高温高压合成

合集下载

尿素合成方式

尿素合成方式

尿素合成方式
尿素合成方式:
方法一:用二氧化碳和氨在高温,高压下合成氨基甲酸铵,经分解,吸收转化后,结晶,分离,干燥而成。

方法二:其制备方法是将经过净化的氨与二氧化碳按摩尔比2、8到4、5混合进入合成塔,塔内压力为13、8到24、6 帕,温度为180到200摄氏度,反应物料停留时间为25至40分钟,得到含过剩氨和氨基甲酸铵的尿素溶液,经减压降温,将分离出氨和氨基甲酸铵后的脲液蒸发到百分之99、5以上,然后在造粒塔造粒得到尿素成品。

方法三:尿素中哺乳动物体内蛋白质代谢的最终产物。

1922年,在德国实现了用氨和二氧化碳合成尿素的工业化生产。

氨与二氧化碳反应生成氨基甲酸胺,再脱水生成尿素。

合成尿素是利用氨和二氧化碳为原料,在高压、高温下进行合成尿素的过程。

尿素是由液氨和气体二氧化碳在高温高压条件下反应生成的。

这两个原料来自一个前工序,那就是合成氨工序,合成氨工艺的两大产品就是液氨跟二氧化碳气体。

天然气经过洗涤除尘,它的主要成为是甲烷,经过铁系催化剂进行脱硫后采用蒸汽转化,将CH4转化成CO和CO2,生产尿素的原料CO2就有了,蒸汽转化反应之后经过变换,就有了CO、CO2、H2这三类气体,而CO、H2都是可以燃烧的,继续返回前系统循环使用,最后剩余的H2与来自空气中的氮气在高温高压的条
件下反应生成氨,气氨经冷却后形成液氨被送至尿素工序,与CO2反应生成尿素。

高温高压合成技术在材料制备中的应用

高温高压合成技术在材料制备中的应用

高温高压合成技术在材料制备中的应用高温高压合成技术是一种基于物质在高温高压条件下经历相变反应的方法,广泛应用于材料科学和工程中。

它具有独特的优势,能够实现材料的高密度、高纯度和高度晶化等特性,因此在材料制备领域有着重要的应用价值。

材料制备是材料科学和工程的基础,通过高温高压合成技术可以实现一系列材料的制备和改性。

首先,高温高压合成技术可以用于制备高温材料。

例如,在超高温下使用高温高压合成技术可以制备出适用于航空航天等领域的新型陶瓷材料,这些材料具有耐高温、耐氧化、耐腐蚀等特性,能够满足极端环境下的工程需求。

其次,高温高压合成技术可以用于制备高压下稳定的材料。

在地壳深处的高压环境下,普通材料会发生结构相变,而高温高压合成技术可以模拟这种高压环境,制备出高压下稳定的材料。

这些材料具有独特的电子结构和物理性质,具有广泛的应用前景,例如高压下稳定的超导材料可以应用于能源传输和储存。

此外,高温高压合成技术还可以用于制备纳米材料。

由于高温高压环境下原子间距离减小,反应速率加快,可以有效地控制晶体的尺寸和形态,制备出纳米级材料。

纳米材料具有较大的比表面积、较短的扩散路径和独特的量子效应,表现出与宏观材料截然不同的性能,例如纳米材料的高强度、高韧性和强化效应,在材料科学和工程领域具有广泛的应用前景。

此外,高温高压合成技术还可以用于材料的改性。

例如,通过高温高压合成技术可以实现金属材料的变质处理,改变材料的晶粒结构和晶界特性,提高材料的韧性和强度。

同时,通过控制高温高压合成条件还可以实现材料的气相渗透、离子注入和表面改性等处理,改善材料的性能和功能。

总而言之,高温高压合成技术在材料制备中具有广泛的应用前景。

它不仅可以用于制备高温材料和高压稳定材料,还可以实现纳米材料的制备和材料的改性处理。

随着材料科学和工程的不断发展,高温高压合成技术必将在材料制备领域发挥越来越重要的作用,为人们提供更高性能的材料,推动科学技术的进步。

haber法合成氨

haber法合成氨

哈伯法合成氨是一种化学方法,由德国化学家弗里茨·哈伯(Fritz Haber)发明。

该方法是在高温高压下,用氮气和氢气合成氨气。

具体步骤如下:
1. 氮气和氢气在高温高压下通过铁催化剂反应生成氨气和水蒸气。

2. 水蒸气通过冷却器冷凝成液态水。

3. 液态氨气和水蒸气通过分离器分离。

4. 分离后的氨气被干燥并冷却到常温。

5. 最终,干燥的氨气被储存在储罐中,可用于生产肥料和其他用途。

哈伯法合成氨是最常用的合成氨方法之一,也是人类历史上最重要的化学工艺之一。

它解决了全球对肥料的需求,对农业生产和粮食安全做出了巨大贡献。

然而,该方法也存在一些缺点,例如需要高温高压条件下的设备和操作危险性较高,同时也会产生大量的温室气体二氧化碳。

高温高压法合成金刚石的原理

高温高压法合成金刚石的原理

高温高压法合成金刚石的原理高温高压法合成金刚石的原理引言金刚石是目前已知最坚硬的物质之一,具有极高的热导率、优异的化学稳定性和光学性能。

其在工业领域有着广泛的应用,如切割、磨削、钻石冶炼等。

早在20世纪50年代,科学家们就通过高温高压法成功地合成了金刚石,并对金刚石的合成原理进行了深入研究。

本文将详细介绍高温高压法合成金刚石的原理及其过程。

一、高温高压法合成金刚石的基本原理高温高压法合成金刚石是通过将高纯度的石墨置于高温高压环境中,在一定压力和温度条件下,使其发生相变转化为金刚石结构体。

其基本原理可以归纳为以下两个方面:1. 高压作用原理在高压下,石墨的层状结构发生变化,碳原子排列发生重组,形成更加紧密的结构,其中碳原子两两成对。

同时,高压还有利于碳原子间的共价键形成,促使石墨向金刚石的结构转变。

高压作用使得原有的石墨层结构中的芳香六元环断裂,重新构建出新的碳原子构型,形成金刚石的晶粒。

2. 高温作用原理高温下,由于碳与金属元素(如钴、铁等)有较好的相容性,这些金属元素在纯碳体系中具有催化作用,可以促进石墨向金刚石的相变。

此外,高温还可以提高反应速率,并减小金刚石晶核形成的能垒。

因此,高温作用在金刚石的合成过程中起到了至关重要的作用。

二、高温高压法合成金刚石的过程高温高压法合成金刚石的过程可以分为以下几个步骤:1. 制备金刚石晶体的种子层首先,需要在高温高压容器内的金刚石粉末层上制备金刚石晶体的种子层。

金刚石粉末的颗粒与金刚石晶种产生化学反应,形成金刚石表面晶体的结构。

种子层是金刚石晶体生长的起始核心,为后续金刚石的形成提供了必要的条件。

2. 加入高纯度石墨粉在高温高压容器中加入高纯度石墨粉末,使其与种子层接触。

石墨粉末需要达到足够高纯度,以保证金刚石晶体的纯度。

3. 施加高温高压施加高温高压条件,使得石墨发生相变,转化为金刚石晶体。

一般来说,需要施加高压数GPa(1 GPa=1亿帕)和高温约1500-2000摄氏度的条件。

高温超高压法

高温超高压法

高温超高压法高温超高压法合成宝石晶体材料,是指利用高温(500℃以上)超高压(1.0×109Pa以上)设备,使合成宝石原料(粉末样品)在高温超高压条件下,以变质成矿作用方式产生相变或熔融进而结晶生长宝石的方法。

该法目前主要用于生产金刚石、翡翠等。

获得高温超高压的方法,有静压法、爆炸法(炸药、核爆)。

1.金刚石的合成方法人工制造金刚石的方法约有数十种,成功的方法可分为三大类:(1)静压法a.静压触媒法b.静压直接转变法c.晶种触媒法(2)爆炸法(动力法)a.爆炸法b.液中放电法c.直接转变六方金刚石法(3)亚稳定区域内生长法a.气相法b.液相外延生长法c.气液固相外延生长法d.常压高温合成法其中常用于合成钻石的是晶体触媒法(图2-8)。

我国在1963年用高温超高压法生产工业级合成金刚石,当时每一次合成只能获得10-15克拉的小颗粒合成金刚石,现在每次合成能得到60克拉的合成金刚石,颗粒明显增大。

2.翡翠的合成方法(1)将化学试剂(硅酸钠与硅酸铝)称量,混合,加热熔融,形成翡翠玻璃料(NaAlSi2O5)。

(2)把翡翠玻璃料粉碎成粉末与着色剂混合,装入高纯石墨坩埚中,并在140℃的烘箱中烘烤24小时以上,再在六面砧压机上进行高温超高压(1100℃5.9×107Pa)处理(4h),断电降温,冷凝结晶成硬玉集合体。

实验室观察:滤色镜下有的呈红色,有的呈绿色,表明铬离子有的进入晶格,有的尚未进入晶格。

合成翡翠到达宝石级要求的关键是使其到达半透明并使Cr3+进入晶格。

可使硬玉致色的致色剂种类,见表2-4。

苛刻条件下合成与制备技术 专题 1.

苛刻条件下合成与制备技术 专题 1.

苛刻条件下合成与制备技术随着社会高科技的迅猛发展,对化合物和材料提出了各种各样的要求,也越来越要求化学家能够合成更多的具有新型结构和新型功能的化合物和材料。

在现代合成中,愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。

1.高温合成高温合成技术是化合物和材料合成的一个重要手段。

一般通常的温度都在1000℃以上。

如高熔点金属粉末的烧结、难熔化合物的熔化和再结晶、陶瓷体的烧成等都需要很高的温度。

在实验室中,主要是利用马弗炉来获得高温,根据加热体的不同,可以获得从1000到3000℃的高温,甚至更高。

炉内气氛可以是空气气氛,也可以是其它气氛,炉体可以是箱式,也可以是管式等。

测量高温通常使用热电偶高温计,一般可在室温到2000 ℃之间应用,某些情况下甚至可达3000 ℃。

在更高的温度下可用光学高温计,它的测量范围是700~6000 ℃。

光学高温计只能测量高温,低温段则不准确。

图1.1给出了实验室常见的高温炉和管式炉的结构示意图。

高温下常见的反应是固相反应,它不同于溶液中的反应,他们在常温常压下很难进行。

例如,从热力学角度讲,MgO(s)和Al 2O 3(s)反应生成尖晶石MgAl 2O 4(s)的反应完全可以自发进行。

然而,在实际上,在1200 ℃以下反应几乎不能进行,在1500 ℃时反应也需数天才能完成。

原因有两点:第一,反应的第一阶段,即在反应物晶粒界面上或与界面邻近的晶格中生成MgAl 2O 4晶核,由于产物晶核与反应物结构不同,因而产物晶核的生成很困难;第二,进一步实现在晶核上的晶体生长也有相当的难度,这主要是固相间离子的扩散速率非常慢的缘故。

高温下有利于晶核生成和离子扩散,所以能加速反应。

为了降低固相反应的温度,使反应能在比较温和的条件下进行,有一些方法可以降低固相反应的温度,如将反应物充分破碎和研磨,或通过各种化学途径制备成粒度细、比表面积大、表面具有活性的反应物原料,然后通过加压成片,甚至热压成型使反应物颗粒充分均匀接触;或通过化学方法使反应物组分事先共沉淀;或通过化学反应制成化合物前驱物等。

高温高压合成设备

高温高压合成设备

高温高压合成设备高温高压合成设备是一种用于合成化学反应的设备,它在高温高压条件下进行反应,以实现高效率、高产量的化学合成过程。

该设备被广泛应用于石油化工、化学工程、材料科学等领域,为工业生产提供了重要的技术支持。

一、高温高压合成设备的基本原理高温高压合成设备是基于化学反应的基本原理,通过提高温度和压力,加速反应速率,提高反应物的浓度和反应物质和催化剂之间的接触频率,从而提高反应效果。

同时,高温高压条件下的反应还有助于改变反应物质的分子结构,使其更容易发生反应。

二、高温高压合成设备的主要组成部分1. 反应器:反应器是高温高压合成设备的核心组成部分,它承载着化学反应的发生。

反应器一般由高温高压容器、加热装置和冷却装置等组成,可以根据不同的反应需要选择不同的材料和结构。

2. 压力控制系统:高温高压合成设备需要提供足够的压力来实现高效的反应。

压力控制系统包括压力传感器、压力控制阀、增压泵等,可以实时监测和调节反应器内的压力。

3. 温度控制系统:高温高压合成设备需要提供稳定的高温环境,以促进反应的进行。

温度控制系统包括加热装置、温度传感器、温度控制器等,可以实时监测和调节反应器内的温度。

4. 搅拌系统:搅拌系统用于促进反应物质和催化剂之间的混合和扩散,以提高反应效果。

搅拌系统一般由电机、搅拌桨和搅拌轴等组成,可以根据反应需要调节搅拌的强度和速度。

5. 安全保护系统:高温高压合成设备在操作过程中可能会产生一些危险情况,如温度过高、压力过高等。

安全保护系统包括安全阀、过压保护装置、温度报警装置等,可以及时检测并采取相应的措施,保证设备和操作人员的安全。

三、高温高压合成设备的应用领域高温高压合成设备在石油化工、化学工程、材料科学等领域有着广泛的应用。

1. 石油化工领域:高温高压合成设备在石油化工领域主要用于裂化、重整、氢化等反应过程。

通过控制温度和压力,可以提高裂化产品的收率和质量,促进重整反应的进行,改善催化剂的循环寿命。

高温高压合成掺杂金刚石研究进展

高温高压合成掺杂金刚石研究进展

第53卷第2期2024年2月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.53㊀No.2February,2024高温高压合成掺杂金刚石研究进展郝敬林1,2,邓丽芬2,王凯悦1,宋㊀惠2,江㊀南2,西村一仁2(1.太原科技大学材料科学与工程学院,太原㊀030024;2.中国科学院宁波材料技术与工程研究所,海洋材料及相关技术重点实验室,浙江省海洋材料与防护技术重点实验室,宁波㊀315201)摘要:金刚石具有超高热导率㊁宽禁带等优点,通过掺杂引入电子和空穴等缺陷,提升载流子浓度,可以使金刚石具有适合半导体应用的电导率,被称为第三代终极宽禁带半导体材料㊂本文首先介绍了金刚石单晶的高温高压合成方法,接着系统综述了基于高温高压法的金刚石掺杂研究现状和发展,然后分析了N㊁B㊁P和S等单元素掺杂及多元素共掺杂对金刚石晶体生长和电学性能的影响,并且对第一性原理计算研究金刚石掺杂进行了分析总结㊂高温高压退火可以有效改变金刚石中掺杂元素与空位等缺陷组合和分布状态,本文明晰了金刚石中含氮色心形成的原因及高温高压退火对色心的调控机制㊂最后对金刚石掺杂以及掺杂后金刚石的光学性能和电学性能研究前景进行了展望,指出可进一步探索多元素共掺杂的理论与实验方法,对提升掺杂金刚石性能具有重要意义㊂关键词:金刚石;高温高压;掺杂;含氮色心;退火;第一性原理计算中图分类号:O78;TQ163㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2024)02-0194-16 Synthesis of Doped Diamond by High-Pressure andHigh-Temperature:a ReviewHAO Jinglin1,2,DENG Lifen2,WANG Kaiyue1,SONG Hui2,JIANG Nan2,KAZUHITO Nishimura2(1.School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan030024,China;2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Key Laboratory of Marine Materials and Related Technologies,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo315201,China) Abstract:Diamond possesses an ultra-high thermal conductivity and a wide band-gap.Its electrical resistance could be adjusted for the semiconductor application by increasing the electron and vacancy content introduced by doping different elements.Therefore,diamond is thought to be the final wide band-gap semiconductor materials.This paper firstly introduces the synthesis of diamond by high-pressure and high-temperature(HPHT)method,and then systematically reviews the current status and developments of diamond doping by HPHT.The effects of single-element doping,such as N,B,P,and S,as well as multi-elements co-doping in the diamond crystal growth and its electrical properties are analyzed.In additional,this paper summaries the study diamond doping using first-principle calculation.HPHT annealing could effectively change the combinations of doped elements and the associated vacancies and their distribution.This paper reviews the adjustment of nitrogen-related color centers in diamond by HPHT annealing,elucidating the formation mechanisms of various nitrogen-related color centers.Finally,This paper prospects the potential optical and electrical properties of doped diamonds,highlighting the importance of theoretical calculations and experimental methods for multi-element co-doping investigation to enhance the performance of doped diamonds.Key words:diamond;HPHT;doping;nitrogen-vacancy center;annealing;first-principle calculation㊀㊀收稿日期:2023-08-16㊀㊀基金项目:国家重点研发计划(2022YFB3706602,2021YFB3701801);宁波市重点科技项目(2022Z191);宁波市甬江人才引进计划(2021A-037-C,2021A-108-G);中国科学院青年基金(JCPYJ-22030);宁波市重大科技攻关专项(2021ZDYF020196);中国科学院项目(ZDKYYQ2020001)㊀㊀作者简介:郝敬林(1998 ),男,江苏省人,硕士研究生㊂E-mail:haojinglin@㊀㊀通信作者:邓丽芬,博士,教授级高工㊂E-mail:denglifen@王凯悦,博士,教授㊂E-mail:wangkaiyue8@宋㊀惠,博士,副研究员㊂E-mail:songhui@㊀第2期郝敬林等:高温高压合成掺杂金刚石研究进展195㊀0㊀引㊀㊀言金刚石是一种重要的功能材料,其高硬度(60~120GPa)[1]㊁高热导率(20W㊃K-1㊃cm-1)[2]㊁宽波段透光率和较高的介质击穿场强(5~10MV/cm)[2]等性能使其在大功率半导体热沉片[3]㊁高端光学窗口[4]等领域得到广泛应用㊂纯净的金刚石是良好的绝缘体,晶体内无自由电子,具有宽禁带(5.47eV)[2],因而电阻率很高㊂但是当金刚石中有其他掺杂元素存在时,电阻率会大幅下降,成为半导体材料㊂随着信息产业化的发展,对半导体材料提出了更高的要求,常规的半导体材料已经不能满足市场的需求,金刚石的优异性能使其在半导体领域有广阔的应用前景[3]㊂金刚石的合成方法主要分为高温高压(high pressure and high temperature,HPHT)法[5]和化学气相沉积(chemical vapor deposition,CVD)法[6]㊂其中,高温高压法采用温度梯度(temperature gradient method, TGM)[7]控制碳溶解㊁扩散和再结晶在籽晶上生长㊂高温高压法合成过程中易于添加不同物质,从而将不同元素掺杂进入金刚石晶格,因此成为研究金刚石掺杂的主要方法㊂通过元素掺杂发掘金刚石的功能特性,可拓宽其应用范围㊂除了高温高压法外,其他一些方法也可以实现金刚石的掺杂,比如CVD法㊁电子束辐照法和离子注入法等㊂但是,CVD法的掺杂元素受限,很多元素例如Ge等金属元素由于其自身特性难以被掺入㊂另外,CVD法掺硼通常需要采用有剧毒的硼烷气体,因而掺硼金刚石的应用受到限制㊂离子注入法掺杂则对晶格的破坏较大㊂综合而言,高温高压是一种较为成熟和有效的金刚石掺杂方法㊂为了突破金刚石在电学㊁光学等方面的应用限制,研究人员尝试通过掺杂改变其性质,进而拓展其应用范围,尤其是电学应用,可以分别通过施主杂质和受主杂质掺杂来制造低电阻率n型和p型金刚石㊂金刚石的掺杂元素目前主要有B㊁N㊁S㊁P等,其中,硼原子半径较小,硼掺杂p型半导体金刚石在理论和实验方面都取得了进展,而且随着电学性能的改善,可以利用线切割对其进行加工,为金刚石刀具加工提供了途径㊂对于p型硼掺杂金刚石,掺入0.1%(摩尔分数,下同)的硼源后其电阻率最小已达到10-2Ω㊃cm[8],仅就电阻率而言已达到器件制作的要求㊂然而宽带隙材料难以实现两级掺杂[9],目前电阻率最低的n型金刚石只能达到102Ω㊃cm[10],因而极大地限制了金刚石在电学领域的应用,金刚石的n型掺杂比p型更具挑战性[11]㊂近年来,为了在金刚石的n型掺杂方面取得进展,研究者主要致力于N㊁P㊁S等元素的掺杂研究[12]㊂本文在对高温高压合成金刚石大单晶的基本原理及工艺进行介绍的基础上,对金刚石的元素掺杂及其电学与光学性质等研究进展进行了归纳总结,分析了当前研究的热点问题,以便更好了解行业的发展状况㊂1㊀金刚石合成方法石墨与金刚石都是碳的同素异形体,在碳的压强-温度(pressure-temperature,P-T)相图中都有所表现[13],图1分别展示了金刚石和石墨的稳定区㊂在高温高压条件下,金刚石单晶的生长是通过石墨到金刚石的相变实现的㊂石墨经过高温高压作用后会变成金刚石,并在金刚石种子上沉积形成新的金刚石单晶㊂因此,金刚石单晶的生长需要有适当的种子晶体作为生长的起点㊂1970年,美国通用电气公司(GE)在高温高压下利用温度梯度法合成金刚石大单晶,成为材料领域的重要突破[7]㊂迄今为止,温度梯度法仍然是目前国内外合成金刚石大单晶最为常见和有效的方法㊂石墨作为碳源位于腔体中的高温端,晶种位于低温端㊂由于两者之间存在温差而形成了温度梯度㊂在高温高压下,高温处的碳源转化为金刚石,并在一定温度梯度的生长驱动下从高温端向低温端扩散,并在低温区的晶种处结晶析出(见图2)㊂温度梯度法的生长驱动力与轴向温度梯度成正比,可以通过调整金刚石合成块的组装结构,进而把控温度梯度的生长驱动力,实现对合成金刚石生长速度的控制[14]㊂196㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷图1㊀碳元素的P-T 相图Fig.1㊀P-T phase diagram of carbon element 图2㊀温度梯度法原理示意图[15]Fig.2㊀Schematic diagram of diamond synthesis by temperature gradient method [15]2㊀金刚石单晶的掺杂金刚石单晶掺杂主要分为两种类型:替位式掺杂和间隙式掺杂[16]㊂替位式掺杂是将金刚石中的一些碳原子替换成其他原子,如氮㊁硼㊁硅等㊂目前针对金刚石薄膜的掺杂在国内外研究较多,而对高温高压下金刚石大单晶的掺杂研究较少㊂金刚石常见的掺杂形式有单元素掺杂和多元素协同掺杂,其中,单元素掺杂的掺杂剂可以使是单质,也可以是化合物,而多元素掺杂有双掺或三掺,主要以双掺为主㊂2.1㊀金刚石单一掺杂2.1.1㊀硼掺杂硼原子半径小,容易进入金刚石内部,因此在掺杂p 型半导体金刚石薄膜[17]的研究中有大量关于掺杂硼的文献并获得了实际应用[18]㊂对于掺硼金刚石单晶来说,硼的添加会对金刚石单晶的形貌和电学性能产生影响㊂2005年,张健琼等[19]通过加入无定形硼粉,在高温高压下成功合成出掺硼金刚石单晶,并且晶体中硼的含量随着合成温度的升高而降低㊂在合成过程中硼元素优先从金刚石的{111}扇区进入晶体,在扇区内部金刚石的生长速度逐渐减小,硼元素扩散逃离可用时间越来越长,最终导致硼元素含量不均匀,呈内多外少的分布规律[20]㊂掺硼金刚石单晶的晶体特征如表1所示㊂表1㊀掺硼宝石级金刚石单晶的晶体特征[20]Table 1㊀Crystal characteristics of boron-added gem-quality diamond single crystals [20]SampleGrowth crystal phase Boron (mole fraction)/%Growth time /h Crystal weight /mg Crystal size /mm a {100} 1.03 1.1 1.3b{100} 2.51032.2 3.4c {111} 1.03128.5 5.4d {111} 2.51071.9 4.4在(100)面生长掺单质硼的金刚石单晶时,晶体表面呈现出黑色三角形的对称区域,不同区域的硼含量存在差异㊂随着硼添加量的增加,{111}面的生长区域变宽,而{100}面的生长区域变窄直至几乎消失[21]㊂此外,在{100}㊁{111}和{311}扇区内也存在不均匀性㊂通过PL 光谱可以发现,与硼和氮有关的缺陷以及与空位相关的缺陷集中分布在与生长区边界相交的辐照区㊂在{311}扇区发现了在富B 和富N 生长之间交替的带,639㊁651和658.5nm 处的B 相关中心在{311}扇区中比在{100}或{111}扇区中更强㊂648nm 中心在富B 的{111}扇区中最强,在{311}扇区中较弱,在{100}扇区中更弱(见图3)[22]㊂硼掺杂金刚石单晶的掺杂效果主要表现为导电性的改变㊂在高温高压下,硼原子取代金刚石单晶中的碳原子,形成硼掺杂金刚石单晶㊂硼原子的加入使金刚石单晶中的空穴浓度增加,从而提高了材料的导电性㊂硼掺杂金刚石单晶的导电性与硼的浓度和掺杂方式有关,通过控制硼源的含量和反应条件,可以实现不㊀第2期郝敬林等:高温高压合成掺杂金刚石研究进展197㊀同浓度和不同类型的硼掺杂金刚石单晶㊂高温高压技术可以实现高表面积㊁低材料电阻和多孔电极结构,通过循环伏安法(cyclic voltammetry)可以证明掺硼金刚石的电极具有比非多孔电极更高的双层电容[23]㊂使用密度泛函理论(DFT)对重掺杂硼金刚石进行电子结构计算,结果表明B中心之间的相互作用直接决定了空穴的密度,对费米能级的位置和电子行为有着重要影响㊂当温度降到临界温度时,理论计算显示出向超导体转变的趋势,而且临界温度和B的浓度相关[24]㊂虚拟晶体近似法也正确地预测了硼掺杂金刚石中电子-声子耦合的主要特征,为这种材料的超导性提供了一个非常简单和直观的解释,提出了通过具有强共价键的空穴掺杂材料寻找高温超导体的有用的新途径[25]㊂Shakhov等[26]使用Ni-Mn催化剂在高压高温条件下合成的掺硼金刚石室温电导率可达1Ω-1㊃cm-1,但是由于硼对金刚石生长的阻碍作用和杂质化合物的存在而未实现超导电性㊂重掺硼金刚石单晶的超导性能研究前景广阔,值得深入研究㊂图3㊀488nm激发下的PL光谱[22]Fig.3㊀PL spectra under488nm laser excitation[22]2.1.2㊀氮掺杂氮是金刚石中最为常见的杂质元素,根据金刚石中氮含量的不同可以将其分为I型金刚石和II型金刚石,如表2所示㊂表2㊀金刚石的分类及性质[27]Table2㊀Classification and properties of diamond[27]Type Nature diamond Nitrogen impurities/10-6Color Resistance/(Ω㊃cm) Ia98%2ˑ103aggregate state Colorless,yellow104~1016Ib0.1%10~103dispersive state Yellow,brown104~1016IIa1%~2%<1Colorless104~1016IIbʈ0%<1,B-doped Blue10~104氮在金刚石晶体中有多种存在形式,氮原子与由辐射损伤引入的空位形成了多种缺陷中心,从而导致金刚石呈现不同颜色,所以通常被称为色心,如表3所示㊂杂质引起的色心主要包括:C中心(孤氮中心)[28-29]㊁A中心和B中心[28,30]㊁N3-N2中心[31-32]㊂其中A中心和B中心不直接影响金刚石的颜色,又称为198㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷 间接色心 ㊂辐射损伤引起的色心主要包括:GR1中心[28,33]㊁595中心[28-29]㊁H3和H4中心[28-29]㊁3H中心[29,34]㊁N-V中心[28]㊁NDl中心[35]㊁S1中心[35]等㊂其中,部分色心(如孤氮中心)直接成为金刚石颜色的诱导因素,有些色心组合的形成致使金刚石呈色㊂表3㊀金刚石氮杂质中心Table3㊀Diamond N impurity centersDefect centerλmax/nm Color ReasonC-center560Yellow Caused by impurities[28-29]N3-center415.5Yellow Caused by impurities[31-32]N2-center478Yellow Radiation damage[31-32]GR1-center741Blue,green Radiation damage[28,33]595-center425Yellow High temperature annealing600~800ħafter radiation damage[28-29] H3-center503Yellow,brown High temperature annealing800ħafter radiation damage[28-29] H4-center496Yellow,brown High temperature annealing800ħafter radiation damage[28-29] 3H-center504Yellow Heat treatment after radiation damage350~400ħ[29,34]NV0-center575Pink Radiation damage[28]NV--center637Pink,red Radiation damage[28]NDl-center388 Radiation damage[35]S1-center515~520Blue-green,yellow-green Radiation damage[35]氮在常温下以气体形式存在,所以氮的化合物常用来作为掺杂所用的氮源㊂常见的氮源有NaN3㊁C3H6N6和Fe3N等㊂通过向石墨和铁粉中添加叠氮化钠(NaN3),成功地将氮掺杂到了金刚石中,合成了氮浓度高达(1000~2200)ˑ10-6的金刚石单晶,其氮含量与天然金刚石相同[36]㊂金刚石中的氮浓度随着NaN3含量的增加而增加,但是当NaN3的含量增加到0.7%~1.3%(摩尔分数,下同)时,金刚石中的氮浓度几乎保持在1250ˑ10-6至2200ˑ10-6的范围内㊂同样,使用C3H6N6合成的金刚石的最高氮含量为2300ˑ10-6,其分解的氮效应降低了金刚石的生长速率并将其颜色改变为绿色[37]㊂NaN3和C3H6N6掺杂含量与氮含量的对应关系如图4所示,NaN3的掺杂含量在0.5%之前阶段氮含量持续增高,0.5%~0.7%阶段氮含量降低,1.0%前后变化趋势也存在此类情况㊂而C3H6N6则是随着掺杂含量的增加,氮含量稳步升高到2300ˑ10-6,仍未见饱和平台区出现㊂根据以上情况,若是合成高氮金刚石单晶,则选择C3H6N6作为掺杂剂可实现更高的氮含量㊂合成压力和退火时间不足导致氢不被金刚石吸收,随着C3H6N6含量的增加,金刚石的颜色由黄色变为绿色㊂拉曼光谱表明,以C3H6N6为掺杂剂合成的金刚石晶体缺陷较少,实验结果如表4所示㊂为了研究氮浓度对金刚石结晶过程和金刚石晶体结构的影响,Palyanov等[38]在Fe-Ni系统中加入Fe3N和CaCN2两种不同的氮浓度增长体系㊂在金刚石的热力学稳定性范围内,随着金属熔体中氮浓度的增加,位错㊁孪晶片层和内部应变的密度增加㊂当氮浓度高于某一临界值(0.4%)时,金刚石的成核和生长终止,石墨结晶㊂表4㊀掺杂C3H6N6金刚石在5.6GPa作用下处理11h的实验结果[37]Table4㊀Experimental results of doped C3H6N6diamond treated for11h in the presence of5.6GPa[37]Sample Temperature/K C3H6N6/%Morphology Growth rate/(mg㊃h-1)a15130(100)+(111)+(110)8.72b15130.05(100)+(111)+(110) 6.11c15130.10Twin crystal 2.57d15130.15(100)+(111) 1.80e15130.20(100)+(111) 1.65f15130.25(100)+(111) 1.06a 15530(100)+(111)+(110)7.93b 15530.05(100)+(111)+(110) 6.53c 15530.10Twin crystal 5.88d 15530.15(100)+(111) 3.69e 15530.20(100)+(111) 2.33f 15530.25(100)+(111) 1.15㊀第2期郝敬林等:高温高压合成掺杂金刚石研究进展199㊀图4㊀NaN3和C3H6N6掺杂含量与氮含量的关系[36-37]Fig.4㊀Relationship between NaN3and C3H6N6doping content and nitrogen content[36-37]由于高氮含量金黄色金刚石的稀有和广受欢迎,以及色心NV-的量子效应,金刚石的氮掺杂研究一直是热点,高温高压退火可以改变金刚石中氮状态㊂高氮金刚石((1500~1700)ˑ10-6)在退火后1h内,由于金刚石晶格中氮的聚集,晶体的颜色明显由绿色变到无色(见图5)[39]㊂含氮施主原子在(1500~1600)ˑ10-6的金刚石晶体退火后使原来以单取代态(C中心)排列的氮原子转变为对取代态(A中心),一小部分氮原子仍以C中心形式存在,而一些A中心形式的氮原子进一步转变为N3和H3中心结构[40]㊂退火降低了高氮金刚石中NV-中心的浓度㊂相反,低氮含量的金刚石退火后可产生较高浓度的NV-色心㊂尽管高温高压条件下金刚石中存在许多缺陷的NV色心影响,但低氮含量金刚石在高温高压条件下直接退火是合成NV色心的一种简便方法[41]㊂这些发现对了解氮原子以聚集形式存在的天然Ia型金刚石的形成机制有很大帮助㊂图5㊀高浓度掺氮金刚石晶体的光学图像[39]Fig.5㊀Optical images of highly concentrated nitrogen-doped diamond crystals[39]通过第一性原理计算发现,金刚石中氮以C中心的形式存在会使带隙值(5.5eV)稍有降低,并预测由于C中心引起的光吸收在3eV左右[42]㊂理论上氮掺杂可以引入杂质能级,改变金刚石的导电性和光学吸收性能,从而提高其光学发光效率㊂但是氮在金刚石晶格中能级深,位于导带最小值以下1.7eV处,因而掺氮金刚石电阻率高,难以获得符合要求的n型金刚石半导体材料[43]㊂200㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷2.1.3㊀硫掺杂硫的原子半径大,进入到金刚石晶格中有一定的困难,但硫是研究合成n型半导体金刚石的重要掺杂剂之一㊂通过第一性原理计算对掺杂浓度为3.12500%㊁1.56000%和0.78125%(摩尔分数,下同)的硫掺杂金刚石的能带结构和电子结构的研究发现,不同浓度下能带结构和电子结构的变化基本类似,硫杂质缺陷的电离能为0.3eV,表现为n型导电[44]㊂2011年,周林等[45]在NiMnCo催化体系中成功合成掺杂硫金刚石单晶,合成的金刚石晶体具有完整的{100}和{111}面,内部有少量的包裹体㊂Chen等[46]在Fe-Ni-C体系中加入高纯硫粉合成了硫掺杂的IIa型金刚石单晶,随着硫含量的增加生长速率明显降低㊂合成体系中的硫会促进NV0和NV-中心出现在金刚石晶格中㊂在该系统下合成的硫掺杂Ib型金刚石单晶在沿{111}面生长更容易出现氮空位(NV)中心,氮杂质浓度如表5所示㊂与NV-中心相比,在不添加硫的情况下,Ib型金刚石晶格中不容易生成NV0中心㊂虽然在添加0.25%硫的情况下同时生成NV0和NV-中心,但NV-峰的强度明显高于NV0峰[47],氮空位的光致发光光谱如图6所示㊂表5㊀FeNi-S-C体系合成Ib型金刚石及氮杂质的浓度[47]Table5㊀Synthesis of Ib-type diamond and concentration of nitrogen impurities by FeNi-S-C system[47]Sample S/%Growth face Growth rate/(mg㊃h-1)Nitrogen content/10-6a0{100}0.280151b0.10{100}0.157201c0.25{100}0.070144d0{111}0.186180e0.10{111}0.153230f0.25{111}0.062154图6㊀FeNi-S-C系金刚石晶体的光致发光光谱[47]Fig.6㊀PL spectra of FeNi-S-C system diamond crystals[47]使用四探针和霍尔效应法可以表征掺硫金刚石单晶的电学性能㊂研究发现,随着硫含量的增加(1.0%~4.0%),所合成金刚石单晶的半导体性能也有所提高㊂当金刚石晶胞中的硫含量达到4.0%时,金刚石的电阻为9.628ˑ105Ω㊃cm,为进一步合成n型半导体金刚石提供了依据[48]㊂同样,使用FeS和NiS作为硫源也可以制备出n型半导体金刚石单晶,合成样品的半导体性能也随着硫含量的增加而增强,如表6所示㊂二者制备出的样品最低电阻率分别为8.131ˑ105和11.630ˑ105Ω㊃cm,可见FeS掺杂得到的金刚石单晶电阻率最小[49-50]㊂表6㊀不同硫源掺杂金刚石的电学性能Table6㊀Electrical properties of diamond after doping with different sulfur sourcesSulfur source Doping method Minimum resistivity/(Ω㊃cm)CharacteristicSulfur powder[48]Substitute9.628ˑ105n-typeFeS[49]Substitute8.131ˑ105n-typeNiS[50]Substitute11.630ˑ105n-type㊀第2期郝敬林等:高温高压合成掺杂金刚石研究进展201㊀2.1.4㊀磷掺杂磷的原子半径较大,很难进入金刚石晶格中㊂当磷原子在金刚石晶格中取代一个碳原子时,将会引起晶胞的膨胀,晶格会发生畸变,对金刚石晶胞的构型㊁键型和电荷的空间分布都会产生一定的影响㊂聂媛等[51]选用Fe3P作为磷源进行磷掺杂金刚石单晶的合成,磷源含量和晶体形貌如图7所示㊂随着Fe3P的含量增加,金刚石晶体中氮含量上升,说明磷的进入诱使氮原子更容易进入金刚石晶格中㊂同时,金刚石晶体的颜色逐渐变深,包裹体的数量逐渐增加,晶形由板状转变为塔状直至骸晶,在拉曼光谱下可以看到其半峰全宽变大,晶格畸变增加㊂在FeNiMnCo-C体系中掺入单质磷合成了片状金刚石晶体[52],随着磷含量的增加,金刚石晶体的生长速率逐渐降低,温度区间也明显增大㊂并且通过四点探针和霍尔效应法测试发现磷掺杂金刚石大单晶的最小电阻率为3.561ˑ106Ω㊃cm㊂同样,研究人员以Mn3P2作为掺杂剂在FeNi体系下合成了金刚石晶体㊂Mn3P2的加入改变了催化剂的催化性能,使金刚石晶体生长的V形区在1230~1245ħ明显向右上方移动[53]㊂掺杂后的样品通过电学性能测试表明其电阻率为0.516ˑ106Ω㊃cm,霍尔系数为负,与前者相比电学性能得到了极大的提高,对n型半导体的研究很有帮助㊂图7㊀沿(111)面合成磷掺杂金刚石显微光学照片[51]Fig.7㊀Micro-optical photograph of P-doped diamond synthesized along(111)surface[51]通过第一性原理的方法计算了磷掺杂浓度的金刚石晶格的电子结构[54]㊂不同浓度磷原子取代碳原子前后的杂质激活能及总能量差的变化如表7所示,一个磷原子取代一个碳原子所引起的能量差值(ΔE=E2-E1)随着掺杂磷原子浓度的增加而降低,可能是由于掺杂元素浓度的升高使得晶格膨胀加剧,原子间的松弛引起了一部分电子和原子核之间的相互作用减弱㊂杂质原子的掺杂浓度越高金刚石晶格的膨胀越严重,晶体里的sp3杂化的碳键就越不稳定,越容易向sp2碳键转化㊂虽然高掺杂时可以获得合适的电导率,但会严重损伤金刚石晶格[54]㊂磷掺杂的n型金刚石半导体材料的载流子浓度和电子迁移率相对较低,导致其电阻率较高,因此需要进一步研究以获得具有良好电学性能的n型金刚石半导体材料㊂掺磷金刚石单晶的合成研究较少,尤其是磷与其他元素共掺杂合成方面的研究需要加强㊂表7㊀磷掺杂金刚石晶格的能量变化[54]Table7㊀Energy variation of P-doped diamond lattice[54]Number of cell atom Total energy before doping,E1/eV Total energy after doping,E2/eV Energy difference,ΔE/eV 16-2.478ˑ103-2.498ˑ103-0.0195ˑ10324-3.717ˑ103-3.737ˑ103-0.0193ˑ10332-4.957ˑ103-4.976ˑ103-0.0191ˑ10348-7.435ˑ103-7.454ˑ103-0.0190ˑ10364-9.913ˑ103-9.932ˑ103-0.0188ˑ10372-1.115ˑ103-1.117ˑ103-0.0189ˑ10396-1.487ˑ103-1.489ˑ103-0.0187ˑ103 2.1.5㊀其他单元素掺杂除了上述的四种常见的元素外,还有很多元素可以进行掺杂㊂Sittas等[55]在高温高压条件下首次合成掺硅金刚石单晶,并且只有在IIa型金刚石中才能发现掺杂的硅空位㊂对{001}㊁{111}㊁{113}生长区进行202㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷光谱分析,发现硅中心的分布很不均匀,硅中心的发射强度不依赖于生长扇区㊂硅粉加入到镍基金属催化剂后,随着硅含量的增加,金刚石内部夹杂物从点状到片状再到串状分布,最终难以生长出完整的晶体[56]㊂硅的加入不仅增加了晶体内部的应力,使金刚石的结晶质量变差,而且也降低了金刚石中氮的浓度㊂同时,生长体系中的氮杂质也阻碍了金刚石中硅的有效掺杂㊂同样,在Ni-Mn-C体系中也可以将镁作为掺杂剂来评价其对晶体生长机制和缺陷的影响㊂如表8和图8所示,当Mg的含量为2%(摩尔分数,下同)时,金刚石晶体表面平整,有利于其在刀具中应用㊂添加3%和4%Mg的样品没有出现任何明显的变化,添加量为5%时晶体出现了夹杂物,这表明镁的添加量确实影响这些晶体表面缺陷的数量㊂在所用的高温高压参数下,晶体结构普遍为八面体㊂当Mg的含量为2%时,晶体产率较高,3%~5%的成核速率较小,生长速率降低[57]㊂表8㊀掺Mg样品在(1250ʃ50)ħ条件下的晶体参数[57]Table8㊀Crystal parameters of Mg-doped samples at(1250ʃ50)ħ[57]Sample Mg/%Crystal weight/mg Growth rate/(mg㊃h-1)a10.223 4.46b20.124 2.48c30.052 1.04d40.099 1.98e50.278 5.56图8㊀不同镁掺杂量金刚石晶体的SEM照片[57]Fig.8㊀SEM images of diamond crystals with different amounts of Mg doping[57] Palyanov等[58]在Mg-Ge-C体系下成功地合成了Ge掺杂单晶金刚石,在光致发光光谱中存在大量的2.06eV的Ge-V中心,如图9(a)所示㊂在该体系中加入的Ge抑制了金刚石自发成核的强度,从而可以通过晶种生长出相对较大(2~3mm)的金刚石单晶㊂在不同的合成条件下,合成的金刚石晶体从2.06eV中心到一级拉曼散射线的光致发光强度范围可达几个数量级,证明了Mg-Ge-C体系生长同位素修饰锗掺杂的块体低应变金刚石晶体的可行性,为进一步研究金刚石中锗相关色心的性质及其作为单光子源的可能应用提供了依据㊂2019年,相关研究人员在FeSnAl-C㊁Sn-(Ti,Al,Zr)-C和Sn-Mg-C三种条件下进行锡的掺杂对比实验[59]㊂研究发现,由Fe-Sn-Al组成的Fe基催化剂合成的金刚石没有与Sn相关的光学中心,在Sn-C系统中证实了在生长过程中Sn原子在金刚石晶格中的掺入原则上是可能的,但是生长系统中的氮杂质阻碍了Sn的有效掺杂,而且这些氮杂质很难用除氮剂消除㊂用Sn-Mg催化剂合成的金刚石单晶在光致发光光谱中显示出明显的Sn-V色心特征,如图9(b)所示㊂高温高压下成功合成了Sn掺杂金刚石,在量子技术应用中取得进一步进展㊂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是利用天然金刚石作顶锤(压砧),制成的微型金刚石 对顶砧高压装置。这种装置可以产生几十GPa到三 百多GPa的高压,还可以与同步辐射光源、X射线衍 射、Raman散射等测试设备联用开展高压条件下的 物质相变、高压合成的原位测试。但是若以合成材 料作为研究目的,微型金刚石对顶砧的腔体太小(约 10 mm),难于取出试样来进行产物的各种表征及作 其它性能的测试。
• 静高压高温合成法: • 超高压激光加热合成法:利用微型金刚石对顶砧高压装 置,配合激光直接加热方法。压力可达100 GPa以上, 温度可达(2~5)×103 K以上。合成温度和压力范围很宽, 可同时与多种测试装置联用,进行原位测试,对新物质 合成的研究和探索有重要的作用,值得重视。 • 静高压高温大腔体合成法:实验室和工业生产中常用, 利用具有较大尺寸的高压腔体和试样的两面顶和六面顶 高压设备来进行的。按照合成路线和合成组装的不同, 可细分成许多种。
高压下合成产物的稳定性 • 在恢复到常温常压时,并不是所有高压相都能 以亚稳态保存下来。 • 一般认为如果物质的化学式和晶体结构较复杂, 高压相变时旧的键合被破坏,离子的相对位置 在较大程度上重新组合,因此,离子需要较大 的能量才能越过较高的势垒回到初始状态中的 原有位置,则“淬火”后保留下高压相的希望 也较大。 • 有时,高压相也可以中间相的形式在常温常压 下保留下来。研究高压相在常温常压时稳定性 很重要,因为对材料合成来说,可逆的压力相 变是没有意义的。
结构中电子结构的变化和电荷的转移 • 在高压或超高压下某些化台物的电子结构会发 生明显的变化, 甚至本身组成元素问的电荷发 生转移导致另一种类型的相变。例如RETe系列 化合物中Eu1 (或StaTe)被证实为R 结构,而其 它相应的稀士碲合物具有“RE’Td一” 的结构。 在这里,有明显的电荷转移发生。RE的电子结 构也相应发生了变化,EuTe在高压下有一个4f 电子逸出,从而变成了“E1Ie2一+e” 结构。
高温的产生: 直接加热:大电流直接通过试样,可以在试样中产生高达 2000多K的高温;利用激光直接加热,可产生2000-5000 K高温,冲击波可在产生高压的同时产生高温。
间接加热:高压腔内试样室外放置加热管,外加大电流通 过加热管,使式样升温,可到2000K。
炸药透镜 炸药
电雷管
铝质环 密封圈 铁插销 粉末材料
对于微型金刚石对顶砧高压装置,常采用红宝石的荧光R 线随压力红移的效应进行定标测压,也有利用NaCI的晶 格常数随压力变化来定标的。 高温的测量: 在静高压装置高压腔内试样温度的测量中,最常用方法, 是热电偶直接量热法。因为是在高压作用下的热电偶高温 测量,技术上有较大的难度,如果积累一定的经验,可以 获得较高的测试成功率和精确度。 常用的热电偶有Pt30 %Rh—Pt6 %Rh,Pt—PtlO %Rh, 以及镍铬—镍铝热电偶。 其中双铂铭热电偶的热和化学稳定性很好,对周围有很强 的抗污染能力,其热电动势对压力的修正值很小,可适用 于2000 K范围的高压下的高温测量。
高温高压的合成方法
• 在大气压条件下(0.1 MPa)不能生长出满意的晶体
• 要求有特殊的晶型结构
• 晶体生长需要高的蒸汽压 • 生长或合成的物质在大气压下或在熔点以下发生分解 • 在常压条件下不能发生的化学反应而只有在高压条件 下才能发生化学反应
• 要求有某些高压条件下才能出现的高价态或低价态以 及其它的特殊电子态
动高压: 利用爆炸(核爆炸.火药爆炸等)、强放电等产生的冲击 被,在s~ps的瞬间以很高的速度作用到物体上,可使 物体内部压力达到几十GPa以上,甚至几千GPa,同时伴 随着骤然升温。这种高压力,就称为动态高压。它也可用 来开展新材料的合成研究,但因受条件的限制。动高压材 料合成的研究工作,开展得还不多。
• 静高压高温直接转变合成法:除了所需的合成起始材料 外,不外加其它催化剂,而让起始材料在高压高温作用 下直接转变或化合成新物质;
• 静高压高温催化剂合成法:在起始材料中加入催化剂; 由于催化剂的作用,可以大大降低合成的压力、温度和 缩短合成时间;
• 非晶晶化合成法:以非晶材料为起始材料,在高压高温 作用下,使之晶化成结晶良好的新材料,也可将结晶良 好的起始材料,经高压高温作用压致转变成非晶物质; • 前驱物高压转变合成法:对一些不易转变或不适于转变 的合成物质,可通过其它方法,将起始材料预先制成前 驱物,然后进行高压高温合成。
高压下的非相变型合成 • 利用高压下的固相反应合成用其它方法无法合成或 合成效果差以及只能在高压下稳定存在的特殊结构 的无机化合物。不过这类反应面广,问题复杂,其 合成反应的规律尚待总结。 • 一个典型的例子就是高压下计量FeO的合成 ,一般 在常压下制得的FeO是非化学计量FeO,这是由于 晶格中Fd 的缺位造成的。 • 高压下有稍过量的金属铁存在时就能抑制的生成。 • 据此我们可以利用新合成的缺位 O和金属铁在大于 3.6GPa,温度为770℃下合成计量FeO。 • 这主要是因为在高温下压强增大后, 由于金属铁中 Fe原子和 O中O原子相互扩散使Fo O中的Fe缺位逐 步得到完整化,从而生成化学计量FeO。
高压下相区范围的变化 • 压力是影响相图形态和相稳定性的重要变量 。一 般的说,固态无机化合物往往存在着多种同质异型 体,其相区的存在和相互问的转化与温度、压强 (特别是高压下)密切相关。 • 比如说 (R = La、Pr、Nd、sm、Eu、Gd、Tb、Dy、 Ho、Y、Er、Yb、Lu),常压下除h、Pr、Nd三种 氧化物以六方晶系存在外,其它 都以立方相存在。 • 然而当同样在1000 C以下面压强大于1GPa时,它 们就会由立方相转变成单斜相了,只是不同离子半 径元素的R2 从立方相转变成六方相的条件不同“J。 • 因此了解高压下的转变关系,对于高压下的合成具 有明显的指导意义。
铝质密封盒 不锈钢陷阱
高压和高温的测量 高压的测量: 高压合成要测量的物理量首先是作用在试样单位面积上的 压力,也就是压强。在高压研究的文献中,一般都习惯地 ] 把压强称为压力,它不等于外加的载。在实验室和工业生 产中,经常采用物质相变点定标测压法。利用国际公认的 某些物质的相变压力作为定标点,把一些定标点和与之对 应的外加负荷联系起来,给出压力定标曲线,就可以对高 压腔内试样所受到的压力进行定标。 现在通用的是利用纯金属Bi (I~II) (2.5 GPa)、Tl (I~II) (3.67 GPa)、Cs (II~III) (4.2 GPa)、Ba (I~II) (5.3 GPa)、 Bi (III~IV) (7.4 GFa)等相变时电阻发生跃变的压力值作 为定标点。有时也试用一维有机金属络合物Pt(DMG)2 (6.9 GPa)和聚苯胺有机高分子PAn—H (3.5 GPa)材料的 电阻—压力极小值作为定标,效果也不错。
高压合成
• 高温高压的合成方法
• 无机化合物的高压合成 • 无机材料的高压制备
• 无机高压在合成中的作用
• 范围从1-10 Mpa的低压力到几十个Gpa的高压力合成。 • 典型的物理极端条件能够有效改变物质的原子间距和原 子壳层状态,用作原子间距调制,信息探针和其它特殊 的应用手段。 • 利用高压手段不仅可以帮助人们从更深的层次去了解常 压条件下的物理现象和性质,而且可以发现常规条件下 难以产生而只在高压环境才能出现的新现象、新规律、 新物质、新性能、新材料。 • 就是利用外加的高压力,使物质产生多型相转变或发生 不同物质问的化合,而得到新相、新化合物或新材料。 由于施加在物质上的高压卸掉以后,大多数物质的结构 和行为产生可逆的变化,失去高压状态的结构和性质。 • 通常的高压合成都采用高压和高温两种条件交加的高压 高温合成法,目的是寻求经卸压降温以后的高压高温合 成产物能够在常压常温下保持其高压高温状态的特殊结 构和性能的新材料。
通常,以产物合成为研究目的的高压装置都采用具有 大腔体(10-1 cm3,甚至数百cm3)的大型高压装置(如两 面顶和六面顶压机等)。其中还有一种压腔较小(仅比 金刚石对顶砧大很多)的装置,压强可达30 GPa,它 也可以和同步辐射及其它测试装置联用,进行一些原 位测试。进行工业生产使用的工业装置,压腔一般比 较大,压强可以达到8 GPa。
• 要求某些高压条件下才能出现的特殊性能 • 材料制备中有提高致密度的要求。
• 高压的产生: • 静高压:利用外界机械加载 方式,通过缓慢逐渐施加负 荷挤压所研究的物质或试样, 当其体积缩小时,在物质或 试样内部产生高压强;由于 外界施加载荷的速度较慢, 通常不会伴随着物质的升温, 所产生的高压力。 • 是利用油压机作为动力,推 动高压装置中的高压构件, 挤压试样,产生高压。最常 见的有六面顶(高压构件由六 个顶锤组成)高压装置和年轮 式两面顶(高压构件由一对顶 锤和一个压缸组成)高压装置。
• Bridgman 开创了高压下物质的相变和物理性质的 研究领域,1946年获得诺贝尔奖;以后引起了人 们对高压合成新物质、新材料的关注。 • 1955年,Bundy 等人首次利用高压手段人工地合 成出只有地球内部条件下才能形成的、具有重大 应用价值的金刚石。 • Wentorf借助高压方法又合成出自然界中未曾发 现的、与碳具有等电子结构的、硬度仅次于金刚 石的立方氮化硼。 • 新物质的高压合成和材料的制备工作才发展成研 究热潮。
高压高温合成方法
高压高温合成产物的状态变化分为两类: • 某种物质经过高压高温作用后其产物的组成即 成份保持不变,但发生了晶体结构的多型相转 变,形成新相物质; • 某种物质体系,经过高压高温作用后,发生了 元素间或不同物之间的化合,形成新化合物、 新物质。 • 材料的形态发生了变化。
• 动态高压合成法:利用爆炸等方法产生冲击波,在物质 中引起瞬间的高压高温来合成新材料,也成为冲击波法 或爆炸合成法;已经合成了人造金刚石和闪锌矿型氮化 硼(c—BN)以及纤锌矿型氮化硼(w—BN) 。
• (1) 压力可以通过增加相邻阳离子d电子问的耦 合太小使过渡金属化合物的外层d电子发生离 域,从而降低了自由能。AQ 钙钛矿的合成 (A=Ca、Sr、Pb>cr 的合成提供了典型的例子。
相关文档
最新文档