点距离相等的点,在这条线段的垂直平分线上;9、点x,y关于x轴对称的点的坐标为x,-y;点x,y关于y轴对称的点的坐标为-x, y;点x,y关于原点对称的点的坐标为-x, -y;10、等腰三角形的性质:性质1 等腰三角形的两个底角相等等边对等角;性质2等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;三线合一11、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边;12、等边三角形的性质:等边三角形的三个内角都相等,并且每个角都等于60°.13、等边三角形的判定定理:1三个角都相等的三角形是等边三角形;2有一个角是60°的等腰三角形是等边三角形;14、30°的直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;15、最短路径问题:1两点的所有连线中,线段最短;两点之间,线段最短;2连接直线外的一点与直线上各点的所有线段中,垂线段最短;垂线段最短第十四章 整式的乘法与因式分解1、同底数幂的乘法:a m a n = a m+n m,n 都是正整数;同底数幂相乘,底数不变,指数相加;2、同底数幂相除除法公式:a m ÷a n = a m-n a ≠0,m,n 都是正整数,并且m >n; 同底数幂相乘,底数不变,指数相减;3、幂的乘方:a mn = a mn m,n 都是正整数;幂的乘方,底数不变,指数相乘;4、积的乘方:ab n = a n b n n 是正整数;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;5、a 0=1 a ≠0任何不等于0的数的0次幂都等于1;6、分式乘方法则:⎪⎭⎫ ⎝⎛b a n = b a7、整式的乘法单项式与单项式相乘:单项式与单项式相乘,把它们的系数、同底数幂分n n别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式与多项式相乘:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;a+bp+q=ap+aq+bp+bq8、整式的除法单项式除以单项式:单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加;9、乘法公式:1平方差公式:a+ba-b = a2-b2两个数的和与这两个数的差的积,等于这两个数的平方差;2 完全平方公式:a+b2 = a2+2ab+ b2a-b2 = a2-2ab+ b2两个数的和或差的平方,等于它们的平方和,加上或减去它们的积的2倍;3x+px+q=x2+p+qx+pq10、添括号法则:添括号时,如果括号前面是正号,括到括号的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.11、因式分解:把一个多项式化成了几个整式的积的形式,叫做这个多项式的因式分解,也叫做把这个多项式分解因式;12、因式分解的方法:1提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法;2公式法:平方差公式:a 2-b 2=a +ba -b两个数的平方差,等于这两个数的和与这两个数的差的积;完全平方公式:a 2+2ab + b 2 =a +b 2a 2-2ab + b 2 =a -b 2两个数的平方和加上或减去这两个数的积的2倍;等于这两个数的和或差的平方,十字相乘法公式:x 2+p+qx+pq=x+px+q第十五章 分式1、分式的基本性质:分式的分子与分母乘或除以一个不等于0的整式,分式的值不变; CB C A B A ••= C B C A B A ÷÷= C ≠0 2、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分; 最简分式:分子与分母没有公因式的分式,叫做最简分式;分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;3、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;4、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;5、分式乘方法则:⎪⎭⎫ ⎝⎛b a n = b a 分式乘方要把分子、分母分别乘方;6、分式的加减法法则:1同分母分式相加减,分母不变,把分子相加减;2异分母分式相加减,先通分,变为同分母的分式,再加减;7、a -n = a 1 8、除以一个数等于乘以这个数的倒数;除以一个数等于乘以这个数的指数的相反数;9、将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解;10、解分式方程的步骤:1方程两边乘以最简公分母去分母2解得3检验 当 时,最简公分母≠0或最简公分母=0 n nn。

最全面的初中数学概念定义公式大全

最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0〔原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

八年级上册数学公式法

八年级上册数学公式法

八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。

公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。

2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。

3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。

4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。

5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。

6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。

7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。

八年级上册数学必背概念定义全部公式总结

八年级上册数学必背概念定义全部公式总结

八年级上册数学必背概念定义全部公式总结章节一:数与代数基础1. 整数- 定义:由整数集合(Z)中的正整数、负整数和零组成。

- 公式:Z={...,-3,-2,-1,0,1,2,3,...}2. 实数- 定义:由有理数集合(Q)和无理数集合的全体组成。

- 公式:R=Q∪D3. 代数表达式- 定义:由常数、变量和运算符号组成的式子。

- 公式:a+bx+c=x^2+2章节二:平面几何1. 对称- 定义:两个点、图形、式子在某个点、轴等方面相同。

- 公式:点(x,y)关于原点的对称点为(-x,-y)。

2. 相似- 定义:两个图形的形状相同,但尺寸不同。

- 公式:∆ABC∼∆DEF,则AB/DE=BC/EF=AC/DF。

3. 勾股定理- 定义:直角三角形中,斜边的平方等于两直角边的平方之和。

- 公式:c²=a²+b² (c为斜边)章节三:函数与方程1. 函数- 定义:一组有序数对,在数对中,第一元素为定义域中的一个数,第二元素为值域中的一个数。

- 公式:y=f(x)2. 一元一次方程- 定义:形如ax+b=c(a≠0)的方程。

- 解法:等式两边同时减去b,再同除以a。

- 公式:ax+b=c, x=(c-b)/a3. 二元一次方程组- 定义:两个形如ax+by=c的方程。

- 解法:用消元法将两个方程消去其中一个变量,再带回求解另一个变量。

- 公式:ax+by=c, dx+ey=f数与代数基础是数学学科的基本内容。

在中学数学的学习过程中,了解这些基础概念、定义与公式是非常必要的。

本章主要包括整数、实数、代数表达式等知识点。

首先,整数的定义是由整数集合(Z)中的正整数、负整数和零组成。

在计算中,我们可以使用整数实现对于数量的整数计量。

例如,当我们需要表达“3个苹果减去5个苹果,在数学中可以表示为3-5=-2。

整数的范围非常广泛,因此我们可以应用它们来完成数学分析、几何分析、统计分析等。

人教版八年级上、下册数学概念定义公式

人教版八年级上、下册数学概念定义公式

八年级上册数学概念、定义、公式归纳1.2.全等三角形的对应边相等,对应角相等。

3.全等三角形对应边上的中线、对应角的平分线、对应边上的高相等。

4.作图:作一个角等于已知角(课本P8)、作已知角的平分线(课本P19)、作线段的垂直平分线(课本P35)、作轴对称图形(课本P40)。

5.全等三角形的判定方法:三边对应相等的两个三角形全等。

(简写成SSS)两边和它们的夹角对应相等的两个三角形全等。

(简写成SAS)两角和它们的夹边对应相等的两个三角形全等。

(简写成ASA)两个角和其中一个角的对边对应相等的两个三角形全等。

(简写成AAS)斜边和一条直角边对应相等的两个直角三角形全等。

(简写成HL)6.7.8.9.10.成轴对称的两个图形全等。

11.12.13.14.15.“最短问题”解题方法:课本P4216.17.18.19.20.21.22.负数没有算术平方根。

任何非负数的算术平方根只有一个。

23.24.25. 1²=1 2²=4 3²=9 4²=16 5²=25 6²=36 7²=49 8²=64 9²=81 10²=100 11²=121 12²=144 13²=169 14²=196 15²=225 16²=256 17²=289 18²=324 19²=361 20²=400 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 8³=512 9³=72926.27.28.29.30.3132.33.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量叫常量。

34.35.36.37.38.39.40.41.42.4344.45.整式乘除法公式和方法:46.因式分解定义:47.因式分解方法:(1)提公因式法(2)公式法(将平方差公式、完全平方公式逆用)八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。

(完整版)新人教版八年级上册数学各章节知识点总结

(完整版)新人教版八年级上册数学各章节知识点总结

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。

换句话说,全等形就是能够完全重合的图形。

能够完全重合的两个三角形叫做全等三角形。

两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

两个三角形全等用符号“≌”表示。

八年级数学上册数学公式(最新)

八年级数学上册数学公式(最新)

八年级数学上册数学公式一、数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽 S=ab正方形的面积=边长×边长 S=a.a=a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高 S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r=d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr 圆的面积=圆周率×半径×半径三角形的面积=底×高÷2. 公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度.长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积. 公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh圆锥的体积=1/3底面×积高.公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母.分数的除法则:除以一个数等于乘以这个数的倒数.二、单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克=1000克=1公斤=2市斤(5)1公顷=10000平方米 1亩=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时 1时=60分1分=60秒 1时=3600秒三、数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数四、算术方面1.加法交换律:两数相加交换加数的位置,和不变.2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加3.乘法交换律:两数相乘,交换因数的位置,积不变.4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8.方程式:含有未知数的等式叫方程式.9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15.分数除以整数(0除外),等于分数乘以这个整数的倒数.16.真分数:分子比分母小的分数叫做真分数.17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18.带分数:把假分数写成整数和真分数的形式,叫做带分数.19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.20.一个数除以分数,等于这个数乘以分数的倒数.21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.五、特殊问题和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形: (1)如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)工程问题(1)一般公式:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几1÷单位时间能完成的几分之几=工作时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章三角形
1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组
成的图形叫做三角形。

2、三角形两边的和大于第三边;三角形的两边的差小于第三边。

3、判定三条线段能否围成三角形的简易方法:较小两边之和大于第
三边(最大边)。

4、三角形四心:(1)重心:三条中线交点;(2)垂心:三条高的交
点;(3)内心:三个角平分线的交点;(4)外心:三边垂直平分线的交点。

5、三角形内角和定理:三角形三个内角的和等于180º。

6、直角三角形的性质:直角三角形的两个锐角互余。

7、直角三角形的判定定理:有两个角互余的三角形是直角三角形。

8、三角形的一边与另一边延长线组成的角,叫做三角形的外角。

9、三角形的外角等于和它不相邻的两个内角的和。

10、由一些线段首尾顺次相接组成的封闭图形叫做多边形。

11、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多
边形的对角线。

多边形一个顶点对角线为:(n-3)条多边形对角线总条数为:n(n-3)÷2 条
12、正多边形定义:各个角都相等,各条边都相等的多边形叫做正多
边形。

13、多边形内角和公式:n边形内角和等于(n-2)×180º
14、多边形的外角和等于360 º。

第十二章全等三角形
1、全等形:能够完全重合的两个图形叫做全等形。

2、全等三角形:能够完全重合的两个三角形叫做全等三角形。

3、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重
合的边叫做对应边,重合的角叫做对应角。

4、全等三角形的性质:全等三角形的对应边相等,全等三角形的对
应角相等。

5、三角形全等的判定定理:
(1)SSS三边分别相等的两个三角形全等。

(2)SAS两边和它们的夹角分别相等的两个三角形等。

(3)ASA两角和它们的夹边分别相等的两个三角形全等。

(4)AAS两角和其中一个角的对边分别相等的两个三角形全等。

(5)HL斜边和一条直角边分别相等的两个直角三角形全等。

(直角三角形的判定)
6、角的平分线的性质:角的平分线上的点到角的两边的距离相等。

【(1)角相等且两垂直;(2)垂线段相等】
7、角的平分线的判定定理:角的内部到角的两边的距离相等的点在
角的平分线上。

【(1)两垂直且垂线段相等;(2)角相等】
第十三章轴对称
1、一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,
这条直线就是它的对称轴。

(一个图形)
2、一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,
那么就说这两个图形
对称轴,折叠后重合的点是对应点,叫做对称点。

(两个图形)3、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;
把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

4、线段垂直平分线:经过线段中点并且垂直于这条线段的直线,叫
做这条线段的垂直平分线。

5、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是
任何一对对应点所连线段的重直平分线。

(两个图形)
6、轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所
连线段的垂直平分线。

(一个图形)
7、线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两
个端点的距离相等。

8、线段的垂直平分线的判定定理:与一条线段的两个端点距离相等
的点,在这条线段的垂直平分线上。

9、点(x,y)关于x轴对称的点的坐标为(x,-y);
点(x,y)关于y轴对称的点的坐标为(-x,y);
点(x,y)关于原点对称的点的坐标为(-x,-y);
10、等腰三角形的性质:
性质1 等腰三角形的两个底角相等(等边对等角);
性质2等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)
11、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这
两个角所对的边也相等(等角对等边)。

12、等边三角形的性质:等边三角形的三个内角都相等,并且每个角
都等于60°.
13、等边三角形的判定定理:
(1)三个角都相等的三角形是等边三角形;
(2)有一个角是60°的等腰三角形是等边三角形。

14、30°的直角三角形的性质:在直角三角形中,如果一个锐角等于
30°,那么它所对的直角边等于斜边的一半。

15、最短路径问题:
(1)两点的所有连线中,线段最短。

(两点之间,线段最短。

)(2)连接直线外的一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)
第十四章 整式的乘法与因式分解
1、同底数幂的乘法:a m •a n = a m+n (m,n 都是正整数)。

同底数幂相乘,底数不变,指数相加。

2、同底数幂相除除法公式:a m ÷a n = a m-n (a ≠0,m,n 都是正整数,并且m >n )。

同底数幂相乘,底数不变,指数相减。

3、幂的乘方:(a m )n = a mn (m,n 都是正整数)。

幂的乘方,底数不变,指数相乘。

4、积的乘方:(ab)n = a n b n (n 是正整数)。

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

5、a 0 =1 (a ≠0)
任何不等于0的数的0次幂都等于1。

6、分式乘方法则:⎪⎭
⎫ ⎝⎛b a n = b a 7、整式的乘法
单项式与单项式相乘:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

n n
(a+b)(p+q)=ap+aq+bp+bq
8、整式的除法
单项式除以单项式:单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

9、乘法公式:
(1)平方差公式:(a+b)(a-b) = a2-b2
两个数的和与这两个数的差的积,等于这两个数的平方差。

(2) 完全平方公式:(a+b)2 = a2+2a b+b2
(a-b)2 = a2-2a b+b2
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

(3)(x+p)(x+q)=x2+(p+q)x+pq
10、添括号法则:添括号时,如果括号前面是正号,括到括号的各项都
不变符号;如果括号前面是负号,括到括号里的各项都改变符号. 11、因式分解:把一个多项式化成了几个整式的积的形式,叫做这个
多项式的因式分解,也叫做把这个多项式分解因式。

12、因式分解的方法:
(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形
式,这种分解因式的方法叫做提公因式法。

(2)公式法:
平方差公式:a 2-b 2=(a +b )(a -b)
两个数的平方差,等于这两个数的和与这两个数的差的积。

完全平方公式:a 2+2a b + b 2 =(a +b )2
a 2-2a
b + b 2 =(a -b )2
两个数的平方和加上(或减去)这两个数的积的2倍。

等于这
两个数的和(或差)的平方,
十字相乘法公式:x 2+(p+q )x+pq=(x+p )(x+q )
第十五章 分式
1、分式的基本性质:分式的分子与分母乘(或除以)一个不等于0的整式,分式的值不变。

C B C A B A ••= C
B C A B A ÷÷= (C ≠0) 2、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

3、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

4、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

5、分式乘方法则:⎪⎭
⎫ ⎝⎛b a n = b a 分式乘方要把分子、分母分别乘方。

6、分式的加减法法则:
(1)同分母分式相加减,分母不变,把分子相加减;
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。

7、a -n =
a 1 8、除以一个数等于乘以这个数的倒数。

除以一个数等于乘以这个数的指数的相反数。

9、将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

10、解分式方程的步骤:(1)方程两边乘以最简公分母(去分母)(2)解得(3)检验 当 时,最简公分母≠0(或最简公分母=0) n n n。

相关文档
最新文档