电磁学知识点总结

合集下载

初三物理电磁学知识点归纳总结

初三物理电磁学知识点归纳总结

初三物理电磁学知识点归纳总结电磁学是物理学的一个重要分支,主要研究电荷的行为和电场、磁场之间的相互作用关系。

在初中物理学习中,电磁学也是一个重要的内容。

下面将对初三物理电磁学的知识点进行归纳总结。

一、电荷和电场1. 电荷的基本性质电荷是构成物质的基本粒子之一,具有正电荷和负电荷两种性质。

同性电荷相互排斥,异性电荷相互吸引。

2. 电场的概念电荷周围存在电场,电场是描述电荷之间相互作用的物理量。

电场的方向由正电荷指向负电荷,电场强度的大小与电荷的大小和距离有关。

3. 电场的描述和计算电场强度E的计算公式为E=K(Q/r^2),其中K是一个常数,Q为电荷的大小,r为距离电荷的距离。

二、静电场1. 静电的产生和消失静电的产生是因为物体上带有过多或过少的电荷,静电的消失可通过接地或放电来实现。

2. 静电场中的能量转化静电场中的能量主要有电势能和电场能,电场能是指电荷在电场中具有的能量,电势能是指电荷在电场中由于位置变化而具有的能量。

三、电流和电路1. 电流的概念电流是指单位时间内通过导体横截面的电荷数量,用I表示,单位是安培(A)。

2. 电路的基本组成电路由电源、导线和电器三部分组成。

电源提供电流,导线传输电流,电器利用电流工作。

3. 电阻的概念和特性电阻是指导体抵抗电流流动的能力,用R表示,单位是欧姆(Ω)。

电阻越大,导体对电流的阻碍越大。

4. 串联和并联电路串联电路是指电流依次通过多个电器,电流相等,总电压等于各个电器电压之和。

并联电路是指电流分别通过各个电器,电流之和等于各个电器电流之和,总电压等于各个电器电压。

四、磁场和磁力1. 磁场的概念和性质磁场是指磁铁或电流通过导线所产生的作用区域。

磁场具有方向和磁场线,磁场线由南极指向北极。

2. 电流产生的磁场根据安培定律,通过导线的电流会在周围形成一个磁场。

3. 磁场对电流和磁铁的作用磁场可以对通过导线的电流产生力,称之为安培力。

磁场还可以对磁铁产生力,使磁铁具有磁力。

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析一、电磁学知识点总结1. 静电场- 库仑定律:描述静电力的大小和方向关系。

F = k * |q1 * q2| / r^2- 电场强度:在电场中某点受到的电场力的大小和方向。

E =F / q2. 电场中的电势- 电势能:带电粒子在电场力作用下所具有的能量。

U = q * V- 电势:单位正电荷在电场中所具有的电势能。

V = U / q3. 磁场- 安培环路定理:描述磁场的大小和方向关系。

B = μ * I / (2πd)- 磁感应强度:在磁场中单位定向导线上某点受到的磁场力的大小和方向。

F = B * I * l4. 电磁感应- 法拉第电磁感应定律:描述变化磁场中的感应电动势大小和方向关系。

ε = -Δφ / Δt- 感应电动势:导体中由于磁场变化而产生的电动势。

ε = B * l * v * sinθ5. 交流电- 交流电的特点:频率恒定,电流方向和大小随时间变化。

- 有效值和最大值的关系:I(有效值) = I(最大值) / √2二、题型分析1. 选择题- 静电场题型:根据静电场力的基本公式进行计算。

- 电场与电势题型:根据电场强度和电势能公式进行计算。

- 磁场与电磁感应题型:根据安培环路定理和法拉第电磁感应定律进行计算。

2. 计算题- 计算电势能:给定电荷和电场强度,计算电势能。

- 计算电场强度:给定电荷和距离,计算电场强度。

- 计算磁场强度:给定电流和距离,计算磁场强度。

- 计算感应电动势:给定磁感应强度、导线长度、速度和角度,计算感应电动势。

3. 分析题- 静电场分析:分析电场强度、电势和电势能的变化规律。

- 磁场分析:分析磁场强度和磁感应强度的变化规律。

- 电磁感应分析:分析感应电动势的大小和方向变化规律。

三、总结与展望本文对2024高考物理电磁学的知识点进行了总结,并针对不同类型的题目进行了分析。

希望通过此文章的阅读与学习,能够对物理电磁学有更加深入的理解,并在高考中取得好成绩。

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。

公式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$ 。

2、电场强度用来描述电场强弱和方向的物理量。

定义式为$E =\frac{F}{q}$,单位是$N/C$。

点电荷形成的电场强度公式为$E =k\frac{Q}{r^2}$。

3、电场线为了形象地描述电场而引入的假想曲线。

电场线从正电荷出发,终止于负电荷或无穷远;电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。

4、电势能电荷在电场中具有的势能。

电场力做正功,电势能减小;电场力做负功,电势能增加。

5、电势描述电场能的性质的物理量。

某点的电势等于单位正电荷在该点具有的电势能。

定义式为$\varphi =\frac{E_p}{q}$,单位是伏特(V)。

6、等势面电场中电势相等的点构成的面。

等势面与电场线垂直。

7、匀强电场电场强度大小和方向都相同的电场。

其电场线是平行且等间距的直线。

二、电路1、电流电荷的定向移动形成电流。

定义式为$I =\frac{Q}{t}$,单位是安培(A)。

2、电阻导体对电流的阻碍作用。

定义式为$R =\frac{U}{I}$,单位是欧姆(Ω)。

电阻定律为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体长度,$S$是导体横截面积。

3、欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

公式为$I =\frac{U}{R}$。

4、电功电流做功的过程就是电能转化为其他形式能的过程。

公式为$W =UIt$ 。

5、电功率单位时间内电流所做的功。

公式为$P = UI$ 。

6、焦耳定律电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全电磁学是物理学中重要的分支之一,它研究电荷和磁荷之间相互作用的规律,涉及到许多重要的概念和定律。

下面是对高二物理电磁学知识点的总结,希望能够对同学们的学习有所帮助。

一、静电场1. 电荷和电场电荷:原子中的负电子和正电子之间存在着相互作用力,当电子和质子数目相等时,物质是电中性的,否则就带有电荷。

电荷有正负之分,同性相斥,异性相吸。

电场:电荷周围存在着电场,电场是指电荷感受到的力的作用范围。

2. 电场强度电场强度E是指单位正电荷所受到的电场力F与正电荷之间的比率,用公式E=F/q表示,单位是N/C。

3. 受力与受力分析带电粒子在电场中受到电场力的影响,当电荷体系中存在多个电荷时,合力等于各个电荷的叠加。

二、恒定磁场1. 磁场与磁感线磁场:指物体周围存在的磁力作用范围。

磁场包括磁场强度B 和磁感应强度。

磁感线:是描述磁场的一种图示方法,磁感线的方向是磁力线的方向,磁感线的密度表示磁场的强弱。

2. 洛伦兹力当一个带电粒子以速度v进入磁场时,将受到垂直于速度和磁感应强度方向的洛伦兹力F。

洛伦兹力公式为F=qvBsinθ,其中q是电荷量,v是粒子速度,B是磁感应强度,θ是v和B夹角。

3. 荷质比的测定荷质比是指带电粒子的电荷量和质量之比,可以通过在磁场中测定带电粒子的运动轨迹来进行测定。

三、电磁感应和电动势1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律,它表明当一个导体中的磁通量发生变化时,该导体两端会产生感应电动势。

法拉第电磁感应定律的数学表示为ε=-dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。

2. 楞次定律和自感现象楞次定律:当电路中的电流发生变化时,由于电路的自感作用,电路中会产生感应电动势,其方向与变化前的电流方向相反。

自感现象:由于导线本身存在自感作用,当电流发生变化时,导线两端会产生感应电动势,导致电路中电流的改变。

3. 电磁感应定律的应用电磁感应定律的应用包括发电机、变压器等重要的实际应用,它们都是基于电磁感应现象的原理。

电磁学知识点总结.

电磁学知识点总结.

磁现象知识点1 简单的磁现象1.磁体任何磁体都具有两个磁极(N、S极).磁极间的相互作用规律是:同名磁极互相排斥,异名磁极互相吸引.(1)磁体具有吸铁性(能吸引铁、钴、镍等物质)和指向性(受地磁的影响).(2)磁体上磁极的磁性最强.2.磁场磁体周围空间存在着磁场,磁场具有方向性.磁场基本性质:对放入其中的磁体具有磁力的作用.(1)磁场看不见,摸不着,但它是客观存在的,可以通过一些现象来认识.例如:将一磁铁靠近一静止的小磁针,小磁针就会发生偏转,拿开磁铁,小磁针静止后又恢复原来的指向.(2)磁场的方向可由小磁针静止时的指向来表现:在磁场中的某一点,小磁针静止时N极的指向就是该点的磁场方向.3.磁感线是为形象描述磁场而画出的一些有方向的假想的曲线,磁感线上的任何一点的曲线方向都跟放在该点的小磁针N极所指的方向一致.磁体周围的磁感线都是从磁体的N极出来,回到S极;磁体内部的磁感线由磁体S极指向N极;磁感线是一些闭合的曲线,任何两条磁感线不能相交;磁感线在磁体周围空间是立体分布的,越密集的地方表示磁性越强.4.地磁场地球本身是一个巨大的磁体.在地球周围的空间里存在着磁场,这个磁场叫做地磁场.地球两极跟地磁两极并不重合.地磁的北极在地球南极附近,地磁的南极在地球的北极附近.水平放置的磁针的指向跟地球子午线间的交角叫做磁偏角.世界上第一个清楚而又准确地论述磁偏角的是我国宋代的科学家沈括.【例1】将挂着铁球的弹簧测力计在水平放置的条形磁铁上自左向右逐渐移动时,弹簧测力计的示数将.【例2】弹簧秤下悬挂一条形磁铁.使弹簧沿着水平放置的大条形磁铁从左端极开始,向右端极处逐渐移动时,弹簧秤示数将()A.逐渐增大 B.逐渐减小C.先减小后增大 D.先增大后减小【例1】如图所示,小磁针处于静止状态,请在图中甲、乙处标出磁极极性(用"或S表示)并画出磁感线(每个磁极画两条)【例1】重为10N,边长为5cm的正方形磁铁吸附在铁板上,磁铁与铁板间的吸引力为15N,把它按图a放置,磁铁对铁板的压强是 Pa;按照图b那样放置,磁铁(在上)对铁板的压强是 Pa;按图c那样放置,磁铁(在下)对铁板的压强是 Pa.。

高中电磁学知识点总结

高中电磁学知识点总结

高中电磁学知识点总结一、库仑定律库仑定律是电磁学的基础之一,描述了两个带电粒子之间的电力相互作用。

它可以用数学公式表示为:F = k*q1*q2/r^2,其中F表示电荷之间的库仑力,k为库仑常数,q1和q2分别为两个带电粒子的电荷量,r为它们之间的距离。

根据库仑定律,同种电荷相互作用会产生排斥力,异种电荷相互作用会产生吸引力。

这个定律对于理解静电力和静电场的建立具有重要意义。

二、电场和电势电场是描述电荷周围空间中发生的相互作用的场。

它可以通过电场线来表示,电场线的方向表示电场的方向,线的密度表示电场的强弱。

电荷周围的空间可以被看作是填满了电场,其他带电粒子在其中就会受到电场力的作用。

而电势是描述电场中的一点带电粒子所具有的能量,它可以用电势能的形式来表示。

电势能U和电荷q之间的关系可以表示为U=qV,其中V为电势。

在电场中,电荷在电势能较高的地方会向电势较低的地方移动,这就产生了电场力。

电场力完成了电磁学的整个过程,从静电学开始,通过电场力的描述和作用完成了电磁学的闭环。

三、高斯定律高斯定律是电场分析中的一种常用方法,它可以用来计算闭合曲面内的电荷量或者电场强度。

高斯定律可以用数学公式表示为:Φ = E*A*cosθ = q/ε0,其中Φ为闭合曲面内的电场通量,E为电场强度,A为曲面面积,θ为E与A的夹角,q为闭合曲面内的电荷量,ε0为真空介电常数。

高斯定律在计算电场分布和电荷分布时具有重要作用。

四、电势差和电势能电势差是描述带电粒子在电场中移动时所具有的能量变化,它可以用电势能的变化来表示。

电势差ΔV的计算公式为ΔV = -Ed,其中E为电场强度,d为移动的距离。

电势能U和电势之间的关系可表示为U = qV,其中U为电势能,q为带电粒子的电荷,V为电势。

随着带电粒子在电场中的运动,它的电势能会相应地发生变化,从而产生电势差,这对于理解电场中电荷的运动具有重要意义。

五、电容电容是描述导体或器件在给定电势差下所具有的储存电荷能力。

高中物理电磁学知识点整理

高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。

在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。

下面将对高中物理电磁学知识点进行整理和归纳。

一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。

2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。

3. 超导体:电荷自由运动的材料,内部电场强度为零。

4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。

二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。

2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。

3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。

4. 电场线:用以表示电场强度方向的曲线。

5. 等势面:垂直于电场线的曲面,上面点的电势相同。

三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。

2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。

3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。

4. 电势差的计算:电势差等于电场力沿路径做功的量。

四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。

2. 电流的方向:正电荷流动的方向。

3. 电阻的影响:电阻导致电流受阻,产生热量。

4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。

五、电路中的基本元件1. 电动势:电源供电的原动力。

2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。

3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。

4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。

综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结电磁学是物理学中的重要分支,研究电和磁之间的相互关系和规律。

下面将对高中物理电磁学的知识点进行总结,帮助大家理解和掌握相关概念和原理。

一、电场与电势能1. 电荷:基本电荷、电荷守恒定律。

2. 高斯定律:用于计算闭合曲面内的电场强度。

3. 电场强度:表示单位正电荷所受到的力。

4. 电势能:由静电场中的电荷所具有的能量。

二、电场中的理想导体和电势1. 理想导体:电场内部为零,仅存在导体表面。

2. Faraday 笼和屏蔽作用:理想导体外的保护。

3. 等势面与电势差:沿等势面电势不变。

三、电流和电路1. 电流:单位时间内通过导体横截面的电荷量。

2. 电阻和电阻率:电流与电压的关系。

3. 欧姆定律:电流与电压成正比。

4. 瞬态电流:电路中的开关导致电流变化。

5. 串联和并联电路:电阻的连接方式影响电流和电压。

四、磁场与磁场力1. 磁感应强度:表示单位正电荷运动所受到的磁场力。

2. 磁场线和磁感线:描述磁场的线条和方向。

3. 磁通量和磁感应强度:磁场穿过一个平面的总磁力线数。

4. 洛伦兹力:带电粒子在磁场中受到的力。

五、电磁感应和法拉第电磁感应定律1. 感应电动势:磁感线剪切导体产生的感应电动势。

2. 法拉第电磁感应定律:感应电动势正比于磁场变化率。

3. 感应电流:磁场变化导致电流的产生。

六、电磁感应和自感1. 自感和互感:电流的变化导致自感和互感现象。

2. 自感系数和互感系数:衡量自感和互感强度的物理量。

3. 变压器原理:基于互感现象的电气设备。

七、电磁波和电磁谱1. 电磁波的特性:由变化的电场和磁场组成的波动。

2. 电磁波的传播:在空气和真空中以光速传播。

3. 电磁谱:根据频率和波长将电磁波划分为不同范围。

八、电磁感应和交流电1. 交流电和直流电:电流方向变化导致的不同电流类型。

2. 交流电的频率和相位:描述交流电波的特性。

3. 交流电的电压和电流关系:交流电中的电压和电流之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、磁场 考点1、 磁场的基本概念
1. 磁体的周围存在磁场。

2. 电流的周围也存在磁场
3. 变化的电场在周围空间产生磁场(麦克斯韦)。

4. 磁场与电场一样,也就是一种特殊物质
5. 磁场不仅对磁极产生力的作用, 对电流也产生力的作用.
6. 磁场的方向——在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就就是那一点的磁场方向.
7. 磁现象的电本质:磁铁的磁场与电流的磁场一样,都就是由电荷的运动产生的. 考点2、 磁场的基本性质
磁场对放入其中的磁极或电流有磁场力的作用.(对磁极一定有力的作用;对电流只就是可能有力的作用,当电流与磁感线平行时不受磁场力作用)。

1. 磁极与磁极之间有磁场力的作用
2. 两条平行直导线,当通以相同方向的电流时,它们相互吸引,当通以相反方向的电流时,它们相互排斥
3. 电流与电流之间,就像磁极与磁极之间一样,也会通过磁场发生相互作用.
4. 磁体或电流在其周围空间里产生磁场,而磁场对处在它里面的磁极或电流有磁场力的作用.
5. 磁极与磁极之间、磁极与电流之间、电流与电流之间都就是通过磁场来传递的 考点3。

磁感应强度(矢量)
1、在磁场中垂直于磁场方向的通电导线,所受的安培力F 安跟电流I 与导线长度L 的乘积IL 的比值叫做磁感应强度l I F B 安
=,(B ⊥L,LI 小)
2、磁感应强度的单位:特斯拉,简称特,国际符号就是T m
A N 1T 1⋅= 3、磁感应强度的方向: 就就是磁场的方向. 小磁针静止时北极所指的方向,就就是那一点的磁场方向.磁感线上各点的切线方向就就是这点的磁场的方向.也就就是这点的磁感应强度的方向.
4、磁感应强度的叠加——类似于电场的叠加
考点4、磁感线
1、就是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上.磁感线的分布可以形象地表示出磁场的强弱与方向.
2、磁感线上各点的切线方向就就是这点的磁场的方向、也就就是这点的磁感应强度的方向.
3、磁感线的密疏表示磁场的大小.在同一个磁场的磁感线分布图上,磁感线越密的地方,表示那里的磁感应强度越大.
4、磁感线都就是闭合曲线,磁场中的磁感线不相交.
考点5、电流周围的磁感应线
1.直线电流的磁感应线:直线电流的磁感线方向用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向(即正电荷定向运动方向或与负电荷定向运动方向相反)一致,弯曲的四指所指的方向就就是磁感线的环绕方向.
2.通电螺线管的磁感线:通电螺线管的磁感线方向—也可用安培定则来判定:
用右手握住螺线管.让弯曲的四指所指的方向跟电流的方向一致.大拇指所指的方向就就是螺线管内部磁感线的方向.也就就是说,大拇指指向通电螺线管的北极.(通电螺线管外部的磁感线与条形磁铁外部的磁感线相似)
考点6、磁通量
1.磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量Φ
①S与B垂直:Φ=BS ②S与B平行:Φ=0 ③S与B夹角为θ:Φ=BS⊥=BSsinθ
2. 磁通量的单位:韦伯,符号就是Wb.1Wb=1Tm2
3.磁通量的意义:磁通量表示穿过某一面积的磁感线条数多少。

4、磁通密度: 从Φ=BS可以得出B=Φ/S ,这表示磁感应强度等于穿过单位面积的磁通量,
因此常把磁感应强叫做磁通密度,并且用Wb/m2作单位.1T=1 Wb/m2=1N/A•m
5、磁通量就是标量,但就是有正负、如果将从平面某一侧穿入的磁通量为正, 则从平面反一侧穿入的磁通量为负、
考点7、安培力的大小:
在匀强磁场中,在通电直导线与磁场方向垂直的情况下,电流所受的安培力F安等于磁感应强度B、电流I与导线长度L三者的乘积. F安=BIL 通电导线方向与磁场方向成θ角时,F 安=BILsinθ
1.当I⊥B时(θ=90°),Fmax=BIL;
2.当I∥B时(θ= 0°),Fmin= 0 ;
安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。

②L就是有效长度,不一定就是导线的实际长度。

*弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
考点8、安培力的方向
1.左手定则:
伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就就是通电导线在磁场中所受安培力的方向.
2.安培力方向的特点:
总就是垂直于B与I所决定的平面,即F安⊥B且F安⊥I(但B、L不一定垂直)。

(1)已知B与I的方向,可用左手定则唯一确定F安的方向;
(2)已知B与F安的方向,当导线的位置确定时,可唯一确定I的方向;
(3)已知I与F安的方向,不能唯一确定B的方向;
二、电磁感应
穿过闭合回路的磁通量发生变化,回路中就有感应电流产生、
无论回路就是否闭合,只要穿过回路的磁通量发生变化,线路中就会有感应电动势产生。

感应电动势的大小与磁通量变化的快慢有关。

1. 在电磁感应现象中产生的电动势、产生感应电动势的部分相当于电源、
2. 法拉第电磁感应定律: (1)电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,即
t
N E ∆∆Φ=, N 为线圈匝数 (2)区别磁通量、磁通量的变化、磁通量的变化率、
楞次定律
1.内容:感应电流的磁场总就是要阻碍引起感应电流的磁场的变化、
2.对“阻碍”意义的理解:增反减同,来斥去吸
(1)阻碍原磁场的变化。

“阻碍”不就是阻止,而就是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,如果原磁场不变化,即使它再强,也不会产生感应电流.
(2)阻碍不一定就是减小.当原磁通减小时,感应电流的磁场与原磁场相同,以阻碍其减小;当原磁通增加时,感应电流的磁场与原磁场相反,以阻碍其增加 .
(3)阻碍不一定仅仅指电流产生磁场与原磁场的关系,也可以体现在阻碍导体与磁场的相对运动。

(4)楞次定律就是能量转化与守恒定律在电磁感应中的体现
3、应用楞次定律的步骤
⑴确定引起感应电流的原磁通量的方向
⑵原磁通量就是增加还就是减小
⑶确定感应电流的磁场方向
⑷利用安培定则确定感应电流的方向
4、右手定则:用来直接判断导体切割磁感线产生的感应电流的方向、
常见题型:
电场中移动电荷时的功能关系;
一条直线上三个点电荷的平衡问题;
全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);
通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);
通电导线在匀强磁场中的平衡问题;
闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、能量观点的应用);。

相关文档
最新文档