微弱信号检测放大的原理及应用
微弱信号检测放大的原理及应用

《微弱信号检测与放大》摘要:微弱信号常常被混杂在大量的噪音中,改善信噪比就是对其检测的目的,从而恢复信号的幅度。
因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。
在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。
由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。
对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。
微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。
关键词:微弱信号;检测;放大;噪声1前言测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。
这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。
微弱信号检测放大目前在理论方面重点研究的内容有:a.噪声理论和模型及噪声的克服途径;b.应用功率谱方法解决单次信号的捕获;c.少量积累平均,极大改善信噪比的方法;d.快速瞬变的处理;e.对低占空比信号的再现;f.测量时间减少及随机信号的平均;g.改善传感器的噪声特性;h.模拟锁相量化与数字平均技术结合。
2.微弱信号检测放大的原理微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。
微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR。
根据下式信噪改善比(SNIR)定义即输出信噪比(S/N)0与输入信噪比(S/N)i之比。
(SNIR)越大即表示处理噪声的能力越强,检测的水平越高。
微弱信号检测与锁定放大器

锁定放大器的输出
Vo=Vi cosθ
θ是检信号与参考信号的夹角
参考信号的要求
从以上特点可知,参考信号一定要有被 测信号中某个特定成分。 – 参考信号源同时驱动被测设备,在实
验室常用这种方法。 – 从被测信号中提取同步信号,再转为
本地的参考信号。在无线通讯中只能 用这种方法,如电视。
V t0
V t0
t
t 外外外外
t (d) 外外外外
锁定放大器的改进
矢量型:两个正交的参考信号
VS (t)
VP (t) 低通
VO (t)
VS(t)
VS (t)
VR (t) VP (t)
低通
VVOO(’t()t)
VVRR(’t()t)
锁定放大器的改进
正弦化型:参考信号正弦化,消除多窗 口 – 多基矢
噪声的引入: – 电容性偶合:电场引起,噪声源内阻
高
– 电感性偶合:磁场引起,噪声源内阻 低
噪声的屏蔽
电容性偶合: – 降低电路的阻抗, – 在噪声源与信号线之间建立导电屏障,
屏障接地。例屏蔽线,铜罩壳等。
噪声的屏蔽
电感性偶合 – 减少回路面积, – 用铁磁性物质包围噪声源。例如,变
压器的外壳号: – 可看成是基矢(正弦波)或基矢的线性组
合(非正弦波,如方波) 检测信号: – 可看成是由多个正弦信号的线性组合 旋转坐标系,ωR – 检测信号绕参考信号作相对转动
相关检测的矢量解释
检测结果(对基矢投影): – 被检信号与参考信号相对稳定不动;
有稳定输出--直流 – 被检信号与参考信号有相对运动;有
传输窗口(参考信号:方波)
微弱信号放大电路设计

微弱信号放大电路设计1. 引言微弱信号放大电路是一种常见的电子电路设计,用于将输入信号放大到足够大的幅度以供后续处理或分析。
本文将详细讨论微弱信号放大电路的设计原理、常用电路结构以及一些注意事项。
2. 设计原理在微弱信号放大电路设计中,主要考虑的是信号放大的增益和电路的噪声特性。
通常情况下,微弱信号放大电路采用放大器作为主要元件,通过控制放大器的增益来实现信号的放大。
2.1 放大器的工作原理放大器的工作原理是利用电子器件(如晶体管、运放等)的非线性特性,将输入信号的小幅度变化转化为输出信号的大幅度变化。
放大器通常由输入级、中间级和输出级组成,其中输入级负责将输入信号转换为小幅度变化的电压,中间级将小幅度变化的电压放大到一定程度,而输出级则进一步放大并驱动负载。
2.2 增益和频率响应在微弱信号放大电路设计中,增益和频率响应是两个重要的参数。
增益表示电路将输入信号放大的倍数,通常以分贝(dB)为单位表示。
频率响应则描述了放大器对不同频率信号的放大程度,一般以频率-增益图形式表示。
3. 常用电路结构微弱信号放大电路可以采用多种不同的电路结构,下面介绍几种常见的结构。
3.1 基本放大器电路基本放大器电路是最简单的放大器结构,包括输入电阻、输入耦合电容、放大器和输出耦合电容。
这种电路结构适用于较低频率的信号放大。
3.2 双射极放大器双射极放大器是一种常用的放大器结构,具有高的增益和宽广的频率响应。
它由两个共射极晶体管组成,通过负反馈来提高线性度和稳定性。
3.3 差分放大器差分放大器由两个双射极晶体管组成,具有良好的抗干扰能力和共模抑制比。
差分放大器常用于抗干扰要求较高的放大场合。
4. 注意事项在设计微弱信号放大电路时,需要注意以下几点:4.1 输入信号的幅度微弱信号放大电路的输入信号幅度通常较小,需要选择合适的放大倍数以保证输出信号的可靠性。
4.2 电源噪声和干扰电源噪声和干扰可能会影响放大器的性能,设计时应注意选择低噪声的电源和合适的滤波电路来抑制噪声和干扰。
微弱电流信号的检测和放大电路.doc

电压放大器结构合理,准确得实现了电压放大功能。
经I/V转换器后电压(通道B),经一级差分式放大电路后输出电压(通道C),经二级差分式放大电路后输出电压(通道D)波形对比如图9所示:
图9运算放大电路输入输出电压波形对比
3.
本设计采用开关式相敏检波电路。相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。其结构如图10所示。
要求:电路要包括电流/电压转换电路,信号放大电路,调制和解调电路,并采用multisim仿真。
三、设计时间及进度安排
设计时间共两周(2015.6.23~2015.7.3),具体安排如下表:
周安排
设 计 内 容
设计时间
第一周
布置设计任务和具体要求及设计安排;提出设计思路和初步设计方案、根据设计方案,进行具体的设计,根据指导意见,修改具体设计;仿真实现设计要求,指导、检查完成情况。
15.06.23-15.06.26
第二周
设计、仿真,撰写、完成专业模块设计报告,验收、考核
15.06.29-15.07.03
四、指导教师评语及成绩评定
指导教师评语:
年 月 日
成绩
指导教师(签字):
第一章课程设计的目的
课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几方面能力,为毕业设计(论文)奠定基础。
经过相敏检波输出电压为4.327V,输入输出电压如图13所示。
图
经过相敏检波电路的波形如图14所示:
图14相敏检波电路输出波形
4.
为了给相敏检波电路提供同频方波信号,实现检波功能。其结构如图15所示。
图
其同向端接地,反向端接入高频正弦来自压信号(1KHZ),输出端为方波信号。当反向端正弦电压小于0时,输出高电平;当反向端输入的正弦电压大于0时,输出低电平。所以输入正弦波输出为反向的正弦波。输入信号和输出信号对比如图16所示。
微弱信号检测技术第四讲锁定放大技术

现监频监相。
• 2、 x(t)为正弦波,r(t)为方波
x(t)=Vscos(w0t+q)
r(t)
4Vr
(1)n1
n1 2n 1
cos[(2n
1)w0t]
• PSD输出为:
u p (t)
2VsVr
n1
(1)n1 2n 1
cos[(2n
为q+ 90°
• 正交矢量型锁定放大器的同相输出:
I Vs cosq
• 正交输出:
Q Vs sin q
• 被测信号的幅度和相位:
Vs I 2 Q2
q arctan(Q / I )
4.3.3 外差式锁定放大器
• 利用频率变换器将输入信号的频率变换到 一个固定频率上,然后进行带通滤波和相 敏检测,以便带通滤波器和相敏检测器的 最佳设计,以及避免带通滤波器的调节。
• 信号通道:交流放大输入信号,以满足推 动PSD;滤除带外噪声和干扰; 与信号源进行噪声匹配。
• 参考通道:调理参考信号和调整相位。
• 相敏检测器:对输入信号和参考信号完成乘 法运算,得到二者的和频与差频 的谐波信号。
• 低通滤波器:滤掉高次谐波和高频信号成 分,提取深埋在噪声中的微弱信号。
4.2 相敏检测
• x(t)与r(t)相乘,结果为: up(t)=x(t). r(t)
= 0.5Vscosq Vscos(2w0t+q) +0.5Vncos[(wn+w0) t+a] +0.5Vncos[(wn-w0) t+a]
• 4、 x(t)和r(t)均为方波
微弱电流信号检测原理与应用实例

电视技术
!""! 年 第 # 期 总 第 !$% 期
!"
标准、 检 测 与 仪 器 ! "#$%&$’& , ()$"*’)()%# $%& +%"#’*()%#
通信口已打开( 。 0<=#8# >?@A B%.C.D) 在 0<=#8# 通信口设置好以后,需要设置网络 参数。在数据服务器对话框中填写与 E92++1 进行 串行口连接的微机 F> 地址,微机在网络中名称, 然 : 数 后打开网络服务, 数据端口就会显示( GHA. >?@A) 据服务已打开( 。 <.@I.@ JK B%.C.D) 使用 E92++1 进行测试了。在局域网内微机上安装 在 /BMMN/1 连接对话框中 E’ALJC 终端用户程序, 选择网络方式连接。当连接通过以后, 就会在网络 设置 & 状态的底部客户 F> 上显示与 E92++1 通过局 域网连接的微机, 这时, 该微机借助于 E’ALJC 终端 用户程序, 就能使用 E92++1 进行远程测试了。
参考文献
4"5 白为民 6 我国大屏幕投影机现状与发展趋势 6 电视技术,
( : #++", "#) 2-76 —原理、 器件、 系统和设计 6 北京: 4#5 李桂苓 6 电视新技术—— 电子工业出版社, "77"6 —设备原理与工程实践 6 北京: 电子 485 张凤栖 6 应用电视—— 工业出版社, "77#6
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
微弱信号检测技术及应用探索

微弱信号检测技术及应用探索近年来,随着科技的快速发展,微弱信号检测技术也日益得到了增强和进展。
微弱信号,指的是弱化了的信号,常常被淹没在背景信号中,很难被自然或人造干扰所区分。
而微弱信号检测技术,就是在复杂噪声环境下,针对微弱信号进行捕捉、识别和分析的技术手段。
一、微弱信号检测的背景和意义微弱信号在现代科技发展中有着广泛的应用,尤其是在医学、生物医学、环境监测、地球物理学等领域,它的检测和识别对于我们的生产和生活具有重要意义。
比如在医学影像领域,微弱信号技术能够实时高效地检测病灶区域,准确地定位和分析疾病发生的原因。
在地球物理勘探领域,微弱信号技术还可用于寻找石油、天然气等资源,为我们的能源生产提供帮助。
二、微弱信号检测技术的发展微弱信号检测技术的发展经历了从传统模拟电路到数字信号处理再到人工智能等多个阶段。
当前主流的微弱信号检测技术主要有以下几种:1. 模拟电路技术传统的微弱信号检测技术采用的是模拟电路技术。
传统电路技术需要设计和实现一个高度复杂的电路系统来降低噪音,提高信噪比。
然而,传统电路技术的设计成本高,制造过程繁琐,适用范围小,很难适应现代复杂环境下的微弱信号检测需求。
2. 数字信号处理技术随着数字技术的发展,数字信号处理技术在微弱信号检测中得到广泛应用。
数字信号处理技术将微弱信号转化为数字信号,并采用精确的算法进行分析和处理。
数字信号处理技术具有高精度、高可靠性、易扩展等优点,适用于广泛的微弱信号检测领域。
3. 人工智能技术最近,人工智能技术在微弱信号检测中的应用也受到了广泛关注。
人工智能技术通过建立模型和学习算法来处理微弱信号,可以更快速地识别微弱信号,并将其应用于预测和诊断等领域。
人工智能技术在微弱信号检测中具有极高的灵敏度和高度可靠性,其应用前景十分广泛。
三、微弱信号检测技术的挑战微弱信号检测技术在应用过程中还面临着许多挑战。
比如,微弱信号的信号噪比较低,往往需要采取合适的信号预处理技术和降噪技术。
微功率放大的原理和应用

微功率放大的原理和应用1. 前言微功率放大是一种电路设计技术,可以将微弱的信号放大到可用范围。
本文将介绍微功率放大的原理和应用。
2. 原理微功率放大的原理基于晶体管的工作原理和放大电路的设计。
以下是微功率放大的基本原理:•输入信号:微功率放大一般是将微弱的输入信号作为输入。
•放大器:通过放大器电路将输入信号放大。
•输出信号:经过放大的信号作为输出信号。
3. 放大器类型微功率放大可以使用多种类型的放大器。
以下是一些常见的放大器类型:• 3.1 甲类放大器:甲类放大器具有简单的电路结构和高效率的特点,适用于低功率放大。
• 3.2 乙类放大器:乙类放大器可以实现高功率放大,但存在功耗较高的缺点。
• 3.3 丙类放大器:丙类放大器具有高效率和较低的功耗,适用于高功率放大。
• 3.4 D类放大器:D类放大器具有高效率和低功耗的特点,广泛应用于音频放大等领域。
4. 应用微功率放大具有广泛的应用领域。
以下是一些常见的应用案例:• 4.1 无线通信:微功率放大器可以用于无线通信中的发射和接收模块,将微弱的信号放大到传输距离所需的功率水平。
• 4.2 传感器信号放大:微功率放大器可以用于传感器信号的放大,提高传感器信号的灵敏度和范围。
• 4.3 医疗设备:微功率放大器广泛应用于医疗设备中,如心电图机、血压计等,将微弱的生物电信号放大到可读取的水平。
• 4.4 音频放大:微功率放大器可以用于音频放大电路,将低音频信号放大到可听的水平。
5. 设计要点在设计微功率放大电路时,需要注意以下几个要点:• 5.1 低功耗设计:微功率放大器通常需要在低功耗下工作,因此需要选择合适的电路结构和组件。
• 5.2 抗干扰能力:在实际应用中,微功率放大器常常受到外界干扰,因此需要设计具有良好抗干扰能力的电路。
• 5.3 温度稳定性:微功率放大器在不同的温度下可能产生不同的放大性能,因此需要设计具有良好的温度稳定性的电路。
• 5.4 反馈和稳定性:在设计微功率放大器时,需要考虑反馈和稳定性的问题,避免产生震荡或不稳定的放大特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微弱信号检测与放大》摘要:微弱信号常常被混杂在大量的噪音中,改善信噪比就是对其检测的目的,从而恢复信号的幅度。
因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。
在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。
由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。
对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。
微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。
关键词:微弱信号;检测;放大;噪声1前言测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。
这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。
微弱信号检测放大目前在理论方面重点研究的内容有:a.噪声理论和模型及噪声的克服途径;b.应用功率谱方法解决单次信号的捕获;c.少量积累平均,极大改善信噪比的方法;d.快速瞬变的处理;e.对低占空比信号的再现;f.测量时间减少及随机信号的平均;g.改善传感器的噪声特性;h.模拟锁相量化与数字平均技术结合。
2.微弱信号检测放大的原理微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。
微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR。
根据下式信噪改善比(SNIR)定义即输出信噪比(S/N)0与输入信噪比(S/N)i之比。
(SNIR)越大即表示处理噪声的能力越强,检测的水平越高。
3微弱信号检测放大的特点1)在较低的信噪比中检测微弱信号。
造成信噪比低的原因,一方面是因为特征信号本身十分微弱;另一方面是因为强噪声干扰使得信噪比降低。
如在机械设备处于故障早期阶段时,往往以某种方式与其它信源信号混合的故障对应的各类特征信号,使得特征信号相当微弱;在设备在工作时,又有强噪声干扰。
因此,特征信号基本为低信噪比的微弱信号。
2)要求检测具有实时性和快速性。
工程实际中所采集的数据长度或持续时间一般会受到限制,这种在较短数据长度下的微弱信号检测在诸如雷达、通讯、地震、工业测量、声纳、机械系统实时监控等领域具有着广泛的需求。
4微弱信号检测的方法研究微弱特征信号检测方法各种各样,从传统的相关检测、频谱分析、取样积分和时域平均方法到新近发展起来的神经网络、小波分析理论、混沌振子、随机共振、高阶统计量等方法,在微弱特征信号检测中有着广泛的应用。
具体来说,用的较多的有以下几种:1)时域检测法微弱特征信号的时域检测方法主要有相关检测、取样积分与数字式平均、时域平均等方法。
1.1 相关检测:相关检测主要是对信号和噪声进行相关性分析,主要物理量是相关函数R(τ)。
确定性信号的不同时刻取值有较强的相关性;而对干扰噪声,因为其随机性较强,不同时刻取值的相关性一般较差。
利用这一差异,把确定性信号和干扰噪声区分开来。
相关检测包括互相关法和自相关法,互相关法用互相关函数来度量两个随机过程间的相关性;而自相关法通过自相关函数度量同一个随机过程前后的相关性。
相比自相关法,互相关法提取信号能力越强,对噪声抑制得较彻底。
一般,互相关是根据接收信号的重复周期或已知频率,在接收端发出与待测信号频率相同的参考信号,将参考信号与混有噪声的输入信号进行相关。
1.2 取样积分与数字式平均这两种方法的工作原理是根据恢复信号的精度要求,将各个信号周期分为若干的时间间隔,再对这些分隔信号进行取样,并将各周期中处于相同位置的取样信号进行平均或积分。
用模拟电路来实现取样积分的过程,用计算机的数字处理方式来实现数字式平均的过程。
取样积分技术含有取样和积分两个连续过程,其基本原理如下图所示,待测信号x(t)= S(t)+ n(t)经过放大输入到取样开关,r(t)是与待测信号同频的参考信号或待测信号本身。
触发电路根据参考信号波形情况(如幅度或是上升速率)形成脉冲信号,再经过延时后,生成一定宽度的取样脉冲,在取样开关K的控制下,来完成对输入信号x(t)的取样,但是积分仅在取样时间内进行,它其余时间积分结果处于保持状态。
1.3 时域平均:信号时域平均处理,这一过程是从混有噪声干扰的复杂周期信号中提取有效周期分量的过程,作用是可以抑制混杂于信号中的随机干扰,消除与给定频率无关的信号分量,比如噪声和无关的周期信号,提取与给定频率有关的周期信号。
因此,这种方法能在噪声环境下工作,提高分析信号的信噪比。
2).频域检测法这是最常用的一种频域检测法,它用于从背景噪声中提取出信号的特征频率成分,较多地用于微弱周期信号的检测。
应用傅立叶变换的频谱分析将时域问题转换为频域问题,其原理是把复杂的时间形成波形,经傅立叶变换为若干单一的谐波分量后来研究,以获得信号的频率结构与各谐波幅值、相位、功率及能量和频率之间的关系。
这是用于研究平稳随机过程性能的一种信号处理技术。
常用的频谱分析方法有多种,主要包括幅值谱分析、功率谱分析和相位谱分析等。
分辨率Δf在频谱分析中是个很重要的参数,它取决于所分析信号的时间长度T(T•Δf = 1),微弱信号检测放大性能与观测时间成正比。
举个例子,假定观测的正弦信号S(t)=Asin(ωt),淹没在方差为σ2的白噪声中,则检测性能正比于A2/(2σ2Δf ),频域分辨率Δf将全频带分成了以Δf为带宽的小频带。
当噪声为白噪声时,每个小带内的噪声能量相等,并且随着Δf的减小而下降,并不依赖于Δf。
所以,时间长度T越长,Δf 就越小,频率分辨率越高,这就可以将很小的频率确定的正弦信号成功检测出来。
3)时频分析法因为时域检测和频域检测无法表述信号的时间- 频率的局部性质,而这种性质是非平稳信号最根本的性质。
时频分析是非平稳信号处理的重要手段。
时频分析运用时间-频率联合表示信号,将一维的时间信号映射到一个二维的时频平面,全面反映观测信号的时间- 频率联合特征,在时频域内对信号进行分析,从而掌握信号的时域及频域信息,而且可以清楚地了解信号的频率随时间有规律的变化。
时频分析的基本要求是建立一个分布函数,要求这个函数能够同时用时间和频率描述信号能量密度,并且还可以用来计算特定频率和时间范围内的能量分布,以及特定时刻的频率密度和该分布函数的不同阶矩,比如平均条件频率等。
在常用的时频分析工具中,小波变换和短时Fourier变换应用最为广泛。
这是因为短时Fourier变换采用了信号的线性变换方法,而小波变换具有多分辨率分析的特点,在分析包含有多个分量的信号时,不仅能够抑制交叉项的产生,同时也具有较小的计算量;小波变换在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变,其形状可改变,时间窗、频率窗都可以改变的时频局部化分析的一种方法;在高频部分具有较高时间分辨率和较低频率分辨率,在低频部分具有较高频率分辨率和较低时间分辨率。
4)基于非线性理论的检测法传统的频域、时域或时频分析方法通常以线性理论为主,在滤去噪声后,信号有所失真。
近年来,随着非线性理论的发展,利用非线性系统特有性质来检测不稳定、非平衡的状态中微弱信号成为了可能。
现在,基于非线性理论的微弱信号检测放大方法主要包括高阶谱分析、经验模式分解、神经网络、差分振子法、混沌理论方法、随机共振方法等。
高阶谱分析法可以有效抑制信号中的非高斯、非相关噪声,并保留了信号中的相位信息。
经验模式的分解能将复杂的非线性、非平稳信号分解成为固有模态函数,来获得了完整的时频信息。
混沌理论法、差分振子法则是利用非线性动力学对初值的敏感性、噪声免疫力来进行的微弱信号检测,在抑制噪声的同时,信号却未被削弱,能有效降低噪声干扰,来进行高灵敏度测量。
待测微弱信号频率已知的情况下,可用特定的微弱信号检测对应的特定的检测系统。
与其他微弱信号检测方法相比,随机共振是利用噪声,而不是抑制噪声。
作用于某一类非线性系统噪声干扰下的信号,它和噪声在非线性系统的共同作用下,就会发生噪声能量向信号能量的转移,信号幅值增大,产生了类似力学中的共振输出,提高了系统信噪比。
一般的随机共振系统结构框图如下图所示常规的随机共振系统结构框图5微弱信号检测放大与处理的研究方向近几年来,随着信号检测与处理中引入了基于非线性动力学系统的数学理论,如混沌理论、神经网络、随机共振原理等,在微弱信号检测放大领域,利用非线性动力学系统独有性质的检测微弱信号的方法渐渐显现出优势。
比如混沌测量法,它具有极高的测量灵敏度,以及对任何零均值噪声都具有极强的免疫力的特征,很好的解决了关于任何零均值噪声背景下微弱信号的参数难以估计的问题;早期,机械设备故障预示和诊断中应用随机共振的方法,用噪声的部分能量转化为信号能量来检测微弱特征信号,从而提高了诊断的准确率。
随着信号检测与处理中非线性理论和方法的广泛应用,非线性分析法已经成为未来微弱信号检测研究的主要趋势之一。
由于微弱信号噪声的种类较多,如微弱脉冲信号、微弱周期信号、微弱非周期信号、冲击信号,噪声有如限带噪声、窄带噪声、白噪声、高斯噪声等,由于不同特性的信号和噪声混合,造成了待测信号的复杂。
而采用单一的检测方法,检测门限过高,有限地改善信噪比。
在实际检测中,充分利用,结合多种检测方法检测微弱信号已逐渐成为一种趋势。
如将小波方法与频谱分析方法结合,先利用小波变换,来对信号进行相干积累,随后用周期谱方法对积累信号进行估计,可以有效的改善信号的检测能力。
6结语微弱信号检测放大是一门研究如何从复杂噪声背景中提取微弱特征信号的技术,论文分析了基于线性理论的时域、频域以及时频域等各种微弱信号检测放大的方法与应用,在基于非线性理论的检测法中着重阐述了随机共振法。
随着计算机技术、微电子技术、信息理论的发展,微弱信号检测放大在医疗、军事、生物、航空、生产等领域的广泛应用促进了人们不断研究与探索微弱特征信号检测放大的新理论、新方法,期望能更加快速、更加准确地从复杂噪声背景中检测出微弱特征信号。
参考文献[1] 兰瑞明.弱信号检测方法研究[D].成都:电子科技大学,2005.[2] 李楠.刘福.微弱信号检测的3种非线性方法[J].电力自动化设备,2008.[3] 李舜酩等.微弱振动信号的谐波小波频域提取[J]. 西安交通大学学报, 2004.[4] 高晋占.微弱信号检测[M]. 北京: 清华大学出版社, 2004.[5] 于丽霞.微弱信号检测技术综述[J]. 信息技术, 2007.。