第三章连续信源信息熵
信源熵

I ( y j ) I ( y j | xi ) I ( y j )
19
条件互信息量
条件互信息量: 在给定 zk 的条件下,xi 与 y j 之间的互信
I ( xi ; y j ) 0 后验概率 先验概率,X 与 Y 统计独立
I ( xi ; y j ) 0 后验概率 先验概率:由于信道受到干扰, 信宿收到 y j 后不但未使 xi 的不确定度 减少,反而增大了 xi 的不确定度 两个消息之间的互信息不大于其中任一消息的自信息 I ( xi ; y j ) I ( xi ) I ( x i | y j ) I ( x i )
符号从平均意义上表征信源总体特性的一个量对于特定的信源其熵只有一个1log?niiipxpx????1logniiipxpx????信息熵的物理含义信源输出前表征信源的平均不确定度信源输出后表征信源发出的每个消息所能提供的平均信息量是一个统计量反映了随机变量x的随机性22统计热力学中熵是表示分子混乱程度的一个物理量在孤立系统中进行的自发过程总是沿着熵增加的方向进行它是不可逆的平衡态相应于熵取最大值的状态即熵增加原理香农借用热力学中熵来描述信源的平均不确定度在信息论中有用的信息熵只会减少不会增加所以信息熵也被称为负热熵ijxyxy
2
信源的分类
信源输出以符号形式出现的具体消息,其分类如下: 按发送消息的时间和取值空间的分布 离散信源 单符号离散信源 连续信源 信源发出的 按发出符号之间的关系 消息是离散的、 无记忆信源 有限的或无限可 列的符号,且一 有记忆信源 个符号代表一条 按发送一条消息所需要的符号数 完整的消息 单个符号信源 符号序列信源
三种表达形式等效
log log p( x i y j ) p( x i ) p( y j ) p( y j | x i ) p( y j )
信源及信源熵介绍

2.2.1 自信息量
2. 不确定度 定义:随机事件的不确定度在数量上等于它的 自信息量.
说明:
a. 两者的单位相同,但含义却不相同。 b. 具有某种概率分布的随机事件不管发生与否,都存在
不确定度,不确定度表征了该事件的特性,而自信息 量是在该事件发生后给予观察者的信息量。
15
2.2.1 自信息量
22
2) 因为X中各符号xi的不确定度I(xi)为非负值,p(xi)也 是非负值,且0 p(xi)1,故信源的平均不确定度H(X) 也是非负量。
3) 平均不确定度H(X)的定义公式与热力学中熵的表示形 式相同,所以又把H(X)称为信源X的熵。熵是在平均意 义上来表征信源的总体特性的,可以表征信源的平均不确 定度。
2
p(xi ) log 2 p(xi ) i 1
= 0.72比特/次 说明:
1) 自信息量I(x1)和I(x2)只是表征信源中各个 符号的不确定度,一个信源总是包含着多个符 号消息,各个符号消息又按概率空间的先验概 率分布,因而各个符号的自信息量就不同。所 以自信息量不能作为信源总体的信息量。
=3 × 105 × 3.32 比特/画面
25
有一篇千字文章,假定每字可从万字表中任选, 则共有不同的千字文 N=100001000=104000 篇 仍按等概率1/100001000计算,平均每篇千字文 可提供的信息量为 H(X)=log2N =4 × 103 × 3.32
1.3 × 104 比特/千字文
离散消息的信源,如文字、数字、数据等符号都是
离散消息。
{ 离散信源
离散无记忆信源 离散有记忆信源
{ {
5
发出单个符号的无记忆信源 发出符号序列的无记忆信源 发出符号序列的有记忆信源 发出符号序列的马尔可夫信源
2.6连续信源的熵

2.6连续信源的熵所谓连续信源就是指其输出在时间上和取值上都是连续的信源。
见图2.6.1。
各采样值的概率可用其概率分布密度函数来确定。
图2.6.2表示一个连续信源输出的幅度和其概率分布密度的关系。
设各种采样值之间无相关性,信源熵可写成:])(log[)(dx x p dx x p i ii ∑[例2.6.1]一连续信源,其输出信号的概率分布密度如图2.6.3所示,试计算其熵。
连续信源的熵不再具有非负性,这与离散信源显然不同。
同样可以定义两个连续变量的联合熵:⎰⎰-=dxdy xy lbp xy p XY H )()()(以及定义两个连续变量的条件熵;⎰⎰-=dxdy y x lbp xy p Y X H )/()()/( ⎰⎰-=dxdy x y lbp xy p X Y H )/()()/(连续信源的共熵、条件熵、单独熵之间也存在如下关系:)()()(Y H X H XY H +≤2.6.1三种特定连续信源的最大熵与离散信源不同,求连续信源的最大熵需要附加条件,常见的有三种。
1.输出幅度范围受限(或瞬时功率受限)的信源2.输出平均功率受限的信源 3.输出幅度平均值受限的信源 (1)限峰值功率的最大熵定理若代表信源的N 维随机变量的取值被限制在一定的范围之内,则在有限的定义域内,均匀分布的连续信源具有最大熵。
设N 维随机变量∏=∈Ni iib a X 1),( iia b>其均匀分布的概率密度函数为⎪⎪⎩⎪⎪⎨⎧-∉-∈-=∏∏∏===Ni i i Ni i i Ni i i a b x a b x a b x p 111)(0)()(1)(除均匀分布以外的其他任意概率密度函数记为)(x q ,并用[]X x p H c),(和[]X x q H c),(分别表示均匀分布和任意非均匀分布连续信源的熵。
在1)()(11112121==⎰⎰⎰⎰N b a b a N b a b a dx dx dxx q dx dx dxx p N NN N的条件下有[]⎰⎰-=1112)(log)(),(b a Nb ac dx dx x q x q X x q H NN⎰⎰⎰⎰⎰⎰+-=⎥⎦⎤⎢⎣⎡∙=111111121212)()(log)()(log)()()()(1log )(b a Nb a b a N b a b a Nb a dx dx x q x p x q dx dx x p x q dx dx x p x p x q x q NNNNN N令0,)()(≥=z x q x p z显然运用著名不等式1ln -≤z z 0>z 则]),([11)(log1)()()()(1log)(]),([1211121111X x p H a bdx dx x q x p x q dx dx a bx q X x q H c Ni i ib a Nb a b a N Ni i ib ac N N NN=-+-=⎥⎦⎤⎢⎣⎡-+--≤∏⎰⎰⎰∏⎰==则证明了,在定义域有限的条件下,以均匀分布的熵为最大。
信息论第3章信源及信息熵

举例
数学描述
离散信源 (数字信源)
连续信号
文字、数据、 离散化图象
离散随机变量 序列
跳远比赛的结果、语音 连续随机变量
信号抽样以后
序列
波形信源 (模拟信源)
语音、音乐、热噪声、 图形、图象
不常见
随机过程
表3.1 信源的分类
3.1 信源的分类及其数学模型
我们还可以根据各维随机变量的概率分布是否随时间的推移 而变化将信源分为平稳信源和非平稳信源,根据随机变量间 是否统计独立将信源分为有记忆信源和无记忆信源。
定义3.2 随机变量序列中,对前N个随机变量的联合熵求平
均:
HN
(X)
1 N
H ( X1X 2
XN)
称为平均符号熵。如果当N
时上式极限存在,则
lim
N
H
N
(X)
称为熵率,或称为极限熵,记为
def
H
lim
N
H
N
(
X
)
3.3.1 离散平稳无记忆信源
离散平稳无记忆信源输出的符号序列是平稳随机序列,并且
H(X ) H(X1X2 XN ) H ( X1) H ( X2 | X1) H ( X3 | X1X 2 ) H ( X N | X1X 2 X N1)
定理3.1 对于离散平稳信源,有以下几个结论:
(1)条件熵 H (X N | X1X 2 X N1) 随N的增加是递减的;
(2)N给定时平均符号熵大于等于条件熵,即
s1
si p(s j
| si )
s q
m
状态空间由所有状态及状态间的状态转移概率组成。通过引
入状态转移概率,可以将对马尔可夫信源的研究转化为对马 尔可夫链的研究。
信源熵的原理及应用

信源熵的原理及应用1. 介绍信源熵是信息论中一个重要的概念,它描述了一个随机信源所具有的信息量的平均度量。
信源的熵越大,表示信息的不确定性越高,需要更多的信息来描述。
本文将介绍信源熵的原理,并探讨其在通信、数据压缩以及密码学等领域的应用。
2. 信源熵的定义信源熵是正信息论中一个重要概念,它用来度量一个随机信源所具有的信息量的平均度量。
对于一个离散随机变量X,它的概率分布为P(X),则信源的熵定义如下:equationequation其中,xi是随机变量X的取值,P(xi)是xi对应的概率。
3. 信源熵的性质•信源熵的取值范围:信源的熵是非负的,即H(X) ≥ 0。
•最大熵原理:对于一个离散信源,当它的概率分布均匀时,即每个xi的概率相等时,信源熵达到最大值。
•如果一个信源越复杂,即其概率分布越不均匀,那么它的熵就越小。
4. 信源熵的应用4.1 通信系统在通信系统中,信源熵可以用来度量信道所传输信息的平均编码长度。
根据香农定理,信道传输的平均编码长度L与信源熵H(X)满足以下关系:equationequation当信道编码满足L = H(X)时,信道编码称为最优编码,即编码的平均长度等于信源熵。
4.2 数据压缩信源熵还可以应用于数据压缩领域。
数据压缩的目的是使用更少的位数来存储或传输数据。
通过统计一个数据源的概率分布,可以将出现概率低的数据编码为较长的二进制位,而出现概率高的数据编码为较短的二进制位。
信源熵提供了压缩算法的理论基础。
4.3 密码学在密码学中,信源熵用于度量消息或密码的随机性。
如果一个密码是完全随机的,并且每个密钥都是等概率选择的,那么这个密码的熵将达到最大值。
信源熵可以用来评估一个密码系统的安全性,以及密码生成算法的随机性。
5. 总结本文介绍了信源熵的原理及其应用。
信源熵是衡量信息量的重要度量指标,它在通信、数据压缩以及密码学等领域具有多种应用。
通过明确信源熵的定义和性质,我们可以更好地理解和应用它。
第3章_信源及信源熵_修改

第三章:信源及信源熵
信源分类
单符号信源
多符号信源 连续信源
4. 马尔可夫信源
(1) 定义 (2) 熵率
(3) 马尔可夫信源
(4) 马尔可夫链
马尔可夫链
第三章:信源及信源熵
信源分类
单符号信源
多符号信源 连续信源
4. 马尔可夫信源(续1)
(1) 定义
实际的有记忆信源,符号间的相关性可以追溯到很远,使 得熵率的计算比较复杂。
离散多符号信源可以用随机矢量/随机变量序列来描述, 即
一般来说,信源的统计特性随着时间的推移而有所变化。 为了便于研究,我们常常假定在一个较短的时间段内, 信源是平稳信源。
第三章:信源及信源熵
信源分类
单符号信源
多符号信源 连续信源
1. 预备知识(续1)
定义1:对于离散随机变量序列 ,若任意两个不同 时刻i和j (大于1的任意整数) 信源发出消息的概率分布完全相 同,即对于任意的 , 和 具有相同的概率分布。也就是
怎样确定信源产生的信息量、产生信息的速率 √
信源编码
(第五章)
根据信源输出消息在时间和取值上是离散或连续分类:
时间 (空间) 离散 取值 信源种类 举例 消息的数学描述
离散
离散信源 (数字信源)
文字、数据 、 离散化图象
离散随机变量序列
离散 连续
连续 连续
连续信源 波形信源 (模拟信源) 语音、音乐 、热噪声、 图形、图象 不常见
第三章:信源及信源熵
一:信源的分类及其数学模型
1. 预备知识 二:离散单符号信源 2. 离散平稳无记忆信源 三:离散多符号信源 3. 离散平稳有记忆信源 4. 马尔可夫信源 5. 信源的相关性和剩余度
第三章 信源及信源熵

3.3.1 离散平稳信源
P(Xi) P(Xj )
推论1
P(Xi Xi1) P(Xj Xj1)
PXi1Xi PXj1Xj P(Xi Xi1
XiN) P(Xj Xj1
XjN )
PX XX X iN i i1
iN1
PXjNXjXj1 XjN1
离散平稳信源的条件概率分布与时间起点无关,只与关联长度N有关。
第19页,共60页。
3.3.2 离散平稳无记忆信源
熵率
H lN iH m NX lN iN 1 m NX H H X
离散平稳无记忆信源的熵率等于单符号离散信源熵。
例1
离散无记忆信源为:X:{a1,a2,a3};P(X):{1/4, 1/2, 1/4},试求:
12))该写信出源该的信熵源;的二次H 扩(展X 信)源 ,1并.5 求b其it概率分布;
均为离散平稳 信源
中文自然语言文字
离散平稳信源又分为无记忆信源和有记忆信源。
第11页,共60页。
3.3 离散多符号信源
离散平稳无记忆信源 信源发出的各个符号彼此是统计独立的。 对于多符号信源X=(X1 X2 …XN),各随机变量Xi(i=1,2, …,N)之
间是统计独立的,即: 称该多符号信源为离散无记忆信源的N次扩展信源。
3)根据2)中结果求该信源二次扩展信源的信源熵及熵率。
第20页,共60页。
3.3.2 离散平稳无记忆信源
2)写出该信源的二次扩展信源,并求其概率分布;
解:
二次扩展信源为: 信源符号为:
X 2 :{A1…A9}
A1=a1a1 A4=a2a1 其概率分A布7=为a3:a1
A2=a1a2 A5=a2a2 A8=a3a2
波形信源的熵

i 1 N
§4.1 连续性信源的熵
三、连续信源熵的性质
1 , p( x ) b a 1. 链式法则和独立界 0, h( XY ) h( X ) h(Y | X ) h(Y ) h( X | Y )
x [a , b] others
p( xi ) log p( xi ) p( xi ) log
N i 1 i 1
p( xi ) log p( xi ) log
i 1
N
当N ( 0)时, H ( X ) H ( X ) p( x )dx 1 p( Nx i )
2. 相对熵
h( X )
b a
1 p( x )log dx p( x )
R
或:h( X ) p( x )log p( x )dx
1 h( X Y ) p( xy )log dxdy p( x y ) 1 h(Y X ) p( xy )log dxdy p( y x ) h( XY ) p( xy ) log p( xy )dxdy
§4
波形信源与波形信道
§4.1 连续性信源的熵
连续信源的熵 §4.2 Shannon公式
波形信源的熵
连续信源熵的性质
§4.1 连续性信源的熵
一、连续信源的熵
X R p( x ) p( x )
X (a , b) p( x ) p( x )
§4.1 连续性信源的熵
二、波形信源的熵
令
波形信源熵
{ x( t )}为平稳的随机过程; X ( X 1 , X 2 ,..., X N ) 为平稳随机序列,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章. 连续信源的信息熵
§3. 1 连续信源的离散化
( Discretization of Continuous Source)
我们前面所介绍的信源均指离散信源,即信源所发 的消息都是由符号或符号序列所组成; 而且每一个符号 的取值都属于一个有限元素组成的集合之中。
x
A
a1, p1,
log x 1 x Rx Ry
p(x y)
Rx Ry
p( y x)
where, x0
p( y)
p(x) p( y
Rx Ry
x) 1
p( y
x)
dxdy
p(x) p(x) p(y)
P(x y) p(xy)
p(xy)
p( y)
p(x)
p(x) p( y x)dxdy p(x) p( y)dxdy
Rx
Rx Ry
p(x) p( y x)log p(x)dxdy p( y) p( x y)log p( x y)dxdy
Rx Ry
Rx Ry
log x x 1 p(x) p( y x) log p(x) dxdy p(x) p( y x) log p( y) dxdy
i 1
i 1
§3. 2 连续变量的相对熵
以上我们将一个连续变量的概率空间量化成一个离
散空间,从而得到连续信源的近似信息熵。如果将此近
似手段在取极限的方式下就可逼近这个连续变量的熵。
即:lim 0
H
n
(
X
)
lim
0
i
n 1
pn ( xi ) log
pn ( xi )
(log )
p(x) f (x)
def
where : F (x) P(x),为概率分布函数。
def
f (x) p(x), 为概率分布密度。
b
b
P(x b) f (x)dx p(x)dx 1
a
a0
Δ
bx
§3. 2 连续变量的相对熵
如果把x∈[a,b]的定义域划分成n个小 区间,且每个小区间宽度相等。那么处
时,H()将会消失。所以我们可看到仅从Hc(X)上就可真正反映出 信息的全部属性 (包括非负性) 。因此,我们只要相对熵的定义就 足够了。同时我们也能给出两个连续变量的互信息问题:
§3. 2 连续变量的相对熵
先定义连续变量的条件熵:Hc ( X Y )
p(x)dx 1;
Rx
q( y)dy 1;
X
x H( p)
Amplitude discretization
正交变换 Orthogonal Transformation
x( )
Amplitude
continuous
Hc (X )
所谓正交变换是一种数学处理手段,将在T时间内的 受限于最高频率为F的随机过程,无失真地变换成2FT个 随机变量。最理想的正交变换是: K—L expansion。
def
Hc ( X ) p(x) log p(x)dx
R
where, R is the domain of x . 为什么说相对熵反映连续变量的客观存在的平均不定度?首 先一个随机变量,当它的概率分布一旦确定,则它的不定性就该 给定,而不能随划分精度的变化而变化。第二,由于信息量的概 念是不定度的解除量,如果在相同划分精度下,再讨论两者之差
a2 , p2 ,
, an , pn
finite
symbol
or
sequence
而连续信源是指信源所发出的消息都是由一个个随机
过程( stochastic process)所形成。如:语音信号 X (t,)
它不仅幅度上,而且在时间上也都是 连续的,即分别属
于一个无限的集合之中。
§3. 1 连续信源的离散化
H H m1
H X (t,)
随机过程的熵
最多保持不变。所以简化处理就 得付出代价即:容忍信息的丢失,
H1
H
(X
)
除非正交变换和极限处理。
H0 log n
序列熵的表达类型
第三章. 连续信源的信息熵
§3. 2 连续变量的相对熵
( The differential entropy of Continuous random Variable)
p(x) f (x)
于第i个区间的概率就等于:
def
pi Pn (xi ) P[a (i 1)] x (a i)
ai
a(i1) p( x)dx p( xi )
where : b a ; n
i 1, 2, n
xi a (i 1), a i
Rx Ry
p(
y
‖
x)dy
p(
x) log
p( x )dx
p(x) p( y
x) log p( y
x)dxdy
Ry
1
Rx
Rx Ry
Hc ( X ) Hc (Y X )
§3. 3 相对熵的性质
and
Hc(X ) Hc(X Y)
p(x)log p(x)dx p( y) p( x y)log p( x y)dxdy
§3. 1 连续信源的离散化
因此任何复杂的统计对象,经多种处理后就可由 浅入深地逐步解决问题。正如我们在离散信源中:
ai
消息
事件
X
随机 变量
X X (t,)
ቤተ መጻሕፍቲ ባይዱ
随机
随机
序列 H ( X )
过程
HL(X )
I (ai ) H ( X )
自信息
信息熵
任何处理过程总要丢失信息,
n
H
n
(
X
Y)
q( y)p(x y) log p(x y)dxdy lim log n
0
Rx Ry
0
def
Hc(X Y ) H ()
then : I ( X ;Y ) H ( X ) H ( X Y )
lim
0
Hn
(
X
)
lim
0
Hn
(
X
Y) Hc(X) Hc(X
Hn1 ( X ) p(x) log p(x)dx H (1)
R
Hn2 ( X ) p(x) log p(x)dx H (2 )
R
§3. 2 连续变量的相对熵
可见只有H()不同,因此我们说:能真正反映连续信源的客 观属性的应该是第一项,而不是第二项。对于后者我们称之为— —绝对熵(absolute entropy) ;而对于前者我们称之为——相对熵 (differential entropy) 。
«信 息 理 论 基 础 »
第三章:连续信源的信息熵
§3. Entropy of Continuous Source
§3.1 连续信源的离散化 §3.2 随机变量的相对熵 §3.3 相对熵的性质 §3.4 常见几种概率密度下的相对熵 §3.5 连续信源的最大熵定理 §3.6 平稳高斯随机过程的信息熵与互信息 §3.7 熵功率与功率不等式
Y)
§3. 2 连续变量的相对熵
可见当两个连续变量之间的互信息,实际上就是两熵之差, 经绝对熵的相互抵消后,就剩下相对熵之差了。所以相对熵则 完全反映出信息的基本属性。所谓“相对”一词也是由此而来。
注:相对熵的定义与离散信源的信息熵有着明显的差别, 即这种相对熵仅代表连续变量的相对平均不定度。
同理,也有如下的相对熵的定义:
n
n
b
p( x) log p( x)dx lim(log ) 0
a
n 信息散度 D( p//q )
def
Hc(X ) H ()
(relative entropy)
where :
def b
Hc ( X ) p( x) log p( x)dx
称为相对熵
Hc ( X ) Hc (Y ) Hc ( XY )
第三章. 连续信源的信息熵 §3. 3 相对熵的性质
( The Properties of Differential Entropy)
1°. 可加性
proof :
Hc(XY ) Hc( X ) Hc(Y X ) Hc(Y ) Hc(X Y )
由于表达形式的不同,则它的物理意义也应有所不同。所以 我们不能以离散熵的概念来理解上述表达式,特别是当某些离散 熵的数学性质不在继续保持的情况下,如:非负性、对称性、扩 展性等。但值得庆幸,上式中将熵函数中最能反映信源的固有属 性的数学性质如可加性、极值性和上凸性仍旧依然保持着。因此 有可能上述表达式的某些部分仍能代表连续信源的某些物理属性。 (但我们要深入讨论离散向连续逼近时,物理属性的变化。)
Ry
p(x y)dx 1;
Rx
then : Hn ( X Y ) q( y j ) p(x y j ) log p(x y j )
j
i
q( y j ) p(x y j ) log p(x y j ) log
j
i
lim
a
Differential entropy
def
and
H () lim(log )