自动控制理论(邹伯敏)第四章答案
自动控制原理参考答案-第4章

d) 与虚轴交点:
特征方程: s3 + 2s2 + (2 + Kg )s + 3Kg = 0
s3
1
2+ Kg
s2
2
3Kg
s1 2 − 0.5Kg
s0
3Kg
当 Kg = 4 时, 2s2 +12 = 0 ⇒ s = ±2.45 j
e) 出射角: βsc = ±180(1+ 2n) − ∑ β + ∑α
s3
1
7
s2
2
Kg −10
s1 12 − 0.5Kg
s0 Kg −10
当 Kg = 24 时, 2s2 +14 = 0 ⇒ s1,2 = ±2.65 j
劳斯表的 s0 行为正 ⇒ Kg > 10 ,即10 < Kg < 24 根轨迹如下图:
题 4-6:已知负反馈控制系统的开环传递函数为
G(s)H(s)
b) 根轨迹趋向: n − m≥ 2 ,则极点-5,-10 之间的根轨迹向右渐进.
c)
渐近线: ⎧⎪⎨ϕk
=
±180(1 + 2
2n)
=
±90o
⎪⎩−σ k = −6.5
d) 分离点与会合点:令 ∂Kg = 0 ∂s
即: 2s3 + 21s2 + 60s +100 = 0 ⇒ s1 = −7.34 ; s2,3 = −1.5794 ± 2.0776j (舍去) 根轨迹如下图:
(4) 稳态速度误差系数是多少?
(5) 系统指标比该点的二阶指标大还是小?如果要求系统有该点二阶指标
的超调量,能否通过改变阻尼线而获得?是增大阻尼比还是减小它?
国防《自动控制原理》教学资料包 课后习题答案 第四章

第4章课后习题参考答案4-1(a)(b)(c)(d)4-2(1)(2)4-3(1)(2)(j 24.20 ),K=10.14 4-4 (1)(2)(3)4-5(1)0>K (2)2>K 4-6(1)(2) 闭环极点(j 7.597.0±-),K=34.77 4-7 (1)110222-=+++s s s a(2)130202-=+ss a4-8正反馈 负反馈表明K>0对于正反馈系统不稳定,负反馈系统稳定。
4-90.707ξ=,系统开环传递函数为)4(8)(+=s s s G ,系统的单位阶跃响应为)(t h =)452sin(5.012 +--t e t4-10σωj 007.17-93.2-5-10-(1) K=5;(2)不含有衰减振荡分量的K 值范围为86.00<<K 或29>K 。
4-11 系统的开环极点为0和-p ,开环零点为-z 。
由根轨迹的幅角条件, 得π)12()()(+=+∠-∠-+∠q p s s z s 。
将ωσj s +=代入,整理有pz++︒=-+---σωσωσω111tan 180tan tan取上述方程两端的正切,并利用下列关系yx yx y x tan tan 1tan tan )tan( ±=±有p z z +=++-σωωσσω2)(,则zp z z -=++222)(ωσ,这是一个圆的方程,圆心位于(-z ,j 0)处,而半径等于zp z -2(注意,圆心位于开环传递函数的零点上)。
证毕。
4-12(1)分离点-0.465,对应K=0.88;虚轴的交点j 2± (2)88.00<<K ,阶跃响应不出现超调。
4-13(1)(2)70MAX K =4-14负反馈稳定K 值范围为0<K<73.8,正反馈稳定K 值范围为0<K<35,所以确定根轨迹增益K 的范围为0<K<35。
自动控制原理第四章习题解答

4-1 设单位反馈控制系统的开环传递函数 1)(+=∗s K s G试用解析法绘出∗K 从零变到无穷时的闭环根轨迹图,并判断下列点是否在根轨迹上: (-2+j0), (0+j1), (-3+j2) 解:有一个极点:(-1+j0),没有零点。
根轨迹如图中红线所示。
(-2+j0)点在根轨迹上,而(0+j1), (-3+j2)点不在根轨迹上。
4-2 设单位反馈控制系统的开环传递函数 )12()13()(++=s s s K s G 试用解析法绘出开环增益K 从零增加到无穷时的闭环根轨迹图。
解:系统开环传递函数为)2/1()3/1()2/1()3/1(2/3)(++=++=s s s K s s s K s g G 有两个极点:(0+j0),(-1/2+j0),有一个零点(-1/3,j0)。
根轨迹如图中红线所示。
4-3 已知开环零、极点分布如图4-28所示,试概略绘出相应的闭环根轨迹图。
图4-28 开环零、极点分布图4-4 设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d): (1) )15.0)(12.0()(++=s s s Ks G解:系统开环传递函数为)2)(5()2)(5(10)(++=++=s s s K s s s Ks g G 有三个极点:(0+j0),(-2+j0),(-5+j0)没有零点。
分离点坐标计算如下:051211=++++d d d 3解方程的010142=++d d 7863.31−=d ,d 88.02−=取分离点为88.0−=d根轨迹如图中红线所示。
(2) )12()1()(++=s s s K s G解:系统开环传递函数为)5.0()1()5.0()1(2/)(++=++=s s s K s s s K s g G有两个极点:(0+j0),(-0.5+j0),有一个零点(-1+j0)。
分离点坐标计算如下:115.011+=++d d d 解方程的05.022=++d d 7.11−=d ,d 29.02−=取分离点为7.11−=d ,29.02−=d 根轨迹如图中红线所示。
自动控制理论基础答案

C
G1G3 G1G2 G3 H 1 G1G2 C R ( s) R( s ) 1 G2 H 1 G1G3 G1G2 G3 H 1 G1G2
2)令R(s)=0, 求出CN(s)
R+ +
G1 (s)
G4 (s)
N
G 2(s) H 1(s) G3(s)
+
+
+ +
C
U r (s)
R2
u c u o -
-
图E2.3 题2-3 RLC电路
+
R1 ur
u u co
C
L
+
IR1
IC
IL
R2 uo c u -
-
Ur -
1 R1
IR1
-
IC
1 C1 s
UC
-
1 R Ls IL 2
Uo
U o ( s) R2 G( s) U r ( s) ( R1Cs 1)(Ls R2 ) R1
C(s)
G4 (G1G3 G1G2 G3 H 1 G1G2 ) 1 G2 H 1
N(s)
+ + G1G3 G1G2 G3 H 1 G1G2 1 G2 H 1
C(s)
G4 (G1G3 G1G2 G3 H 1 G1G2 ) 1 G2 H 1
C (s) 1 G2 H1 G4 (G1G3 G1G2 G3 H1 G1G2 ) 则 N ( s) 1 G2 H1 G1G3 G1G2 G3 H1 G1G2 1 G2 H 1 G4 (G1G3 G1G2 G3 H 1 G1G2 ) C N ( s) N ( s) 1 G2 H 1 G1G3 G1G2 G3 H 1 G1G2
《自动控制理论(第版)》邹伯敏课件第4章

i1
n
n
s n pl s n1
pl
l 1
l 1
3、用分子除以分母得
GsH s
K0
s nm
n l 1
pl
m i 1
zi s nm1
2020/5/4
第四章 根轨迹法
14
自动控制理论
当s 时,
令某系统的开环传递函数为W s
s
K0
A
nm
K0
snm
n
m
s nm1
A
1 W s 0,有n m条根轨迹分支,它们是由实轴上s σA点出发的射线,
图4-4 一阶系统
2020/5/4
图4-5 图4-4系统的等增益轨迹和根轨迹
第四章 根轨迹法
6
自动控制理论
结论:
根轨迹就是s 平面上满足相角条件点的集合。由于相角条件是绘制根轨迹 的基础,因而绘制根轨迹的一般步骤是:
➢找出s 平面上满足相角条件的点,并把它们连成曲线 ➢根据实际需要,用幅值条件确定相关点对应的K值
例4-4
已知GsH s
ss
K0
4s 2
4s
20
求根的分离点
图4-12 例4-4的根轨迹
解:1)有4条根轨迹分支,它们的始点分别为0,-4,-2±j4
2) 渐近线与正实轴的夹角
2k 1 , 3 , 5 , 7 , k 0,1,2,3
4
44 4 4
渐近线与实轴的交点为
2020/5/4
-A
422 4 第四章
规则2:根轨迹的分支数及其起点和终点
闭环特征方程:
n
m
s pl K 0 s zi 0
l 1
自动控制原理 4-5章习题与解答习题课后校对稿

可知: K 增大时, % , t p 。
4
4-9 设电子心率起搏器系统如图 4-41 所示,其中模仿心脏的传递函数相当于一个纯积 分器。要求:
(1)若 0.5 对应于最佳响应情况,问该情况下起搏器的增益 K 应为多大?
(2)若期望心速为 60 次/min,并突然接通起搏器,问 1 s 后实际心速为多少?瞬时最大 心率为多大?
10(s 2) , s2 (s 20)
以及 R(s) 1 s
2 s2
则 T (s) Y (s) 10 。 R(s) s 20
4-5 某控制系统结构图如图 4-38 所示,其中 K1 5 , T1 0.5 。 (1)求系统的单位阶跃响应; (2)计算系统的性能指标 tr , t p , ts ( 5% ), % ;
T1 5T1
(1)该系统的单位阶跃响应为
y(t) 2.51
e nt 1 2
sin(d t
)
2.51
23 3
e nt
sin(
3t
)
3
2.51
1.1547e t
sin(1.7321t
3
)
(2)系统的性能指标为:
解之得: K 25 , n 25
(2)闭环传递函数写为: T (s)
s2
625 25s 625
,闭环极点 s1,2
12.5
j12.5
3。
方法一:系统的阶跃响应为
y(t) 1
1 1
2
e nt
sin( n
自动控制原理课后答案第4章

i
sz
j 1
j
1
相角条件
m j j 1 n i i 1
(s z ) (s p ) (2k 1) ,
4、根轨迹绘制的基本规则 绘制根轨迹的 9 条基本规则归纳如下:
表 4-1 绘制根轨迹的基本规则
序号 1 2 3 名 称
k 0, 1, 2,
规 根轨迹具有连续性,且关于实轴对称 根轨迹的分支数与开环极点数 n 相等
i 1 j 1 j g
根轨迹与虚轴交点的坐标和临界开环根轨迹增益 K*,可由下列方法之一确定: 8 根轨迹与虚轴的交点 ① 利用劳斯判据计算 ② 用 s=jω 代入闭环特征方程式求解 根之和: sl pi (n-m≥2)
l 1 i 1 n n
9
根之和与根之积
根之积: ( 1)
n n m
( 1) n sl ( 1)n pi (1) m K z j
l 1 i 1 j 1
若系统无开环零点,则上式可简化为如下形式:
n n
( 1) n sl ( 1)n pi K
l 1 i 1
利用这一关系,可用来求解已知闭环特征根所对应的 K*值。 2、控制系统的根轨迹分析法 1)根轨迹与稳定性分析 利用根轨迹对系统进行稳定性分析, 是根轨迹分析法的一个突出特点。 对于稳定的系统 来说,其闭环特征根必然全部位于[s] 左半平面,而且其离虚轴距离越远,相对稳定性就越 好。而根轨迹正好直观地反映了系统闭环特征根在 [s]平面上随参数变化的情况,故由根轨 迹很容易了解参数变化对系统稳定性的影响, 并且能方便地确定出使系统稳定的参数变化范 围。 2)根轨迹与动态性能分析 高阶系统的动态性能基本是由接近虚轴的闭环极点确定的。因此,把那些既靠近虚轴, 又不十分接近闭环零点的闭环极点称为主导极点。 主导极点对系统性能的影响最大, 而那些 比主导极点的实部大 5 倍以上的其它闭环零、极点,其对系统的影响均可忽略。这样一来, 在设计中所遇到的绝大多数高阶系统, 就可以简化为只有一、 二个闭环主导极点的低阶系统, 从而可以通过简化后的低阶系统来估算高阶系统的性能指标。 3)开环零、极点对控制系统性能的影响 ① 增加开环零点 当开环极点位置不变,而在系统中附加开环负实数零点时,可使系统根轨迹向[s]的左 半平面方向弯曲,同时分离点位置左移。或者说,附加开环负实数零点后,可使系统根轨迹 发生趋向于附加零点方向的变形,而且这种影响将随开环零点接近坐标原点的程度而加强。 如果附加零点不是负实数零点, 而是具有负实部的共轭复数零点, 那么它们的作用与负实数 零点的作用完全相同。因此,在[s]的左半平面内的适当位置上附加开环零点,可以显著提 高系统的稳定性。除此之外,还可对系统的动态性能有明显改善。然而,附加开环零点位置
自动控制原理第四章

σ
-0.5 0
k' WK ( s ) = s ( s + 2)( s + 4)
jω
σ
-4 -2 0
0−2−4 = −2 σ= 3 2k + 1 π 5π θ= π = ,π , 3 3 3
k' WK ( s ) = s ( s + 1)( s + 2)( s + 5)
jω
-5 -2 -1 0
σ = −2 π θ =±
kN ( s ) Wk ( s ) = D(s)
F ( s ) = D( s ) + kN ( s )
k =0 k →∞
F ( s) = D( s) F (s) = N (s)
n > m时,有(n-m) 条分支趋于无穷。 条分支趋于无穷。 时
根轨迹的渐近线:共有( 3、根轨迹的渐近线:共有(n-m)条渐近线 与实轴交点 与实轴夹角
Wk ( s ) = 1 ∠Wk ( s ) = (2k + 1)π
幅值条件 相角条件
Wk (s) =
k ∏ (Ti s + 1) s N ∏ (τ j s + 1)
j =1 i =1 r
m
时间常数表达式
N+ r = n > m
零极点表达式 K’为根轨迹增益 为根轨迹增益
=
k ' ∏ ( s + zi ) s N ∏ (s + p j )
dk' = −3s 2 − 12 s − 8 = 0 ds
k' = − s 3 − 6 s 2 − 8 sσ来自-4-20
s1,2
2 3 2 3 = −2 ± 舍去 − 2 − 3 3 k' = 3.08
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S ]
2, s
2
4 2j ,因此,有 3条根轨迹趋于无穷远,其渐近线倾角为
F 面确定根轨迹的分离点和汇合点
D(s) s(0.05s 2 0.4s 1) K 0
10 3
题 4-1
j A
(b) (c)
题4-2 解: 由开环传
递函数容易得到
3,m 0
个极点分别为
(2k 1) 3
5 3
,渐近线与实轴交点为
n
m
(P l )
( Z i )
11
i 1 ________
A
n m
Pl 0, P 2
4 2j, P 3
dK。
0.15s 2 0.8s 1 0
计算根轨迹的出射角与入射角
8 0
$ 2齐2年(舍去)
8 0
$ 2
齐 2年(舍去)
P3 p2
63.4°
确定根轨迹与虚轴的交点
由开环传递函数容易得到
n 3,m 0 ,三个极点分别为 p, 0, P 2 2, P 3 4 ,因
令s j ,特征方程D(s) 0.4 2 K 0 0 0.05 3
0.05 2 0.4j 1) K 。
2.5 8
K o
K。
0或
题4-5 解:
此,有3条根轨迹趋于无穷远, 其渐近线倾角为 (2k 1)
3
3,詈,渐近线与实轴
n m (P l )
交占为 d---------------------- 」 n m (Z i ) 2。
F 面确定根轨迹的分离点和汇合点 D(s) s(s 2)(s 4)
坐
3s 2 12s
ds K 。
0 确定根轨迹与虚轴的交点
p2
( arcta n 63.4°
题4-6
令s j ,特征方程D(s) j (j
2)( j 4) K o
3.1 P ci 要产生阻尼振荡,需要
0且
0。
当s.
2、孑3 2
时,K 0 =3.08,所以,当
3
K o 48时,系统呈阻尼振荡。
当K o
48时,系统产生持续等幅振荡,振荡频率为
2,2
=0.5 arccos 0.5
过 s 平面原点,与实轴负方向夹角为 60作射线,与根轨迹 60°
交占 八、、 即为主导 极点 。
由图知,主 导极点为 0.7 ji.2 。
又 P c2 P c3 P i P 2 P 3 6
P c3 4.6 所以仲% K o
2)*( 7.176
4.6 4) K 0 解:
(1)由开环传递函数容易得到n 3,m 1 ,
三个极点 和一个零点分别为
系统的闭环传递函数
s 3 s 2
2.5s Ts 2 Ts
1 T(s 1) s 2
s
2.5
,等效开环传递函数为
P i 0, P 2 1,P 3 3,^ 2,因此,有 2条根轨迹趋于无穷远,其渐近线倾角为
F 面确定根轨迹的分离点和汇合点
D(s) s(s 1)(s 3) K 0(s 2) 0 (s 1)(s 2)2 1 s 0.55
(2)
=0.5
arCC0S 0.5
过s 平面原点,与实轴负方向夹角为
60°
交点即为主导极点。
由图知,主导极点为 0.7 j1.1。
又Pc1
Pc2
Pc3
P c3
2.6
2.6*( 2.6 1)*( 2.6 3) K 0( 2.6 2)
所以
K 0 2.77
题4-9 解:
(2k 1)
2
3
2 ,_
2
,渐近线与实轴交点为 n
m
(P l )
( Z i )
l 1
i 1
A
n m
60o 作射线,与根轨迹的
口 P 2 P 3
米
-3
(2k 1)
1
F面确定根轨迹的分离点和汇合点
2
D(s) s s 2.5 T(s 1) 0
计算根轨迹的出射角与入射角
解:
由开环传递函数容易得到n 3,m 0 ,三个极点分别为p p2 p32,因此,有3条G(s)
T(s 1)
s2s 2.5
由等效开环传递函数容易得到n 2,m 1 ,两个极点和
P i
1 j3
2
P2
1 j3
1,因此,有1条根轨迹趋于无穷远,
「个零点分别为
其渐近线倾角为
dK o
ds
2
s 2s 1.5 0
s1
4 10
1 V,52
1乎舍去)
P2
arctan3 -
2
2161.6°
161.6°
P3
题4-12
arccos 0.5 过s 平面原点,与实轴负方向夹角为
60o
根轨迹趋于无穷远,其渐近线倾角为 (2k 1)
3
,,5 ,渐近线与实轴交点为 3 3
n (P l ) l 1
A m (z) i 1 n m F 面确定根轨迹的分离点和汇合点 D(s) (s
ds s 1 £ 2)3 K o 0
3(s 2)2
确定根轨迹与虚轴的交点 令s j ,特征方程D(s) 6 2 K 0 8 0
3
12 0 (j
2)3 0
(舍去)
K o
或
K。
23 64
K o
(1)令 s
2 “
3 K o 64
=0.5
60o 作射线,与根轨迹的交
3
n
P c1 P c2 P c3 P 1 P 2 P 3 6
P c3
4
(3)系统的闭环传递函数可以近似为
C(s) 8
8
~2
R(s) (s P ci )(s
P c2)
s 2s 4
0.5
M p e i 100%
16.3%
5% t s
2% t s
K p limG(s)H(s)
3
\7 2
8
s
叫
s
t p -
d
点即为主导极点。
由图知,主导极点为
3s 4s。