高考数学刷题首选卷考点测试6函数的单调性理(含解析)
高中数学专题练习《函数的单调性》含详细解析

5.3 导数在研究函数中的应用5.3.1 函数的单调性基础过关练题组一 利用导数研究函数的图象变化1.如图所示的是导函数y=f'(x)的图象,那么函数y=f(x)的单调递减区间是( )A.(x1,x3)B.(x2,x4)C.(x4,x6)D.(x5,x6)2.设函数f(x)的图象如图所示,则导函数f'(x)的图象可能为( )3.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )4.已知f(x)满足f(4)=f(-2)=1,f'(x)为其导函数,且导函数y=f'(x)的图象如图所示,则f(x)<1的解集是 .题组二 利用导数确定函数的单调性与单调区间5.函数f(x)=x+ln x( )A.在(0,6)上是增函数B.在(0,6)上是减函数C.在0,,,6上是增函数D.在0,,,6上是减函数6.下列函数中,在(0,+∞)内为增函数的是( )A.y=sin xB.y=xe xC.y=x3-xD.y=ln x-x+3ln x的单调递增区7.(2020河南开封五县高二上期末联考)函数y=1x间为( )A.(0,1)B.0,C.(1,+∞),+∞8.(2020广西来宾高二下期末)函数f(x)=x2ln x的单调递减区间为( )A.(0,e),+∞C.(e,+∞)D.0,9.求下列函数的单调区间.(1)f(x)=3x2-2ln x;(2)f(x)=x2·e-x;.(3)f(x)=x+1x10.(2020天津部分区高二上期末)已知函数f(x)=x3-ax2+b(a,b∈R).(1)若曲线y=f(x)在点(1,f(1))处的切线方程为x+y-1=0,求a,b的值;(2)若a>0,求f(x)的单调区间.11.(2020浙江金华江南中学月考)已知函数f(x)=ax2+2x-4ln x的导函数3f'(x)的一个零点为x=1.(1)求a的值;(2)求函数f(x)的单调区间.题组三 利用导数解决含参函数的单调性问题12.已知函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是( )A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)13.若函数f(x)=ax3+3x2+x+b(a>0,b∈R)恰好有三个不同的单调区间,则实数a的取值范围是( )A.(0,3)∪(3,+∞)B.[3,+∞)C.(0,3]D.(0,3)14.若函数y=x2-2bx+6在(2,8)内是增函数,则实数b的取值范围是 .x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围15.若f(x)=-12是 .16.试求函数f(x)=kx-ln x的单调区间.17.已知函数f(x)=x3+ax2+(2a-3)x-1.(1)若f(x)的单调递减区间为(-1,1),求实数a的值;(2)若f(x)在区间(-1,1)内单调递减,求实数a的取值范围.能力提升练题组一 利用导数研究函数的图象变化1.(2020浙江杭州六校高二下期中,)若函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是( )2.(2020河北冀州中学高三上期末,)在R上可导的函数f(x)的图象如图所示,则关于x的不等式xf'(x)<0的解集为( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)3.(2020浙江绍兴高三上期末,)函数f(x)=x2+x的大致图象是( )e x4.()已知函数f(x)与f'(x)的图象如图所示,则函数g(x)=f(x)的单调递e x减区间为 .题组二 利用导数研究函数的单调性及其应用5.(2020福建三明高二上期末质量检测,)若x,y∈-π,且xsin2x-ysin y>0,则下列不等式一定成立的是( )A.x<yB.x>yC.|x|<|y|D.|x|>|y|6.(2019山东聊城一中高三上期中,)函数f(x)=sin 为f(x)的导函数,令a=1,b=log32,则下列关系正确的是( )2A.f(a)<f(b)B.f(a)>f(b)C.f(a)=f(b)D.f(a)≤f(b)7.(2020湖南长沙长郡中学高二上期末,)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为(深度解析) A.(-1,1) B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)8.(多选)()若函数g(x)=e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的为( )A.f(x)=2-xB.f(x)=3-xC.f(x)=x3D.f(x)=x2+29.(多选)()素数分布问题是研究素数性质的重要课题,德国数学家高斯提出了一个猜想:π(x)≈xln x,其中π(x)表示不大于x的素数的个数,即随着x的增大,π(x)的值近似接近xln x的值.从猜想出发,下列推断正确的是( )A.当x很大时,随着x的增大,π(x)的增长速度变慢B.当x很大时,随着x的增大,π(x)减小C.当x很大时,在区间(x,x+n)(n是一个较大常数)内,素数的个数随x的增大而减少D.因为π(4)=2,所以π(4)>4ln410.(2020江西上饶高二中、高三上第三次段考,)已知函数f(x)=x+sinx,若正实数a,b满足f(4a)+f(b-9)=0,则1a +1b的最小值为 .11.()已知函数f(x)=ln x-ax+1―ax-1(a∈R).(1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤12时,讨论f(x)的单调性.12.(2020河南濮阳高二上期末,)已知函数f(x)=ln x-ax(a∈R). (1)求函数f(x)的单调区间;(2)若a>0,求不等式-x>0的解集.题组三 利用导数解决含参函数的单调性问题13.(2020河南新乡高二上期末,)已知函数f(x)=e x(a-cos x)在R上单调递增,则a的取值范围为( )A.[1,+∞)B.(-∞,-2]C.[2,+∞)D.(-∞,-1]14.(2020河北保定高二上期末,)已知函数f(x)=x2-9ln x+3x在其定义域内的子区间(m-1,m+1)上不单调,则实数m的取值范围是( ), B.1,1, D.1,x2(a>0),若对任意15.(2020山西吕梁高二上期末,)已知f(x)=aln x+12>2成立,则a的取值范围是(深两个不等的正实数x1,x2,都有f(x1)-f(x2)x1-x2度解析)A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)16.(2019河北张家口高三上期末,)函数f(x)=sin x-aln x在0,调递增,则实数a的取值范围是 .深度解析17.()已知函数f(x)=ax2+ln(x+1).(1)当a=-1时,求函数f(x)的单调区间;4(2)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围.18.(2020辽宁省实验中学高三上期末,)已知a∈R,函数f(x)=e x+ax2.(1)已知f'(x)是函数f(x)的导函数,记g(x)=f'(x),若g(x)在区间(-∞,1]上为单调函数,求实数a的取值范围;(2)设实数a>0,求证:对任意实数x1,x2(x1≠x2),总有f(x1)+f(x2)成立.附:简单复合函数求导法则为[f(ax+b)]'=af'(ax+b).2答案全解全析基础过关练1.B 函数的单调递减区间就是使其导函数的值小于零的区间.故选B.2.C ∵f(x)在(-∞,1),(4,+∞)上为减函数,在(1,4)上为增函数,∴当x<1或x>4时,f'(x)<0;当1<x<4时,f'(x)>0.故选C.3.A 因为y=f(x)的导函数在区间[a,b]上是增函数,所以函数f(x)图象上的点的切线斜率是递增的.故选A.4.答案 (-2,4)解析 由f(x)的导函数f'(x)的图象知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.当x ≤0时,由f(x)<1=f(-2),得-2<x ≤0;当x>0时,由f(x)<1=f(4),得0<x<4.综上所述,f(x)<1的解集为(-2,4).5.A f'(x)=1+1x =x +1x(x>0),当0<x<6时,f'(x)>0,∴f(x)在(0,6)上是增函数.6.B A 中,y'=cos x,在(0,+∞)内不恒大于0,故A 不满足题意;B 中,y'=e x +xe x =e x (1+x),当x ∈(0,+∞)时,y'>0,故B 满足题意;C中,y'=3x 2-1,在(0,+∞)内不恒大于0,故C 不满足题意;D中,y'=1x-1=1―xx,在(0,+∞)内不恒大于0,故D 不满足题意.故选B.7.D 易知函数y=1x +3ln x 的定义域为(0,+∞),y'=-1x 2+3x =3x -1x 2,令y'=3x -1x 2>0,解得x>13.故选D.8.D 由题意得,函数f(x)的定义域为(0,+∞),f'(x)=2x ·ln x+x 2·1x=2xln x+x=x(2ln x+1).令f'(x)<0,得2ln x+1<0,解得0<x<e e,故函数f(x)=x 2ln x 的单调递减区间为0,9.解析 (1)易知函数的定义域为(0,+∞).f'(x)=6x-2,令f'(x)=0,解得x 1=3,x 2=-3(舍去),用x 1分割定义域,得下表:∴函数f(x)的单调递减区间为0,,+∞.(2)易知函数的定义域为(-∞,+∞).f'(x)=(x 2)'e -x +x 2(e -x )'=2xe -x -x 2e -x =e -x ·(2x-x 2),令f'(x)=0,得x=0或x=2,当x 变化时,f'(x),f(x)的变化情况如下表:x (-∞,0)(0,2)(2,+∞)f'(x)-+-f(x)↘↗↘∴f(x)的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2).(3)易知函数的定义域为(-∞,0)∪(0,+∞).f'(x)=1-1x 2,令f'(x)=0,得x=-1或x=1,当x 变化时,f'(x),f(x)的变化情况如下表:x(-∞,-1)(-1,0)(0,1)(1,+∞)f'(x)+--+f(x)↗↘↘↗∴函数f(x)的单调递减区间为(-1,0)和(0,1),单调递增区间为(-∞,-1)和(1,+∞).10.解析 (1)∵f(x)=x 3-ax 2+b(a,b ∈R),∴f'(x)=3x 2-2ax.∵函数y=f(x)在点(1,f(1))处的切线方程为x+y-1=0,∴f '(1)=3-2a =―1,f (1)=1-a +b =0, 解得a =2,b =1.(2)由(1)得f'(x)=3x 2-2ax=3xx-2a 3,令f'(x)=0,得x=0或x=2a3.∵a>0,∴当f'(x)>0时,x ∈(-∞,0)∪2a3,+∞;当f'(x)<0时,x ∈0,∴f(x)的单调递增区间为,+∞,单调递减区间为0,11.解析 (1)f'(x)=2ax+2-43x ,由f'(1)=2a+23=0,得a=-13.(2)由(1)得f(x)=-13x 2+2x-43ln x,则f'(x)=-23x+2-43x =-2(x -1)(x -2)3x.令f'(x)=0,得x=1或x=2.当f'(x)>0时,1<x<2;当f'(x)<0时,0<x<1或x>2.因此f(x)的单调递增区间是(1,2),单调递减区间是(0,1),(2,+∞).12.B 由题意知,f'(x)=-3x 2+2ax-1,因为y=f(x)在R 上是单调函数,且y=f'(x)的图象开口向下,所以f'(x)≤0在R 上恒成立,故Δ=4a 2-12≤0,即-3≤a ≤3.13.D 由题意得f'(x)=3ax 2+6x+1(a>0),∵函数f(x)恰好有三个不同的单调区间,∴f'(x)有两个不同的零点,∴Δ=36-12a>0,解得0<a<3,∴实数a 的取值范围是(0,3).故选D.14.答案 (-∞,2]解析 由题意得y'=2x-2b ≥0在(2,8)内恒成立,即b ≤x 在(2,8)内恒成立,所以b ≤2.15.答案 (-∞,-1]解析 ∵f(x)在(-1,+∞)上是减函数,∴f'(x)≤0在(-1,+∞)上恒成立.∵f'(x)=-x+bx +2,∴-x+bx +2≤0在(-1,+∞)上恒成立,即b ≤x(x+2)在(-1,+∞)上恒成立.令g(x)=x(x+2)=(x+1)2-1,则当x>-1时,g(x)>-1,∴b ≤-1.16.解析 易知函数f(x)=kx-ln x 的定义域为(0,+∞),f'(x)=k-1x =kx -1x.当k ≤0时,kx-1<0,∴f'(x)<0,则f(x)在(0,+∞)上单调递减.当k>0时,令f'(x)<0,得0<x<1k ;令f'(x)>0,得x>1k.∴当k>0时,f(x)的单调递减区间为0,,+∞.综上所述,当k≤0时,f(x)的单调递减区间为(0,+∞),无单调递增区间;当k>0时,f(x)的单调递减区间为0,,+∞. 17.解析 由题意得f'(x)=3x2+2ax+2a-3=(x+1)(3x+2a-3).(1)∵f(x)的单调递减区间为(-1,1),∴-1和1是方程f'(x)=0的两个根,∴3―2a3=1,∴a=0.(2)∵f(x)在区间(-1,1)内单调递减,∴f'(x)≤0在(-1,1)内恒成立.又二次函数y=f'(x)的图象开口向上,方程f'(x)=0的一根为-1,∴3―2a3≥1,∴a≤0.∴实数a的取值范围是{a|a≤0}.能力提升练1.D 设导函数y=f'(x)的图象与x轴交点的横坐标从左到右依次为x1,x2,x3,其中x1<0,x3>x2>0,故y=f(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增.故选D.2.A 由f(x)的图象得,f(x)在(-∞,-1)上单调递增,在(-1,1)上单调递减,在(1,+∞)上单调递增,因此,当x∈(-∞,-1)∪(1,+∞)时,f'(x)>0,当x∈(-1,1)时,f'(x)<0.则xf'(x)<0⇔x>0,f'(x)<0或x<0,f'(x)>0,解得0<x<1或x<-1,故选A.3.A 函数y=x 2+xe x 的导数为y'=-x 2+x +1e x,令y'=0,得x=1±52,当x ∈-∞,,y'<0,当x ,,y'>0,当x ,+∞时,y'<0.∴函数在-∞,,+∞上单调递减,,单调递增,排除D.当x=0时,y=0,排除B.当x=-1时,y=0,当x=-2时,y>0,排除C.故选A.4.答案 (0,1),(4,+∞)解析 g'(x)=f '(x)e x -f(x)(e x )'(e x )2=f '(x)-f(x)e x,由题中图象可知,当x ∈(0,1)时,f'(x)-f(x)<0,此时g'(x)<0;当x ∈(4,+∞)时,f'(x)-f(x)<0,此时g'(x)<0,故函数g(x)=f (x )e x的单调递减区间为(0,1),(4,+∞).5.D 构造函数f(x)=xsin x,x ∈-π2,π2,则f(x)是偶函数,且f'(x)=sinx+xcos x.当0≤x ≤π2时,f'(x)≥0,因此f(x)在0,,从而xsin x-ysiny>0⇔xsin x>ysin y ⇔f(x)>f(y)⇔f(|x|)>f(|y|)⇔|x|>|y|,故选D.6.B 由题意得,f'(x)=cosπ3+2f'解得=-12,所以f(x)=sin x-x.所以f'(x)=cos x-1≤0,所以f(x)为减函数.因为b=log32>log33=12=a,所以f(a)>f(b),故选B.7.B 令g(x)=f(x)-2x-4,则g'(x)=f'(x)-2.因为f'(x)>2,所以f'(x)-2>0,即g'(x)>0,所以g(x)=f(x)-2x-4在R上单调递增.又因为f(-1)=2,所以g(-1)=f(-1)-2=0,所以g(x)>0⇔g(x)>g(-1)⇔x>-1,所以f(x)>2x+4的解集是(-1,+∞),故选B.易错警示 构造函数解不等式是利用导数解决函数单调性问题的一个重要题型,构造函数时,要结合导数与不等式,如本题中构造函数g(x)=f(x)-2x-4,根据g'(x)=f'(x)-2和f'(x)>2得到单调性.8.AD 对于A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为R上的增函数,符合题意;对于B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为R上的减函数,不符合题意;对于C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g'(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g'(x)<0,当x>-3时,g'(x)>0,∴g(x)=e x f(x)在定义域R上先减后增,不符合题意;对于D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g'(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在R上恒成立,符合题意.故选AD.9.AC 设函数f(x)=xln x,x>0且x≠1,则f'(x)=ln x -1ln 2x =1ln x -1ln 2x ,x>0且x ≠1,f″(x)=2―ln xx (ln x )3,x>0且x ≠1,当x →+∞时,f″(x)<0,故当x 很大时,随着x 的增大,π(x)的增长速度变慢,故A 正确;函数f(x)=xln x 的图象如图所示:由图象可得随着x 的增大,π(x)并不减小,故B 错误;当x 很大时,在区间(x,x+n)(n 是一个较大常数)内,函数增长得慢,素数的个数随x 的增大而减少,故C正确;4ln4≈2.89>2,故D 错误.故选AC.10.答案 1解析 因为f(-x)=-x-sin x=-f(x),所以f(x)是奇函数.又f'(x)=1+cos x ≥0在R 上恒成立,∴f(x)在R 上是增函数.于是f(4a)+f(b-9)=0⇔f(4a)=f(9-b)⇔4a=9-b ⇔4a+b=9,又a>0,b>0,∴1a +1b =+(4a+b)=195+b a +4a b ≥195+2b a ·4a b=1,当且仅当b=2a=3时取等号,即1a +1b 的最小值为1.11.解析 (1)当a=-1时,f(x)=ln x+x+2x -1(x>0),f'(x)=1x +1-2x 2,f(2)=ln2+2,f'(2)=1,故所求切线方程为y=x+ln 2.(2)因为f(x)=ln x-ax+1―ax-1x>0,a ≤12,所以f'(x)=1x -a+a -1x 2=-ax 2-x +1―a x 2(x>0),令g(x)=ax 2-x+1-a=(x-1)(ax-1+a)(x>0).(i)当a=0时,g(x)=-x+1(x>0),所以当x ∈(0,1)时,g(x)>0,f'(x)<0,此时函数f(x)单调递减;当x ∈(1,+∞)时,g(x)<0,f'(x)>0,此时函数f(x)单调递增.(ii)当a ≠0时,令g(x)=0,解得x=1或x=1a -1.①若a=12,则函数f(x)在(0,+∞)上单调递减;②若0<a<12,则函数f(x)在-1,+∞上单调递减,在1,1a -1上单调递增;③当a<0时,1a -1<0,若x ∈(0,1),则g(x)>0,f'(x)<0,此时函数f(x)单调递减;若x ∈(1,+∞),则g(x)<0,f'(x)>0,此时函数f(x)单调递增.综上所述,当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a=12时,函数f(x)在(0,+∞)上单调递减;当0<a<12时,函数f(x)在(0,1),-1,+∞上单调递减,在1,1a -1上单调递增.12.解析 (1)易知f(x)的定义域为(0,+∞), f'(x)=1x -a=1―axx,①若a ≤0,则f'(x)>0恒成立,故f(x)在(0,+∞)上单调递增;②若a>0,则当0<x<1a 时,f'(x)>0,当x>1a 时,f'(x)<0,综上,当a ≤0时,f(x)的单调递增区间为(0,+∞),当a>0时,f(x)的单调递增区间为0,,+∞.(2)∵f(x)的定义域为(0,+∞),>0,-x >0,>0,∴0<x<2a .设-x=ln -x -x=ln -x -2ax+2,x ∈0,则F'(x)=1x +12a -x -2a=0,∴F(x)在0,,又∴当x ∈0,,F(x)<0,当x ,,F(x)>0,∴-x >0,13.C 因为f(x)=e x (a-cos x)在R 上单调递增,所以f'(x)=e x (a-cos x+sin x)≥0恒成立,即a ≥cos x-sin x 恒成立.令g(x)=cos x-sin x,则g(x)=cos x-sin x=2cos x +即g(x)∈[-2,2],所以a ≥2.故选C.14.D 因为f(x)=x 2-9ln x+3x,所以f'(x)=2x-9x +3,令f'(x)=0,即2x-9x +3=0,解得x=32或x=-3(舍去).所以当x ∈0,,f'(x)<0,f(x)单调递减,当x ,+∞时,f'(x)>0,f(x)单调递增.因为f(x)在区间(m-1,m+1)上不单调,所以m-1<32<m+1,解得12<m<52,因为(m-1,m+1)是函数f(x)定义域内的子区间,所以m-1≥0,即m ≥1,所以m 的取值范围是1,故选D.15.D 由f (x 1)-f(x 2)x 1-x 2>2,得f (x 1)-2x 1-[f(x 2)-2x 2]x 1-x 2>0,令g(x)=f(x)-2x=aln x+12x 2-2x(a>0),则g(x)为增函数,所以g'(x)=a x +x-2≥0(x>0,a>0)恒成立,即a ≥x(2-x)恒成立,又当x>0时,x(2-x)的最大值为1,所以a ≥1.方法技巧 解决不等式恒成立问题,常见的解题技巧是分离变量,这样可以避免分类讨论,如本题中将不等式a x +x-2≥0恒成立中的a 分离出来,即为a ≥x(2-x)恒成立.16.答案 (-∞,0]解析 函数f(x)=sin x-aln x 在0,π4上单调递增,即f'(x)=cos x-a x ≥0在0,,即a ≤xcos x 在0,.令g(x)=xcos x,则g'(x)=cos x-xsin x,令h(x)=cos x-x ·sin x,则h'(x)=-2sin x-xcos x<0在0,,所以g'(x)在0,,又所以g'(x)>0恒成立,所以函数g(x)在0,,可得g(x)>g(0)=0,所以a ≤0.方法技巧 利用导数解决函数的单调性问题时,经常会遇到f(x)=0(或f(x)>0)这样的方程(或不等式)不易求解的情况,可采用二次求导来解决问题,如本题中,g'(x)=cos x-xsin x=0,不易求解,令h(x)=cos x-x ·sin x,再求一次导数h'(x)=-2sin x-xcos x,即二次求导.17.解析 (1)当a=-14时,f(x)=-14x 2+ln(x+1)(x>-1),则f'(x)=-12x+1x +1=-(x +2)(x -1)2(x +1)(x>-1).令f'(x)>0,解得-1<x<1;令f'(x)<0,解得x>1.故函数f(x)的单调递增区间是(-1,1),单调递减区间是(1,+∞).(2)因为函数f(x)在区间[1,+∞)上是减函数,所以f'(x)=2ax+1x +1≤0对任意x ∈[1,+∞)恒成立,即a ≤-12x (x +1)对任意x ∈[1,+∞)恒成立.令g(x)=-12x (x +1),x ∈[1,+∞),易求得g'(x)>0在[1,+∞)上恒成立,所以g(x)在[1,+∞)上单调递增,因此g(x)min =g(1)=-14,故a ≤-14.即实数a 的取值范围是-∞,-18.解析 (1)由已知得f'(x)=e x +2ax,则g(x)=f'(x)=e x +2ax,则g'(x)=e x +2a.①若a ≥0,则g'(x)>0,g(x)在区间(-∞,1]上单调递增,符合题意;②若a<0,令g'(x)=0,解得x=ln(-2a),∵g'(x)是单调递增函数,∴要使g(x)在区间(-∞,1]上为单调函数,只需ln(-2a)≥1,解得a ≤-e 2,此时g(x)在区间(-∞,1]上为单调递减函数.由①②可得,使导函数f'(x)在区间(-∞,1]上为单调函数的a 的取值范围是-∞,-[0,+∞).(2)证明:∵x 1≠x 2,∴不妨设x 1<x 2,取x 1为自变量构造函数F(x 1-f (x 1)+f(x 2)2,则F'(x 1)=12f'-f '(x 1)2-f'(x 1),∵a>0,∴f'(x)=e x +2ax 在R 上单调递增,又x 1+x 22-x 1=x 2-x 12>0,∴1),即F'(x 1)>0.∴关于x 1的函数F(x 1)单调递增,∴F(x 1)<F(x 2)=0,∴<f (x 1)+f(x 2)2.。
高考数学复习函数的单调性与最值专题训练(含答案)

16年高考数学复习函数的单调性与最值专题训练(含答案)函数的单调性也可以叫做函数的增减性,下面是函数的单调性与最值专题训练,请考生及时练习。
一、选择题1.下列函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析对于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案C.已知函数f(x)为R上的减函数,则满足f(|x|)A.(-1,1)B.(0,1)C.(-1,0)(0,1)D.(-,-1)(1,+)解析f(x)在R上为减函数且f(|x|)|x|1,解得x1或x-1.答案D.若函数y=ax与y=-在(0,+)上都是减函数,则y=ax2+bx在(0,+)上是()A.增函数B.减函数C.先增后减D.先减后增解析y=ax与y=-在(0,+)上都是减函数,a0,b0,y=ax2+bx的对称轴方程x=-0,y=ax2+bx在(0,+)上为减函数.答案B4.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是().A.(-,0]B.[0,1)C.[1,+)D.[-1,0]解析g(x)=如图所示,其递减区间是[0,1).故选B.答案B.函数y=-x2+2x-3(x0)的单调增区间是()A.(0,+)B.(-,1]C.(-,0)D.(-,-1]解析二次函数的对称轴为x=1,又因为二次项系数为负数,,对称轴在定义域的右侧,所以其单调增区间为(-,0).答案C.设函数y=f(x)在(-,+)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为().A.(-,0)B.(0,+)C.(-,-1)D.(1,+)解析f(x)=f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-,-1).答案C二、填空题.设函数y=x2-2x,x[-2,a],若函数的最小值为g(a),则g(a)=________.解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案.函数y=-(x-3)|x|的递增区间是_______.解析y=-(x-3)|x|作出该函数的图像,观察图像知递增区间为.答案.已知函数f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,则a的取值范围是________.解析当a=0时,f(x)=-12x+5在(-,3)上为减函数;当a0时,要使f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,则对称轴x=必在x=3的右边,即3,故0答案10.已知函数f(x)=(a是常数且a0).对于下列命题:函数f(x)的最小值是-1;函数f(x)在R上是单调函数;若f(x)0在上恒成立,则a的取值范围是a对任意的x10,x20且x1x2,恒有f.其中正确命题的序号是____________.解析根据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;若f(x)0在上恒成立,则2a-10,a1,故正确;由图象可知在(-,0)上对任意的x10,x20且x1x2,恒有f成立,故正确.答案三、解答题.求函数y=a1-x2(a0且a1)的单调区间.当a1时,函数y=a1-x2在区间[0,+)上是减函数,在区间(-,0]上是增函数;当0x12,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x22,得x1x2(x1+x2)16,x1-x20,x1x20.要使f(x)在区间[2,+)上是增函数,只需f(x1)-f(x2)0,即x1x2(x1+x2)-a0恒成立,则a16..已知函数f(x)=a2x+b3x,其中常数a,b满足ab0.(1)若ab0,判断函数f(x)的单调性;(2)若ab0,求f(x+1)f(x)时的x的取值范围.解(1)当a0,b0时,因为a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0时,因为a2x,b3x都单调递减,所以函数f(x)单调递减.(2)f(x+1)-f(x)=a2x+2b3x0.(i)当a0,b0时,x-,解得x(ii)当a0,b0时,x-,解得x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x1,x2R,且x10,f(x2-x1)1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10.f(x2)f(x1).即f(x)是R上的增函数.(2) f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,要练说,得练看。
高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.若函数,则下列结论正确的是()A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数【答案】C【解析】因为,且函数定义域为令,则显然,当时,;当时,所以当时,在上是减函数,在上是增函数,所以选项A,B均不正确;因为当时,是偶函数,所以选项C正确.要使函数为奇函数,必有恒成立,即恒成立,这与函数的定义域相矛盾,所以选项D不正确.【考点】1、导数在研究函数性质中的应用;2、函数的奇偶性.2.对任意实数,记,若,其中奇函数在时有极小值,是正比例函数,与图象如图,则下列关于的说法中正确的是()A.是奇函数B.有极大值和极小值C.的最小值为,最大值为2D.在上是增函数【答案】B【解析】因为,是奇函数,其图象关于原点对称,所以与图象如图1所示;图1根据,可知,的图象如图2所示,显然,的图象不关于原点对称,不是奇函数;无最小值、无最大值;其在区间“先增后减”,故选B.图2【考点】新定义函数,函数的奇偶性,函数的图象,函数的单调性与极(最)值.3. [2014·日照模拟]已知函数f(x)在定义域(0,+∞)上是单调函数,若对于任意x∈(0,+∞),都有=2,则的值是()A.5B.6C.7D.8【答案】B【解析】因为f(x)是定义在(0,+∞)上的单调函数,且=2对任意x∈(0,+∞)都成立,所以f(x)-=c>0(c为常数),即f(x)=c+,且f(c)=2,故2=c+,解得c=1,故f(x)=1+,所以=1+5=6.4.设是定义在R上的偶函数,且当时,。
若对任意的x,不等式恒成立,则实数a的最大值是()。
A.B.C.D.2【答案】C【解析】是定义在上的偶函数,不等式恒成立等价为恒成立,当时,.不等式等价为恒成立,即在上恒成立,平方得即在上恒成立,设,则满足即故实数的最大值是.故选C.【考点】1.函数的奇偶性;2.恒成立问题.5.(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.【答案】B【解析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.6.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.7.下列函数中,既是奇函数又在区间上单调递增的函数为()A.B.C.D.【答案】C【解析】是奇函数但在区间上不是单调函数.在区间上单调递增但不是奇函数,既是奇函数又在区间上单调递增的函数,在区间上单调递增但不是奇函数.【考点】函数奇偶性及单调性8.已知,,规定:当时, ;当时,,则()A.有最小值,最大值1B.有最大值1,无最小值C.有最小值,无最大值D.有最大值,无最小值【答案】C【解析】由题得,利用平移变化的知识画出函数的图像如下,而,故有最小值1,无最大值.【考点】函数图像平移变化9.已知函数若对任意的,且恒成立,则实数a的取值范围为.【答案】【解析】,由知,函数在单调递增,当,满足题意;当时,只需,即,综上所述,实数a的取值范围为.【考点】1、分段函数;2、函数的单调性.10.判断函数f(x)=e x+在区间(0,+∞)上的单调性.【答案】f(x)在(0,+∞)上为增函数【解析】(解法1)设0<x1<x2,则f(x1)-f(x2)===.∵0<x1<x2,∴x1-x2<0,x1+x2>0,∴ex1-x2<1,ex1+x2>1,ex1>0,∴f(x1)<f(x2).∴f(x)在(0,+∞)上是增函数.(解法2)对f(x)=e x+求导,得f′(x)=e x-=(e2x-1),当x>0时,e x>0,e2x>1,∴f′(x)>0,∴f(x)在(0,+∞)上为增函数.11.函数y=1-的最大值与最小值的和为.【答案】2【解析】令f(x)=,则f(x)为奇函数,故f(x)max +f(x)min=0,∴ymax +ymin=2.12.已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+2)=-f(x);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图像关于y轴对称.下列结论中,正确的是()A.f(4.5)<f(6.5)<f(7) B.f(4.5)<f(7)<f(6.5) C.f(7)<f(4.5)<f(6.5) D.f(7)<f(6.5)<f(4.5)【答案】B【解析】由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),则函数y=f(x)的最小正周期为4;根据②知函数y=f(x)在[0,2]上单调递增;根据③知函数y=f(x)的图像关于直线x=2对称,所以f(4.5)=f(0.5),f(6.5)=f(2.5)=f(1.5),f(7)=f(3)=f(1).故f(4.5)<f(7)<f(6.5).13.已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是()A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)【答案】C【解析】f(x)=由f(x)的图象可知f(x)在(-∞,+∞)上是单调增函数,由f(2-a2)>f(a)得2-a2>a,即a2+a-2<0,解得-2<a<1.14.已知函数y=f(x)满足:对任意的x1<x2≤-1,[f(x2)-f(x1)](x2-x1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为()A.f(-2)<f(-)<f(-1)B.f(-2)>f(-)>f(-1)C.f(-2)>f(-1)>f(-)D.f(-)>f(-2)>f(-1)【答案】A【解析】由题意及函数单调性的定义得,f(x)在(-∞,-1]上单调递增,又-2<-<-1, ∴f(-2)<f(-)<f(-1).15.函数y=-(x-3)|x|的递增区间是__________.【答案】[0,]【解析】y=-(x-3)|x|=作出该函数的图象,观察图象知递增区间为[0,].16.设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f;(2)若x0满足f[f(x)]=x,但f(x)≠x,则称x为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.【答案】(1)(2)见解析,x1=,x2=(3)最小值为,最大值为【解析】(1)当a=时,f=,f=f=2=.(2)证明:f[f(x)]=当0≤x≤a2时,由x=x解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点;当a2<x≤a时,由 (a-x)=x解得x=∈(a2,a),因为f=·=≠,故x=是f(x)的二阶周期点;当a<x<a2-a+1时,由 (x-a)=x解得x=∈(a,a2-a+1),因为f=·=,故x=不是f(x)的二阶周期点;当a2-a+1≤x≤1时,由 (1-x)=x解得x=∈(a2-a+1,1),因为f =·=≠,故x=是f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x1=,x2=.(3)由(2)得A(,),B(,),则S(a)=,S′(a)=·.因为a∈[,],有a2+a<1,所以S′(a)=·=·>0.(或令g(a)=a3-2a2-2a+2,g′(a)=3a2-4a-2=3(a-)(a-),因为a∈(0,1),所以g′(a)<0,则g(a)在区间[,]上最小值为g()=>0,故对于任意a∈[,],g(a)=a3-2a2-2a+2>0,S′(a)=·>0)则S(a)在区间[,]上单调递增,故S(a)在区间[,]上的最小值为S()=,最大值为S()=.17. {an }为首项为正数的递增等差数列,其前n项和为Sn,则点(n,Sn)所在的抛物线可能为()【答案】D【解析】当n≥1时{an }单调递增且各项之和大于零,当n=0时Sn等于零,结合选项只能是D.18.设g(x)是定义在R上以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]时的值域为[-2,5],则f(x)在区间[2,5]上的值域为________.【答案】[-3,6]【解析】当x∈[2,3]时,x+1∈[3,4],所以f(x+1)=x+1+g(x+1)=x+1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-3,4];当x∈[4,5]时,x-1∈[3,4],所以f(x-1)=x-1+g(x-1)=x-1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-1,6],所以f(x)在区间[2,5]上的值域为[-3,6].19.下列函数中,在区间(0,+∞)上为增函数的是 ().A.y=lg(x+2)B.y=-C.y=x D.y=x+【答案】A【解析】A中,y=lg(x+2)在(0,+∞)上是增函数,B、C中函数为减函数,D中在(0,+∞)上不单调.20.设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是().A.-2≤t≤2B.-≤t≤C.t≤-2或t=0或t≥2D.t≤-或t=0或t≥【答案】C【解析】依题意f(x)的最大值为f(1)=1,要使f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则1≤t2-2at+1,即t2-2at≥0,亦即t(t-2a)≥0,当t=0时,不等式成立,当0≤a≤1时,不等式的解为t≥2a≥2;当-1≤a≤0时,不等式的解为t≤2a≤-2.21.已知函数(其中且),是的反函数.(1)已知关于的方程在区间上有实数解,求实数的取值范围;(2)当时,讨论函数的奇偶性和增减性;(3)设,其中.记,数列的前项的和为(),求证:.【答案】(1);(2)奇函数,减函数;(3)证明见解析.【解析】(1)这是一个对数方程,首先要转化为代数方程,根据对数的性质有,从而有,方程在上有解,就变为求函数在上的值域,转化时注意对数的真数为正;(2)奇偶性和单调性我们都根据定义加以解决;(3),,要证明不等式成立,最好是能把和求出来,但看其通项公式,这个和是不可能求出的,由于我们只要证明不等式,那么我们能不能把放缩后可求和呢?,显然,即,左边易证,又由二项式定理,在时,,所以,注意到,至此不等式的右边可以求和了,,得证.试题解析:(1)转化为求函数在上的值域,该函数在上递增、在上递减,所以的最小值5,最大值9。
高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。
它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。
为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。
一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。
2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。
3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。
4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。
高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.下列函数中,满足“”的单调递增函数是()A.B.C.D.【答案】D【解析】A选项:由,,得,所以A错误;B 选项:由,,得,所以B错误;C选项:函数是定义在上减函数,所以C错误;D选项:由,,得;又函数是定义在上增函数,所以D正确;故选D.【考点】函数求值;函数的单调性.2.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=,可知a=,设|2x-4|=t,当x≥2时,t为增函数,∴f(x)在此区间为减函数,选B项.3.已知函数f(x)=a-.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.【答案】(1)见解析(2)(-∞,3]【解析】解:(1)证明:当x∈(0,+∞)时,f(x)=a-,设0<x1<x2,则x1x2>0,x2-x1>0,f(x2)-f(x1)=(a-)-(a-)=-=>0,∴f(x)在(0,+∞)上是增函数.(2)由题意:a-<2x在(1,+∞)上恒成立,设h(x)=2x+,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)-h(x2)=(x1-x2)(2-).∵1<x1<x2,∴x1-x2<0,x1x2>1,∴2->0,∴h(x 1)<h(x 2),∴h(x)在(1,+∞)上单调递增. 故a≤h(1)即a≤3,∴a 的取值范围是(-∞,3].4. 已知定义在区间(0,+∞)上的函数f(x)满足f=f(x 1)-f(x 2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.【答案】(1)0 (2)函数f(x)在区间(0,+∞)上是单调递减函数. (3)-2 【解析】解:(1)令x 1=x 2>0, 代入得f(1)=f(x 1)-f(x 1)=0, 故f(1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2, 则>1,由于当x>1时,f(x)<0,所以f<0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2),所以函数f(x)在区间(0,+∞)上是单调递减函数. (3)∵f(x)在(0,+∞)上是单调递减函数. ∴f(x)在[2,9]上的最小值为f(9). 由f =f(x 1)-f(x 2)得, f=f(9)-f(3),而f(3)=-1,∴f(9)=-2. ∴f(x)在[2,9]上的最小值为-2.5. [2014·沈阳模拟]已知函数f(x +1)是定义在R 上的奇函数,若对于任意给定的不相等的实数x 1、x 2,不等式(x 1-x 2)·[f(x 1)-f(x 2)]<0恒成立,则不等式f(1-x)<0的解集为________. 【答案】(-∞,0)【解析】∵f(x +1)是定义在R 上的奇函数,关于(0,0)对称,向右平移1个单位得到f(x)的图象,关于(1,0)对称,即f(1)=0,又∵任取x 1,x 2∈R ,x 1≠x 2,都有(x 1-x 2)·[f(x 1)-f(x 2)]<0,∴f(x)在R 上单调递减.∵f(1-x)<0=f(1),∴1-x >1,∴x <0,∴不等式f(1-x)<0的解集为(-∞,0).6. (2012•广东)下列函数,在区间(0,+∞)上为增函数的是( ) A .y=ln (x+2)B .C .D .【答案】A【解析】A ,y=ln (x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A 正确; B ,在[﹣1,+∞)上为减函数;排除B C ,在R 上为减函数;排除CD ,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选 A7. 下列函数中,既是奇函数又在区间上单调递增的函数为( )A.B.C.D.【答案】C【解析】是奇函数但在区间上不是单调函数.在区间上单调递增但不是奇函数,既是奇函数又在区间上单调递增的函数,在区间上单调递增但不是奇函数.【考点】函数奇偶性及单调性8.函数f(x)=﹣1的图象大致是()A. B. C. D.【答案】A【解析】因为0,所以f(x)在[0,+∞)上递增,排除B;当x=0时,f(0)=﹣1,即f(x)的图象过点(0,﹣1),排除C、D;故选A.9.已知函数,在时取得极值,则函数是()A.偶函数且图象关于点(,0)对称B.偶函数且图象关于点(,0)对称C.奇函数且图象关于点(,0)对称D.奇函数且图象关于点(,0)对称【答案】D【解析】的图像关于对称,,,,显然是奇函数且关于点对称,故选D.【考点】三角函数的性质.10.已知其导函数的图象如图,则函数的极小值是()A.B.C.D.c【答案】D【解析】由导函数的图象知当时,,当时,,所以函数的极小值为,选D.11.若在上是减函数,则b的取值范围是()A.B.C.D.【答案】C【解析】函数的导数,若函数在上是减函数,则,在恒成立,即,因为,所以,即成立。
(word完整版)高中数学函数的单调性和最值习题和详解

高中数学高考总复习函数的单调性与最值习题及详解一、选择题1 •已知f(x)=—X—X3, x€ [a, b],且f(a)f(b)<0,则f(x) = 0 在[a, b]内()A•至少有一实数根B.至多有一实数根C •没有实数根D.有唯一实数根[答案]D[解析]•••函数f(x)在[a, b]上是单调减函数,又f(a), f(b)异号•••• f(x)在[a, b]内有且仅有一个零点,故选 D.2 • (2010北京文)给定函数①y= x1,②y= log2(x+ 1),③y=x —11,④y= 2x+1,其中在区间(0,1)上单调递减的函数的序号是()A .①②B.②③C .③④D.①④[答案]B1 1 1[解析]易知y = X2在(0,1)递增,故排除A、D选项;又y= logq(x+ 1)的图象是由y= logqx的图象向左平移一个1单位得到的,其单调性与y= log^x相同为递减的,所以②符合题意,故选 B.1 1 13 • (2010 济南市模拟)设y1 = 0.43, y2= 0.53,y3= 0.54,则( )A • y3<y2<y1 B. y1<y2<y3C. y2<y3<y1D. y1<y3<y2[答案]B1 1[解析]•/ y= 0.5x为减函数,• 0.53<0.54,1•/ y= x3在第一象限内是增函数,1 1二0.43<0.53,二y1<y2<y3,故选 B.a _ 2 x ___ 1 x W14. (2010 •州市)已知函数,若f(x)在(—a, + a上单调递增,贝U实数a的取值范围为()log a x x>1A • (1,2) B. (2,3)C. (2,3]D. (2,+a)[答案]C[解析]••• f(x)在R上单调增,a>1a —2>0 , a —2 X1 —1 w log1••• 2<a W3,故选 C. 5.(文)(2010山东济宁)若函数f (x )= x 2+ 2x + alnx 在(0,1)上单调递减,则实数 a 的取值范围是()A . a > 0B . a <0 D . a <— 4[答案]Da 2x 2 + 2x + a[解析]•••函数 f(x)= x 2 + 2x + alnx 在(0,1)上单调递减,•••当 x € (0,1)时,f'x) = 2x + 2+- = ------- g(x)x — =2x 2 + 2x + a <0在 x € (0,1)时恒成立,• g(0) <p g(1) <p 即 a <— 4.n n(理)已知函数y = tan^x 在—2, 2内是减函数,贝卩3的取值范围是()A . 0< 1B . — 1 <o <0C . 3 》1D . 3<— 1[答案]Bn n[解析]•/ tansx 在—2,2上是减函数, • 3<0.当—n <x<2时,有n _冗3< c < 3X —7t3<0 6. (2010 天津文)设 a = log 54, b = (log 53)2, c = log 45,则( )A . a v c v bD . b v a v c[答案]D[解析] T 1>log 54>log 53>0,「. Iog 53>(log 53)2>0,而 Iog 45>1,「. c>a>b. 7 .若f(x)= x 3— 6ax 的单调递减区间是(一2,2),则a 的取值范围是( )A . (—s, 0]B . [ — 2,2]C . {2}D . [2,+ s)[答案]C[解析]f 'x) = 3x 2— 6a ,,…一1 <3<0.B . b v c v a 2 兀 n若a<0则f'x) >0 • f(x)单调增,排除A ;若a>0,则由f'x)= 0 得x= ± 2a,当x< —.2a 和x> ,2a 时,f'x)>0, f(x)单调增,当一.2a<x<,2a 时,f(x)单调减,••• f(x)的单调减区间为(—.2a, 2a),从而J2a = 2,a= 2.[点评]f(x)的单调递减区间是(一2,2)和f(x)在(—2, 2)上单调递减是不同的,应加以区分.1 18. (文)定义在R上的偶函数f(x)在[0,+ ^上是增函数,若f(?)= 0,则适合不等式f(log^7x)>0的x的取值范围是()1A . (3, + s) B. (0,刁1C . (0, + ) D. (0, 3) U (3 ,+s)[答案]D1 1[解析]•••定义在R上的偶函数f(x)在[0,+s上是增函数,且f( ) = 0,则由f(log丄x)>0,得|log丄x|>,即log!3 27 27 3 271 1 x>孑或log—x< —百.选D.327 3(理)(2010南充市)已知函数f(x)图象的两条对称轴x= 0和x= 1,且在x€ [—1,0]上f(x)单调递增,设a= f(3), b =f( 2), c= f(2),贝U a、b、c的大小关系是()A. a>b>cB. a>c>bC. b>c>aD. c>b>a[答案]D[解析]••• f(x)在[—1,0]上单调增,f(x)的图象关于直线x= 0对称,• f(x)在[0,1]上单调减;又f(x)的图象关于直线x= 1对称,• f(x)在[1,2]上单调增,在[2,3]上单调减.由对称性f(3) = f( —1)= f(1)<f( _2)<f(2),即a<b<c.x2+ 4x, x>09. (2009天津高考)已知函数f(x) = 2n若f(2 —a2)> f(a),则实数a的取值范围是()4x—x , x v 0.A . (— s,—1) U (2,+ s)B . ( —1,2)C . ( —2,1)D . (— s,—2) U (1 ,+ s)[答案]C[解析]■/ 时,f(x) = x2+ 4x= (x+ 2)2—4 单调递增,且f(x)当x<0 时,f(x)= 4x—x2=—(x —2)2+ 4 单调递增,且f(x)<0 ,• f(x)在R 上单调递增,由f(2 —a2)>f(a)得2—a2>a,•—2<a<1.10 . (2010泉州模拟)定义在R上的函数f(x)满足f(x + y) = f(x) + f(y),当x<0时,f(x)>0,则函数f(x)在[a, b]上有( )A .最小值f(a)B .最大值f(b)C .最小值f(b)D .最大值a +b f 2[答案]C[解析]令x = y= 0 得,f(0)= 0,令y=—x得,f(0) = f(x)+ f(—x),二f(—x)=—f(x)-对任意x i , X2 € R 且x i <X2,,f(x i) —f(X2)= f(x i) + f( —x2)=f(x i —X2)>0 ,.•• f(X l)>f(X2),••• f(x)在R上是减函数,••• f(x)在[a,b]上最小值为f(b).二、填空题b i11. (2010 重庆中学)已知函数f(x)= ax+ x—4(a, b 为常数),f(lg2) = 0,则f(lg^)= _____________[答案]—8[解析]令(Kx)= ax+ b,贝V H x)为奇函数,f(x) = $(x) —4,入•- f(lg2) = H lg2) —4 = 0 ,• H lg2)= 4,“ 1•-饥刁=f(—lg2) = H( —lg2) —4=—y ig2) —4=—8.12 .偶函数f(x)在(—s,0]上单调递减,且f(x)在[—2,k]上的最大值点与最小值点横坐标之差为3,则k= __________[答案]3[解析]•••偶函数f(x)在(—R, 0]上单调递减,• f(x)在[0,+ ^上单调递增.因此,若k WQ贝U k—(—2) = k + 2<3,若k>0,v f(x)在[—2,0]上单调减在[0,—k]上单调增,.••最小值为f(0), 又在[—2, k]上最大值点与最小值点横坐标之差为3,• k—0= 3,即k= 3.13 .函数f(x)= aX 1在(—m, —3)上是减函数,则a的取值范围是________________x+ 3[答案]1 ——OO ——_,314 . (2010 •苏无锡市调研)设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+^上是增函数,若f:=0 , f(log a t)>0,贝y t的取值范围是 _______ .[答(1,扫u (0,诵)案]1[解析]f(log a t)>0,即 f(log a t)>f 2, 1••• f(x)在(0,+ ^上 为增函数,二 log a t>2, 0<a<1 ,.°. 0<t<“Ja.1 i又 f(x)为奇函数,••• f — - =- f- = 0,r 1…f(log a t)>0 又可化为 f(log a t)>f — 2 , •••奇函数f(x)在(0 ,+8上是增函数,1• f(x)在(—8, 0)上为增函数,• 0>log a t> — 2,综上知,0<t< a 或1<t< a , 三、解答题15. (2010 北京市东城区)已知函数 f(x) = log a (x + 1) — log a (1 — x), a>0 且 a * 1. (1) 求f(x)的定义域;⑵判断f(x)的奇偶性并予以证明;⑶当a>1时,求使f(x)>0的x 的取值集合.[解析](1)要使 f(x) = log a (x + 1) — log a (1 — x)有意义,则 x + 1>0,解得—1<x<1.1 — x>0故所求定义域为{x — 1<x<1}.⑵由(1)知f(x)的定义域为{X — 1<x<1},且 f( — x) = log a ( — x +1)— log a (1 + x) = — [log a (x + 1) — log a (1 — x)] = — f(x),故 f(x)为奇函数. ⑶因为当a>1时,f(x)在定义域{x|— 1<x<1}内是增函数, x + 1所以 f(x)>0?产->1.1 — x 解得0<x<1.所以使f(x)>0的x 的取值集合是{x|0<x<1}.1 — mx 口 亠 p16. (2010北京东城区)已知函数f(x)= log a 是奇函数(a>0,a * 1) x — 1(1) 求m 的值;(2) 求函数f(x)的单调区间;(3) 若当x € (1,a — 2)时,f(x)的值域为(1,+8),求实数a 的值. “八卄亠1 — mx . 1+ mx 小•/ 0<a<1 ,1<t<1a ,[解析](1)依题意,f(—x)=—f(x),l卩f(x) + f(—x)= 0,即log a x—1 + log a—x—1 = 0,1 —mx 1 + mx•••—1,二(1 —m2)x2= 0 恒成立,x—1 —X—1 '•1 — m2= 0,「. m=—1或m= 1(不合题意,舍去)1 + x当m=—1时,由一>0得,x € (—汽一1) U (1,+s),此即函数f(x)的定义域,x —1又有f( —x) = —f(x),• m=—1是符合题意的解.1 + x⑵•/ f(x) = log a x z7,x—1 1 +X ,•- f x) = logx+ 1 x—1 &_ x—1 x—1 —x+1 2log a ex+1 x —1 2log a e—1—x2①若a>1,则log a e>0当x€ (1 ,+s 时,1 —x2<0 f'x)<0, f(x)在(1, +s上单调递减,即(1,+ s是f(x)的单调递减区间;由奇函数的性质知,(一s,—1)是f(x)的单调递减区间.②若0<a<1,则log a e<0当x€ (1 ,+s 时,1 —x2<0, • f'x(0,• (1 ,+s是f(X)的单调递增区间;由奇函数的性质知,(一s,—1)是f(x)的单调递增区间.1 + x 2(3)令t —------ —1 + -- ,贝U t为x的减函数x—1 x—1•- x€ (1, a —2),2 2• t€ 1+ ■,+ s且a>3,要使f(x)的值域为(1,+ s)需log a 1+ —1,解得a—2+ 3.a—3 a —31 —a _17 . (2010 山东文)已知函数f(x)—lnx—ax+ ——1(a€ R).入(1)当a ——1时,求曲线y—f(x)在点(2, f(2))处的切线方程;⑵当a g时,讨论f(x)的单调性.2[解析](1)a ——1 时,f(x) —lnx+ x+- —1, x€ (0,+s).xx2+ x—2f—2—, x € (0,+ s)y x因此f' (—1,即曲线y—f(x)在点(2 , f(2))处的切线斜率为1.又f(2) —ln2 + 2,所以y—f(x)在(2, f(2))处的切线方程为y—(In2 + 2) —x—2,即x—y+ ln2 —0.WORD 格式.可编辑__ 1 — a ⑵因为 f(x)= lnx — ax + — - 1, 入1 a — 1 ax2 — x +1 — a所以 f ,x) = — a + -- =— — 2x € (0,+g). x x x令 g(x) = ax 2— x + 1 — a ,① 当 a = 0 时,g(x) = 1— x , x € (0, + g), 当 x € (0,1)时,g(x)>0 , f'x (O , f(x)单调递减; 当 x € (1 ,+g 时,g(x)<0,此时 f 'x)>0, f(x)单调递增; 1② 当 a 工0时 f'x)= a(x — 1)[x — ( — 1)],a(i )当a = 2■时,g(x)亘成立,f'x) WQ f(x)在(0,+ g 上单调递减;1 1(ii )当 0<a<2时,彳—1>1>0, x € (0,1)时,g(x)>0,此时 f'x)<0, f(x)单调递减;1x € (1 , -— 1)时,g(x)<0,此时 f 'x)>0, f(x)单调递增; a g(x)>0,此时 f 'x)<0, f(x)单调递减;③当 a<0 时,1— 1<0,ax € (0,1)时,g(x)>0,有 f'x (O , f(x)单调递减 x € (1,+g)时,g(x)<0,有 f 'x)>0, f(x)单调递增. 综上所述:当a W0时函数f(x)在(0,1)上单调递减,(1,+g 上单调递增; 1当a = $时,f(x)在(0 ,+g 上单调递减;11 1当Ovav :时,f(x)在(0,1)上单调递减,在(1, — 1)上单调递增,在(-—1 ,+g 上单调递减.2 a a 注:分类讨论时要做到不重不漏,层次清楚.1x € Q — 1 ,+ g)寸,。
江苏省2019年高考数学小专题复习6--函数单调性在数列中的应用(有答案)
四、 【练习】
1. 已知等差数列 {an } 的首项 a1 20 ,公差 d 2 ,则前 n 项和 S n 的最大值为
*
.110
2. 在数列 {an } 中, a1 18 , a n 1 a n 3 ( n N ) ,则数列 {an } 的前 n 项和 S n 的最小 值为 .-63 3. 已知数列 {an } 的前 n 项和为 S n ,且 a2 an S 2 S n 对一切正整数 n 都成立. (1)求 a1 , a2 的值; (2)设 a1 0 ,数列 {lg 大值. 解: (1)取 n=1,得 a2 a1 S 2 S1 2a1 a2 , 取 n=2,得 a 2 2a1 2a 2 , 又②-①,得 a 2 ( a 2 a1 ) a 2 若 a2=0, 由①知 a1=0, 若 a2 0,由③知a 2 a 1 1 , 由①④解得, a1 ④
2 1, a 2 2 2.
当 n 2时,有( 2 2)a n S 2 S n , (2+ 2 )an-1=S2+Sn-1,
( 1 2 )a n ( 2 2)a n 1, 即 an= 2a n 1 (n 2) , 所以
所以 a n a1 ( 2 ) 令 b n lg
n
(3)令 en n (Tn 3) n (2n 3)2
n
n
[来源:学|科|网]
由 en en 1 ,得 n(2n 3)2 (n 1)(2n 1)2
n 1
,即 n(2n 3) 2(n 1)(2n 1)
解得对任意 n N 成立,即数列 {en } 为单调递增数列, 所以 {en } 的最小项为 e1 2 因为 en 对任意 n N 恒成立,所以 2 ,
高三数学函数的单调性与最值试题答案及解析
高三数学函数的单调性与最值试题答案及解析1.若f(x)=是R上的单调函数,则实数a的取值范围为.【答案】[,+∞)【解析】因为当时,为单调递减函数,所以当时,也为单调递减函数,因此且【考点】分段函数单调性2.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法3.如果在区间上为减函数,则的取值范围()A. B. C. D (0,)【答案】C【解析】首先当时满足在区间上为减函数,所以;其次当时,由二次函数的图象和性质可知:要使在区间上为减函数,必须且只需:,综上知的取值范围为;故选C.【考点】一次函数与二次函数的单调性.4.如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程lg(x+y)=lgx+lgy,那么y=f(x)在[2,4]上的最小值是________.【答案】【解析】由lg(x+y)=lgx+lgy,得,由x+y=xy得y=f(x)===1+(x≠1).则函数f(x)在(1,+∞)上单调递减,所以y=f(x)在[2,4]上的最小值是f(4)=1+=.5.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|.下列不等关系:①<;②f(sin l)>f(cos l);③<;④f(cos 2)>f(sin 2).其中正确的是________(填序号).【答案】④【解析】当x∈[-1,1]时,x+4∈[3,5],从而f(x)=f(x+4)=2-|x|,因为sin<cos,所以>;因为sin l>cos l,所以f(sin l)<f(cos l);因为<,所以>;因为|cos 2|<|sin 2|,所以f(cos 2)>f(sin 2).综上所述,正确的是④.6.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=1·e x+(x-3)·e x=(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)·e x>0,解得x>2.7.已知函数在[0,+∞]上是增函数,,若则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∵函数在[0,+∞]上是增函数,∴,∴或,∴或,又∵,∴或.【考点】函数的单调性、不等式的解法.8.下列函数中,既是偶函数又在区间(1,2)上单调递增的是()A.【答案】A【解析】与满足,与满足,为奇函数,所以舍去,画出与的图象显然递增的是,故选A.【考点】1.函数的奇偶性;2.函数的单调性;3.函数的图象.9.下列函数是偶函数,且在上单调递增的是A.B.C.D.【答案】D【解析】因为是奇函数,所以选项A不正确;因为是偶函数,其单调递增区间是,所以选项B不正确;是偶函数,在上单调递减,所以选项C不正大确;因为是偶函数,且在区间上为增函数,所以选项D正确.【考点】1、三角函数的图象和性质;2、三角函数的诱导公式.10.设函数若函数在区间上单调递增,则实数的取值范围是()A.B.C.D.【答案】D【解析】由函数的图像可知,在和上是递增的,在上是递减的,故函数在区间上单调递增,则或,即或,故选D.【考点】函数的单调性.11.下列函数中,对于任意的,满足条件的函数是()A.B.C.D.【答案】C【解析】由可得函数在上单调递增。
第08讲 函数的单调性(原卷+解析)-高考数学二轮复习
第08讲 函数的单调性一、知识与方法1函数单调性的定义一般地,对于给定区间B 上的函数()f x ,如果对于任意12,x x B ∈,有;(1)当12x x <时有()()12f x f x <,那么称函数()f x 在这个区间上是增函数,区间B 称为函数()f x 的递增区间;(2)当12x x <时有()()12f x f x >,那么称函数()f x 在这个区间上是减函数,区间B 称为函数()f x 的递咸区间.2函数单调性概念的阐述(1)如果函数()y f x =在某个区间上是增函数或减函数,那么称()f x 在这个区间上具有单调性,这个区间叫作()f x 的单调区间.(2)函数的奇偶性是函数在定义域上的整体性质,而单调性是函数的局部性质,单调区间B 不一定是函数的定义域,即B 可能是定义域的一个子集.(3)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(4)复合函数的单调性特点是:同性得增,增必同性;异性得减,减为异性.定义法是判断函数单调性的最基本方法,变通法或复合函数法是判断单调性的重要方法.(5)如果函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的. (6)函数增减性的几何意义:1反映在图像上,若()f x 是在区间B 上的增函数,则图像在B 上的部分从左到右是上升的;2反映在图像上,若()f x 是在区间B 上的减函数,则图像在B 上的部分从左到右是下降的.(7)与函数单调性有关的问题主要有:由函数单调定义判断或证明某一函数在一个区间内的单调性;通过图像或运用复合函数的单调性原理求函数的单调区间;应用函数的单调性证明不等式、比较数的大小,探讨函数的最值等.二、典型例题【例1】(1)用定义证明函数()y f x x ==是减函数;(2)对于(1)中的函数若变为()f x ax =,其中0a >,解答下列各题:(1)若()()211f f =-,求a 的值;(2)证明:当且仅当1a 时函数()f x 在区间[)0,∞+上为单调函数; (3)若函数()f x 在区间[)1,∞+上是增函数,求a 的取值范围.【例2】已知()f x 是定义在[1,1]-在的奇函数,数,[1,1]a b ∈-且0a b +≠,有()()0f a f b a b+>+(1)判断()f x 在[]1,1-上是增函数还是减函数,并证明该结论; (2)解不等式()()2516f x f x -<;(3)若()11f =,且()221f x m am -+对所有的][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.【例3】(1)求下列函数的单调区间.(1)y =(2)21;23y x x =-- (3)223y x x =-++(4)y =(5)()212log 23y x x =--.(2)已知函数()m f x x m x =++,设函数()()322g x xf x x =++,若[]2,5是()g x 的一个单调区间,且在该区间()0g x >恒成立,求实数m 的取值范围.三、易错警示【例】已知2log ()a y ax =-在01[,]上是x 的减函数,则a 的取值范围是________.四、难题攻略【例】设函数()224()f x mx m x =-+,其中m ∈R 且0m >,区间0{|()}D x f x =<. (1)求区间D 的长度(区间(,)a b 的长度定义为b a -);(2)记区间D 的长度为()g m ,试用函数的单调性定义证明()g m 在02(,)上单调递减,在2(,)+∞上单调递增;(3)给定常数02(,)t ∈,当22t m t -+时,求区间D 的长度的最大值.五、强化训练1.已知函数221()f x ax x=-+.(1)试讨论函数()f x的单调性;(2)若113a,且()f x在13[,]上的最大值为()M a,最小值为()N a,令()g a=()()M a N a-,求()g a的表达式;(3)在2()的条件下,求证:12 ()g a.2.已知集合{()|()C f x f x =是定义域上的单调增函数或单调减函数},集合D ={()|()f x f x 在定义域内存在区间[,]a b ,使得()f x 在区间[,]a b 上的值域为[ka ,],kb k 为常数}.(1)当12k =时,判断函数()f x =是否属于集合C D ?并说明理由.若是,则求出区间[,]a b ;(2)当13k =时,若函数()f x t C D =+∈,求实数t 的取值范围.第08讲 函数的单调性一、知识与方法1函数单调性的定义一般地,对于给定区间B 上的函数()f x ,如果对于任意12,x x B ∈,有;(1)当12x x <时有()()12f x f x <,那么称函数()f x 在这个区间上是增函数,区间B 称为函数()f x 的递增区间;(2)当12x x <时有()()12f x f x >,那么称函数()f x 在这个区间上是减函数,区间B 称为函数()f x 的递咸区间.2函数单调性概念的阐述 (1)如果函数()y f x =在某个区间上是增函数或减函数,那么称()f x 在这个区间上具有单调性,这个区间叫作()f x 的单调区间.(2)函数的奇偶性是函数在定义域上的整体性质,而单调性是函数的局部性质,单调区间B 不一定是函数的定义域,即B 可能是定义域的一个子集.(3)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(4)复合函数的单调性特点是:同性得增,增必同性;异性得减,减为异性.定义法是判断函数单调性的最基本方法,变通法或复合函数法是判断单调性的重要方法.(5)如果函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的. (6)函数增减性的几何意义:1反映在图像上,若()f x 是在区间B 上的增函数,则图像在B 上的部分从左到右是上升的;2反映在图像上,若()f x 是在区间B 上的减函数,则图像在B 上的部分从左到右是下降的.(7)与函数单调性有关的问题主要有:由函数单调定义判断或证明某一函数在一个区间内的单调性;通过图像或运用复合函数的单调性原理求函数的单调区间;应用函数的单调性证明不等式、比较数的大小,探讨函数的最值等.二、典型例题【例1】(1)用定义证明函数()y f x x ==是减函数;(2)对于(1)中的函数若变为()f x ax =,其中0a >,解答下列各题:(1)若()()211ff =-,求a 的值;(2)证明:当且仅当1a 时函数()f x 在区间[)0,∞+上为单调函数;(3)若函数()f x 在区间[)1,∞+上是增函数,求a 的取值范围.【分析】函数单调性证明步骤通常为设元→作差→变形→判号→定论,其中最为关键的一步是变形,变形恰到好处,判号也就容易了.本【例】变形过程中运用分子有理化,判号就方便多了.第(2)问在第(1)问用定义法证明函数y x =是减函数的基础题型上引入参数a ,通常参数的取值直接引起单调性的改变,证明时要对参数的不同取值分类讨论.第(2)问是把基本问题向外延伸,成为一道综合性强、能力要求高的试题,但解答的主干部分仍然是单调性的证明。
高三数学函数的单调性与最值试题答案及解析
高三数学函数的单调性与最值试题答案及解析1.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法2.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.【答案】(-2,)【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,∴,解得-2<x<.3. [2014·大庆质检]下列函数中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是()A.f(x)=B.f(x)=(x-1)2C.f(x)=e x D.f(x)=ln(x+1)【答案】A【解析】由题意知,f(x)在(0,+∞)上是减函数,故选A.4. [2013·吉林调研]已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于0 C.恒小于0D.可正可负【答案】C【解析】由x1x2<0不妨设x1<0,x2>0.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)<f(-x2)=-f(x2),所以f(x 1)+f(x 2)<0.故选C.5. (3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【答案】D【解析】根据零点分段法,我们易将函数f (x )=|lg (2﹣x )|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论. 解:∵f (x )=|lg (2﹣x )|, ∴f (x )=根据复合函数的单调性我们易得 在区间(﹣∞,1]上单调递减 在区间(1,2)上单调递增 故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6. 定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y =x 2+1 B .y =|x|+1C .y =D .y =【答案】C【解析】利用偶函数的对称性知f(x)在(-2,0)上为减函数,又y =,在(-2,0)上为增函数,故选C. 7. 设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1【答案】A【解析】因为y=3x 在R 上单调递增,又,故﹣2<x <﹣1故选A8. 若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是( ) A .a <﹣1 B .|a|≤1 C .|a|<1 D .a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.9.函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是()A.b≥0B.b≤0C.b>0D.b<0【答案】A【解析】∵函数y=x2+bx+c在[0,+∞)上为单调函数∴x=﹣≤0,即b≥0.故选A10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.【答案】A【解析】由即.所以函数在上递增.所以即成立.故选A.【考点】1.函数的导数.2.函数的单调性.3.函数的构造的思想.11.已知函数在点处的切线方程为.(1)求、的值;(2)当时,恒成立,求实数的取值范围;(3)证明:当,且时,.【答案】(1),;(2);(3)详见解析.【解析】(1)利用已知条件得到两个条件:一是切线的斜率等于函数在处的导数值,二是切点在切线上也在函数的图象上,通过切点在切线上求出的值,然后再通过和的值列有关、的二元一次方程组,求出、的值;(2)解法1是利用参数分离法将不等式在区间上恒成立问题转化为不等式在区间上恒成立,并构造函数,从而转化为,并利用导数求出函数的最小值,从而求出的取值范围;解法2是构造新函数,将不等式在区间上恒成立问题转化为不等式在区间上恒成立问题,等价于利用导数研究函数的单调性,对的取值进行分类讨论,通过在不同取值条件下确定函数的单调性求出,围绕列不等式求解,从而求出的取值范围;(3)在(2)的条件下得到,在不等式两边为正数的条件下两边取倒数得到,然后分别令、、、、,利用累加法以及同向不等式的相加性来证明问题中涉及的不等式.试题解析:(1),.直线的斜率为,且过点,,即解得,;(2)解法1:由(1)得.当时,恒成立,即,等价于.令,则.令,则.当时,,函数在上单调递增,故.从而,当时,,即函数在上单调递增,故.因此,当时,恒成立,则.所求的取值范围是;解法2:由(1)得.当时,恒成立,即恒成立.令,则.方程(*)的判别式.(ⅰ)当,即时,则时,,得,故函数在上单调递减.由于,则当时,,即,与题设矛盾;(ⅱ)当,即时,则时,.故函数在上单调递减,则,符合题意;(ⅲ)当,即时,方程(*)的两根为,,则时,,时,.故函数在上单调递增,在上单调递减,从而,函数在上的最大值为.而,由(ⅱ)知,当时,,得,从而.故当时,,符合题意.综上所述,的取值范围是.(3)由(2)得,当时,,可化为,又,从而,.把、、、、分别代入上面不等式,并相加得,.【考点】1.导数的几何意义;2.不等式恒成立;3.参数分离法;4.分类讨论;5.数列不等式的证明12.函数的单调递增区间是.【答案】【解析】当时,,增区间为,当时,,增区间为.填.【考点】分段函数的单调区间.13.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.【答案】(1)(2)g(a)=(3)【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2. 当1≤≤2,即≤a≤时,g(a)=f=2a--1.当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3. 综上可得g(a)=(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,则h(x2)-h(x1)==(x2-x1)=(x2-x1).因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,即ax1x2>2a-1.当a=0时,上面的不等式变为0>-1,即a=0时结论成立.当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.所以实数a的取值范围为14.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.15.已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f(f(x)-lnx)=1+e,则f(1)=________.【答案】e【解析】f(x)-lnx必为常数函数,否则存在两个不同数,其对应值均为1+e,与单调函数矛盾.所以可设f(x)-lnx=c,则f(x)=lnx+c.将c代入,得f(c)=1+e,即lnc+c=1+e.∵y=lnx+x是单调增函数,当c=e时,lnc+c=1+e成立,∴f(x)=lnx+e.则f(1)=e16.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.【答案】【解析】f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得,∴-2<x< .17.已知定义在R上的函数y=f(x)满足条件f=-f(x),且函数y=f为奇函数,给出以下四个命题:(1)函数f(x)是周期函数;(2)函数f(x)的图象关于点对称;(3)函数f(x)为R上的偶函数;(4)函数f(x)为R上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3)【解析】由f(x)=f(x+3)⇒f(x)为周期函数,且T=3,(1)为真命题;又y=f关于(0,0)对称,y=f向左平移个单位得y=f(x)的图象,则y=f(x)的图象关于点对称,(2)为真命题;又y=f为奇函数,所以f=-f,f=-f=-f(-x),∴f=-f(-x),f(x)=f(x-3)=-f=f(-x),∴f(x)为偶函数,不可能为R上的单调函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3).18.能够把圆的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是( )A.B.C.D.【答案】A【解析】由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,,所以的图象不过原点,故不为“和谐函数”; B中,,且,所以为奇函数,所以为“和谐函数”; C中,,且,为奇函数,故为“和谐函数”;D中,,且为奇函数,故为“和谐函数”;故选A.【考点】奇偶性与单调性的综合.19.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.20.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.21.已知函数,设,若,则的取值范围是 ___ .【答案】[,2)【解析】函数的图像如图所示.因为,若要使成立,有图像可得.且.由于b的变化是递增的,的变化也是递增的所以.即填[,2).本小题主要考查分段函数的问题.【考点】1.分段函数的知识.2.函数的单调性.22.已知是上的奇函数,对都有成立,若,则等于A.B.C.D.【答案】C.【解析】令x=-2,则f(-2+4)=f(-2)+f(2),又因为f(x)在R上是奇函数.,所以f(-2)+f(2)=0,即f(2)=0.所以得到f(x+4)=f(x).所以函数是以4为周期的周期函数.所以f(2014)=f(2)=0.本题的关键是把奇函数与所给的式子结合起来得到周期为四的结果.注这个条件多余.【考点】1.奇函数.2.周期函数.3.递推的思想.23.已知函数⑴判断函数的单调性,并证明;⑵求函数的最大值和最小值.【答案】(1)增函数,证明见解析;(2),【解析】(1)利用函数单调的定义证明,可得函数在[3,5]上为单调增函数;(2)根据函数的单调递增,可得函数的最值为,.试题解析:⑴设且,所以 4分即,在[3,5]上为增函数. 6分⑵在[3,5]上为增函数,则, 10分【考点】1.函数单调的判断;2.利用函数单调性求最值24.函数有最小值,则实数的取值范围是()A.B.C.D.【答案】B.【解析】若在定义域内有最小值,则满足,且恒成立,所以,故选B.【考点】1.复合函数的单调性与最值.25.关于函数,给出下列四个命题:①,时,只有一个实数根;②时,是奇函数;③的图象关于点,对称;④函数至多有两个零点.其中正确的命题序号为______________.【答案】①②③【解析】①,时,,显然只有一个实数根;②时,显然,,所以是奇函数;③设是函数的图象上的一点,点关于点,对称点,因为,所以点也在函数的图象上,故的图象关于点,对称;④,取,可得有三个零点.【考点】函数的基本性质.26.如果函数上单调递减,则实数满足的条件是()A.B.C.D.【答案】A【解析】函数在区间上单调递减,所以上,,即,故选A.【考点】导数、函数的单调性与最值27.给出下列四个命题:①函数有最小值是;②函数的图象关于点对称;③若“且”为假命题,则、为假命题;④已知定义在上的可导函数满足:对,都有成立,若当时,,则当时,.其中正确命题的序号是 .【答案】①②④.【解析】对于命题①,,,当且仅当,即当时,上式取等号,即函数有最小值,故命题①正确;对于命题②,由于,故函数的图象关于点对称,故命题②正确;对于命题③,若“且”为假命题,则、中至少有一个是假命题,故命题③错误;对于命题④,由于函数是奇函数,当时,,即函数在区间上单调递增,由奇函数的性质知,函数在上也是单调递增的,即当时,仍有,故命题④正确,综上所述,正确命题的序号是①②④.【考点】1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性28.已知函数是上的单调递增函数,若是其图像上的两点,则不等式的解集是.【答案】.【解析】由已知得.【考点】函数的单调性质.29.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有两个不同的根,所以这两个根必为-6、2或-2、6,所以这两个根之和为-4或4.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.30.已知函数,下列结论中错误的是()A.R,B.函数的图像是中心对称图形C.若是的极小值点,则在区间上单调递减D.若是的极值点,则【答案】C【解析】由于,,由于是函数的极小值点,且函数的图象开口向上,故函数存在极大值点,即存在使得,从而函数在上单调递增,在上单调递减,即函数在不是单调递减的.【考点】函数的单调性与极值、函数的对称性31.已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2);(3).【解析】(1)先对求导,由于的正负与参数有关,故要对分类讨论来研究单调性; (2)先由在其定义域内为增函数转化为在不等式中求参数范围的问题,利用分离参数法和基本不等式的知识求出参数的取值范围;(3)先通过导数研究在的最值,然后根据命题“若,,总有成立”分析得到在上的最大值不小于在上的最大值,从而列出不等式组求出参数的取值范围.试题解析:解:(1)的定义域为,且, 1分①当时,,在上单调递增; 2分②当时,由,得;由,得;故在上单调递减,在上单调递增. 4分(2),的定义域为5分因为在其定义域内为增函数,所以,而,当且仅当时取等号,所以 8分(3)当时,,由得或当时,;当时,.所以在上, 10分而“,,总有成立”等价于“在上的最大值不小于在上的最大值”而在上的最大值为所以有 12分所以实数的取值范围是 14分【考点】1、利用导数研究单调性和最值,2、参数的取值范围问题,3、基本不等式.32.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3,,xn,均有g(ln(x1+x2++xn))>g(lnx1)+g(lnx2)++g(lnxn).【答案】(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得证.【解析】(Ⅰ)先求得,再由>得,解得;(Ⅱ)①构造函数,证明为上的增函数,再讨论就可得到,②先证得,即得,整理得,同理可得类似的的等式,累加即可得证.试题解析:(Ⅰ)由,可得,因为函数是函数,所以,即,因为,所以,即的取值范围为. (3分)(Ⅱ)①构造函数,则,可得为上的增函数,当时,,即,得;当时,,即,得;当时,,即,得. (6分)②因为,所以,由①可知,所以,整理得,同理可得,,.把上面个不等式同向累加可得[. (12分)【考点】1.恒成立问题;2.导数在求函数单调性、最值的应用;3.不等式.33.已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3) 设是的零点,,求证:.【答案】(1);(2) ;(3)详见解析.【解析】(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.试题解析:(1),∵在内恒成立∴在内恒成立,∴的单调区间为 4分(2),∵在内恒成立∴在内恒成立,即在内恒成立,设,,,,,故函数在内单调递增,在内单调递减,∴,∴ 8分(3)∵是的零点,∴由(1),在内单调递增,∴当时,,即,∴时,∵,∴,且即∴,∴ 14分【考点】1.函数的单调性;(2)导数的应用;(3)不等式的证明.34.已知函数的定义域是,若对于任意的正数,函数都是其定义域上的减函数,则函数的图象可能是A. B. C. D.【答案】B【解析】直接利用g(x)是减函数⇒导数小于0⇒f(x)的导数是减函数⇒f(x)是凸函数即可得到答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) 答案 12,+∞
解析 由 f(x)=axx++21=a+1x-+22a,且 y=f(x)在(-2,+∞)是增函数,得 1-2a<0,即 a>1.
2 二、高考小题
13.(2017·全国卷Ⅱ)函数 f(x)=ln (x2-2x-8)的单调递增区间是( )
A.(-∞,-2) B.(-∞,1)
C.(1,+∞) D.(4,+∞)
一、基础小题
1.若函数 f(x)=(2a-1)x+b 是 R 上的减函数,则实数 a 的取值范围为( )
A.1,+∞ B.-∞,1
2
2
C.1,+∞ D.-∞,1
2
2
答案 D
解析 当 2a-1<0,即 a<1时,该函数是 R 上的减函数.故选 D. 2
2.下列函数中,在(0,+∞)上单调递减的是( )
( 14.(2017·北京高考)已知函数 f(x)=3x- 1 3 A.是奇函数,且在 R 上是增函数
)x,则 f(x)( )
B.是偶函数,且在 R 上是增函数
C.是奇函数,且在 R 上是减函数
D.是偶函数,且在 R 上是减函数
答案 A
解析 ∵函数 f(x)的定义域为 R,
( ) ( f(-x)=3-x- 1 3
答案 B
解析 y=-2x+1 在定义域内为单调递减函数;y=lg x 在定义域内为单调递增函数;y
=x3 在定义域内为单调递增函数;y=1x在(-∞,0)和(0,+∞)上皆为单调递减函数,但在 定义域内不是单调函数.故选 B.
4.已知函数 y=f(x)在 R 上单调递增,且 f(m2+1)>f(-m+1),则实数 m 的取值范围是
∴函数 y=log1(2x2-3x+1)的单调递减区间为(1,+∞).故选 A. 2
6.定义在 R 上的函数 f(x)对任意两个不相等的实数 a,b,总有faa--fbb>0 成立,则 必有( )
A.函数 f(x)先增加后减少
B.函数 f(x)先减少后增加 C.f(x)在 R 上是增函数 D.f(x)在 R 上是减函数 答案 C 解析 因为faa--fbb>0,所以,当 a>b 时,f(a)>f(b),当 a<b 时,f(a)<f(b),由增函数 定义知,f(x)在 R 上是增函数.故选 C.
A.(-∞,8] B.[40,+∞)
C.(-∞,8]∪[40,+∞) D.[8,40]
答案 C
解析 由题意知函数 f(x)=8x2-2kx-7 图象的对称轴为 x=k,因为函数 f(x)=8x2-2kx 8
-7 在[1,5]上为单调函数,所以k≤1 或k≥5,解得 k≤8 或 k≥40,所以实数 k 的取值范
( )
A.(-∞,-1) B.(0,+∞)
C.(-1,0) D.(-∞,-1)∪(0,+∞)
答案 D
解析 由题得 m2+1>-m+1,故 m2+m>0,解得 m<-1 或 m>0.故选 D.
5.函数 y=log1(2x2-3x+1)的递减区间为( ) 2
( ] A.(1,+∞) B. -∞,34 ( ) [ ) C. 12,+∞ D. 34,+∞
答案 A
解析 由 2x2-3x+1>0,
( ) 得函数的定义域为 -∞,12 ∪(1,+∞).
令 t=2x2-3x+1,则 y=log1t. 2
( ) ∵t=2x2-3x+1=2 x-34
2-1, 8
∴t=2x2-3x+1 的单调递增区间为(1,+∞).
又 y=log1t 在2x-8>0 可得 x>4 或 x<-2,
所以 x∈(-∞,-2)∪(4,+∞),
令 u=x2-2x-8,
则其在 x∈(-∞,-2)上单调递减,
在 x∈(4,+∞)上单调递增.
又因为 y=ln u 在 u∈(0,+∞)上单调递增,
所以 y=ln (x2-2x-8)在 x∈(4,+∞)上单调递增.故选 D.
7.函数 f(x)=
是增函数,则实数 c 的取值范围是( )
A.[-1,+∞) B.(-1,+∞)
C.(-∞,-1) D.(-∞,-1]
答案 A
解析 作出函数图象可得 f(x)在 R 上单调递增,则 c≥-1,即实数 c 的取值范围是[-
1,+∞).故选 A.
8.若函数 f(x)=8x2-2kx-7 在[1,5]上为单调函数,则实数 k 的取值范围是( )
8
8
围是(-∞,8]∪[40,+∞).故选 C.
9.函数 f(x)在(a,b)和(c,d)上都是增函数,若 x1∈(a,b),x2∈(c,d),且 x1<x2,则( ) A.f(x1)<f(x2) B.f(x1)>f(x2) C.f(x1)=f(x2) D.无法确定 答案 D
解析 因为 f(x)=-x1在(-2,-1)和(1,2)上都是增函数,f(-1.5)>f(1.5);f(x)=2x
A.f(x)=1x B.f(x)=(x-1)2 C.f(x)=ex D.f(x)=ln (x+1)
答案 A
解析 f(x)=(x-1)2 在(0,+∞)上不单调,f(x)=ex 与 f(x)=ln (x+1)在(0,+∞)上单调
递增,故选 A.
3.下列四个函数中,在定义域内不是单调函数的是( )
A.y=-2x+1 B.y=1x C.y=lg x D.y=x3
时,g(x)在[1,2]上是减函数,则 a 的取值范围是 0<a≤1.故选 D. 11.函数 y=-(x-3)|x|的递增区间为________. 答案 0,32
解析 y=-(x-3)|x|=
作出其图象如图,观察图象知递增区
间为 0,3. 2
12.已知 f(x)=axx++21,若对任意 x1,x2∈(-2,+∞),有(x1-x2)[f(x1)-f(x2)]>0,则 a 的取值范围是________.
在 R 上是增函数,f(-1.5)<f(1.5),所以函数值无法确定.故选 D. 10.若 f(x)=-x2+2ax 与 g(x)=x+a 1在区间[1,2]上都是减函数,则 a 的取值范围是( ) A.(-1,0)∪(0,1] B.(-1,0)∪(0,1) C.(0,1) D.(0,1] 答案 D 解析 f(x)=-(x-a)2+a2,当 a≤1 时,f(x)在[1,2]上是减函数;g(x)=x+a 1,当 a>0