最新江苏省中考数学试题汇编之几何解答题精选37题(教师版)
2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)

2021年江苏省中考数学真题分类汇编:图形的变化一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.410.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d =.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)25.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6226.(2021•无锡)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.27.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).28.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)29.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H 与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.30.(2021•常州)在平面直角坐标系xOy中,对于A、A′两点,若在y轴上存在点T,使得∠ATA′=90°,且TA=TA′,则称A、A′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M(﹣2,0)、N(﹣1,0),点Q(m,n)在一次函数y=﹣2x+1的图象上.(1)①如图,在点B(2,0)、C(0,﹣1)、D(﹣2,﹣2)中,点M的关联点是(填“B”、“C”或“D”);②若在线段MN上存在点P(1,1)的关联点P′,则点P′的坐标是;(2)若在线段MN上存在点Q的关联点Q′,求实数m的取值范围;(3)分别以点E(4,2)、Q为圆心,1为半径作⊙E、⊙Q.若对⊙E上的任意一点G,在⊙Q上总存在点G′,使得G、G′两点互相关联,请直接写出点Q的坐标.2021年江苏省中考数学真题分类汇编:图形的变化参考答案与试题解析一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一列两个矩形.故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.据此判断即可.【解答】解:该图是轴对称图形,不是中心对称图形.故选:A.【点评】此题主要考查了中心对称图形和轴对称图形,熟记相关定义是解答本题的关键.3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【考点】展开图折叠成几何体;简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义画出相应的图形,再进行判断即可.【解答】解:该组合体的主视图如下:故选:A.【点评】本题考查简单组合体的主视图,理解主视图的意义是正确判断的前提.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【考点】平行线的性质;矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】在矩形ABCD中,AD∥BC,则∠DEF=∠EFG=64°,∠EGB=∠DEG,又由折叠可知,∠GEF=∠DEF,可求出∠DEG的度数,进而得到∠EGB的度数.【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.【点评】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【考点】正方形的性质;中心投影.【专题】投影与视图;空间观念;几何直观.【分析】根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D.【点评】本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt △A′O′B,则下列四个图形中正确的是()A.B.C.D.【考点】旋转的性质.【专题】平移、旋转与对称;几何直观.【分析】本题主要考查旋转的性质,旋转过程中图形形状和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.【点评】本题主要考查旋转的性质,熟练掌握并应用旋转的性质是解题的关键,重点注意旋转的方向和角度.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【考点】由三视图判断几何体.【专题】投影与视图;空间观念.【分析】从正视图以及左视图都为一个长方形,俯视图三角形来看,可以确定这个几何体为一个三棱柱.【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由折叠的性质可得BM=MD,BN=DN,∠DMN=∠BMN,可证四边形BMDN 是菱形,在Rt△ADM中,利用勾股定理可求BM的长,由菱形的面积公式可求解.【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,∵S菱形BMDN=×BD×MN=BM×AD,∴4×MN=2×5×4,∴MN=2,故选:B.【点评】本题考查了翻折变换,矩形的性质,菱形判定和性质,勾股定理,求出BM的长是解题的关键.10.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【考点】相似三角形的判定与性质;解直角三角形.【专题】三角形;几何直观.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.【点评】本题主要考查三角形的面积,相似三角形的性质与判定,解直角三角形等,看到面积或特殊角作垂线是常见的解题思路,也是解题关键.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【考点】正方形的性质;相似三角形的判定与性质;解直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.【点评】此题综合考查了正方形、锐角三角函数的定义及勾股定理.根据勾股定理求出BG的长是解题的关键.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE~△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE~△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.【点评】本题考查了相似三角形的判定与性质,证明△DBE~△ABC得出相似比是解题的关键.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.【考点】勾股定理;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由折叠的性质可得AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF 中,由勾股定理可求AF.【解答】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,∴EG===3,∵sin∠FEG=,∴,∴HF=,∵cos∠FEG=,∴,∴EH=,∴AH=AE+EH=,∴AF===,故答案为:.【点评】本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.【考点】线段垂直平分线的性质;旋转的性质.【专题】综合题;推理填空题;平移、旋转与对称;应用意识.【分析】设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,由OA=8,AB=5,BC是OA的垂直平分线,可得OB=5,OC=AC =4,BC=3,cos∠BOC==,sin∠BOC==,证明∠BOC=∠B'C'D=∠C'A'E,从而在Rt△B'C'D中求出C'D=,在Rt△A'C'E中,求出C'E=,得DE=C'D+C'E =,即可得到A'到ON的距离是.【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:∵OA=8,AB=5,BC是OA的垂直平分线,∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',∴cos∠B'C'D=,Rt△B'C'D中,=,即=,∴C'D=,∵AE∥ON,∴∠B'OC'=∠C'A'E,∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,Rt△A'C'E中,=,即=,∴C'E=,∴DE=C'D+C'E=,而A'H⊥ON,C'D⊥ON,A'E⊥DC',∴四边形A'EDH是矩形,∴A'H=DE,即A'到ON的距离是.故答案为:.方法二:过A作AC⊥OB于C,如图:由旋转可知:点A′到射线ON的距离d=AC,∵OB•AC=OA•BD,∴AC==.【点评】本题考查线段的垂直平分线及旋转变换,涉及三角函数及矩形等知识,解题的关键是在Rt△B'C'D中和Rt△A'C'E中,求出求出C'D=,C'E=.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为25海里(结果保留根号).【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力.【分析】过点P作PC⊥AB,在Rt△APC中由锐角三角函数定义求出PC的长,再在Rt △BPC中由锐角三角函数定义求出PB的长即可.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.【点评】本题考查了解直角三角形的应用﹣方向角问题以及锐角三角函数定义;熟练掌握锐角三角函数定义,求出PC的长是解题的关键.16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是12.【考点】数学常识;三角形的面积;三角形中位线定理;矩形的判定;图形的剪拼.【专题】作图题;应用意识.【分析】根据图形的拼剪,求出BC以及BC边上的高即可解决问题.【解答】解:由题意,BG=CH=AF=2,DG=DF,EF=EH,∴DG+EH=DE=3,∴BC=GH=3+3=6,∴△ABC的边BC上的高为4,∴S△ABC=×6×4=12,故答案为:12.【点评】本题考查图形的拼剪,矩形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是读懂图象信息,属于中考常考题型.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=或时,△AEC′是以AE为腰的等腰三角形.【考点】等腰三角形的判定;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】分类讨论;推理能力.【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【解答】解:设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,∵矩形ABCD,∴∠B=90°,由勾股定理得:32+x2=(4﹣x)2,解得:,当AE=AC′时,如图,作AH⊥EC′∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△ECF,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′时,作AH⊥EC′,∴EC′=2EH,即4﹣x=2x,解得,综上所述:BE=或.故答案为:或.【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S=S△ABD,求出△ABD面积的最大值即可解决问题.△AEF【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:【点评】本题考查相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是证明DE∥AB,推出S△AEF=S△ABD,属于中考常考题型.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】过点E作EG∥DC交AD于G,可得△AGE∽△ADC,所以,得到DC=2GE;再根据△GFE∽△DFB,得==,所以,即=.【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,过点E作EG∥DC,构造相似三角形是解题的关键.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【考点】平行四边形的性质;旋转的性质;解直角三角形的应用.【专题】三角形;解直角三角形及其应用;运算能力.【分析】过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.BM=B′M=,由勾股定理可得,AM==,由等面积法可得,BN=,由勾股定理可得,AN===,由题可得,△AMB∽△EGC,△ANB∽△B′GE,则==,==,设CG=a,则EG=a,B′G=3+a,则=,解得a=.最后由勾股定理可得,EC===.【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠D′=∠AB′C′=∠B,∠B=∠AB′B,∴∠D′=∠B,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB’∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.【点评】本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.【考点】圆周角定理;点与圆的位置关系;切线的判定与性质;相似三角形的判定与性质.【专题】与圆有关的位置关系;图形的相似;推理能力.【分析】(1)由PC2=P A•PB得,可证得△P AC∽△PCB,根据相似三角形的性质得∠PCA=∠B,根据圆周角定理得∠ACB=90°,则∠CAB+∠B=90°,由OA=OC 得∠CAB=∠OCA,等量代换可得∠PCA+∠OCA=90°,即OC⊥PC,即可得出结论;(2)由AB=3P A可得PB=4P A,OA=OC=1.5P A,根据勾股定理求出PC=2P A,根据相似三角形的性质即可得出的值.【解答】(1)证明:连接OC,∵PC2=P A•PB,∴,∵∠P=∠P,∴△P AC∽△PCB,∴∠PCA=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠PCA+∠OCA=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵AB=3P A,∴PB=4P A,OA=OC=1.5P A,PO=2.5P A,∵OC⊥PC,∴PC==2P A,∵△P AC∽△PCB,∴===.【点评】本题考查三角形相似的判定与性质,考查切线的判定,圆周角定理,解题的关键是熟练掌握圆周角定理及相似三角形的判定等知识点的综合运用.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;应用意识.【分析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80﹣x)m,在Rt△BDE中,可得=1.5,解得BE=CE=48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB==52(m)【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:∵∠BCD=45°,∴△BCE是等腰直角三角形,设CE=x,则BE=x,∵CD=80m,∴DE=(80﹣x)m,Rt△BDE中,∠BDC=56°19',∴tan56°19'=,即=1.5,解得x=48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17'=,即=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE﹣EF=20m,Rt△ABF中,AB===52(m),答:A,B两点之间的距离是52m.【点评】本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;模型思想.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系分别求出DE,FG 即可.【解答】解:如图,过点B、C分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG 于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键..24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)。
2023年江苏省常州市中考数学真题(含解析)

个“旋点”.例如,在矩形 MNPQ 中,对角线 MP 、 NQ 相交于点T ,则点T 是矩形 MNPQ 的一个“旋点”.
(1)若菱形 ABCD 为“可旋四边形”,其面积是 4 ,则菱形 ABCD 的边长是_______; (2)如图 1,四边形 ABCD 为“可旋四边形”,边 AB 的中点 O 是四边形 ABCD 的一个“旋 点”.求 ACB 的度数; (3)如图 2,在四边形 ABCD 中, AC BD , AD 与 BC 不平行.四边形 ABCD 是否为“可 旋四边形”?请说明理由. 27.如图,二次函数 y 1 x2 bx 4 的图像与 x 轴相交于点 A(2, 0)、B ,其顶点是
B. 0 的相反数是 0 0 ,则 0 0 ,故该选项不符合题意;
C. 1 的相反数是 1 ,则 1 1 ,故该选项不符合题意;
2023
2023
2023 2023
B. 2023的相反数是 2023 ,则 2023 2023,故该选项不符合题意;
故选:A.
【点睛】本题考查了相反数,比较有理数的大小,解题的关键是先求出相反数,再进行比
(1)根据图中信息,下列说法中正确的是______(写出所有正确说法的序号): ①这 20 名学生上学途中用时都没有超过 30min ; ②这 20 名学生上学途中用时在 20min 以内的人数超过一半; ③这 20 名学生放学途中用时最短为 5min ; ④这 20 名学生放学途中用时的中位数为15min . (2)已知该校八年级共有 400 名学生,请估计八年级学生上学途中用时超过 25min 的人数; (3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数
约等于10000N ,则长征五号 B 运载火箭可提供的起飞推力约为( )
江苏省中考数学试题汇编之几何解答题精选37题(教师版)

2008年江苏省中考数学几何解答题精选37题1(08年江苏常州)(本小题满分7分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去. (1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△A l复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,ABC △内接于O ,AB 为O 的直径,2BAC B ∠=∠,6AC =,过点A 作O 的切线与OC 的延长线交于点P ,求PA 的长.(08年江苏连云港18题)解:AB 是O 的直径,90ACB ∴∠=.又2BAC B ∠=∠,30B ∴∠=,60BAC ∠=. ························ 3分又OA OC =,所以OAC △是等边三角形,由6AC =,知6OA =. ······· 5分PA 是O 的切线,90OAP ∴∠=.在Rt OAP △中,6OA =,60AOC ∠=,所以,tan 6063PA OA == ······················ 8分9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.(08年江苏连云港20题)证明:(1)90A ∠=,AB DC ∥,90ADE ∴∠=. 由沿DF 折叠后DAF △与DEF △重合,知AD DE =,90DEF ∠=.∴四边形ADEF 是矩形,且邻边AD AE ,相等.∴四边形ADEF 是正方形.························· 3分 BCPO A(第18题图)E C B DAG F(第20题图)ECBDAG F(第20题答图)(2)CE BG ∥,且CE BG ≠,∴四边形GBCE 是梯形. ·········· 4分四边形ADEF 是正方形,AD FE ∴=,90A GFE ∠=∠=.又点G 为AF 的中点,AG FG ∴=.连接DG .在AGD △与FGE △中,AD FE =,A GFE ∠=∠,AG FG =,AGD FGE ∴△≌△,DGA EGB ∴∠=∠. ················· 6分 BG CD =,BG CD ∥,∴四边形BCDG 是平行四边形. DG CD ∴∥.DGA B ∴∠=∠.EGB B ∴∠=∠.∴四边形GBCE 是等腰梯形. ························ 8分 注:第(2)小题也可过点C 作CH AB ⊥,垂足为点H ,证EGF CBH △≌△.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明); (3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.(08年江苏连云港25题)解:(1)如图所示: ················ 4分A AB BCC 80 100 (第25题图1) G49.8F53.8 44.0 47.1 35.1 47.8 50.0 (第25题图2) 80 100 (第25题答图1)(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分) (2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; ··········· 6分若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. ····································· 8分(3)此中转站应建在EFH △的外接圆圆心处(线段EF 的垂直平分线与线段EH 的垂直平分线的交点处). ····················· 10分 理由如下:由47.835.182.9HEF HEG GEF ∠=∠+∠=+=,50.0EHF ∠=,47.1EFH ∠=,故EFH △是锐角三角形,所以其最小覆盖圆为EFH △的外接圆,设此外接圆为O ,直线EG 与O 交于点E M ,, 则50.053.8EMF EHF EGF ∠=∠=<=∠.故点G 在O 内,从而O 也是四边形EFGH 的最小覆盖圆.所以中转站建在EFH △的外接圆圆心处,能够符合题中要求.························ 12分 11(08年江苏南京21题)(6分)如图,在ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. 求证:(1)ABF DCE △≌△;(2)四边形ABCD 是矩形.(08年江苏南京21题)(本题6分)解:(1)BE CF =, BF BE EF =+,CE CF EF =+, BF CE ∴=. ······························· 1分 四边形ABCD 是平行四边形, AB DC ∴=. ······························· 2分 在ABF △和DCE △中,AB DC =,BF CE =,AF DE =,ABF DCE ∴△≌△. ··························· 3分 (2)解法一:ABF DCE △≌△,B C ∴∠=∠. ······························ 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠=.90B C ∴∠=∠=. ···························· 5分∴四边形ABCD 是矩形. ·························· 6分 解法二:连接AC DB ,.(第21题)A B CDE F32.4 49.8 F53.8 44.047.135.147.8 50.0 (第25题答图2)ABF DCE △≌△, AFB DEC ∴∠=∠. AFC DEB ∴∠=∠. ···························· 4分 在AFC △和DEB △中,AF DE =,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△. AC DB ∴=. ······························· 5分 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.·························· 6分12(08年江苏南京22题)(6分)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)(08年江苏南京22题)(本题6分) 解:(1)①;②;④; ··························· 3分 (2)①画图正确; ····························· 5分 ②答案不惟一,例如:对应线段相等, OC OE =等. ······························· 6分13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m CD =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)图1 A (第22题)BD 图2E F H (第23题)ABCD 2023(08年江苏南京23题)(本题6分) 解:在Rt ABC △中,20CAB ∠=,tan tan 20BC AB CAB AB ∴=∠=. ···················· 2分在Rt ABD △中,23DAB ∠=,tan tan 23BD AB DAB AB ∴=∠=. ···················· 4分tan 23tan 20(tan 23tan 20)CD BD BC AB AB AB ∴=-=-=-.30500(m)tan 23tan 200.4240.364CD AB ∴==--≈.答:此人距CD 的水平距离AB 约为500m . ·················· 6分14(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?21.解:过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠PAB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°,∴PC =BC . ……………………………2分 在Rt△PAC 中,tan30°=6PC PCAB BC PC=++, …………4分6PC PC=+,解得PC=3. 6分∵3>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分15(08年江苏南通22题)已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.(第22题)ABC MNO ·A B P 北 东 (第21题) A P 60︒ 45︒ 北 东 (第21题)(08年江苏南通22题)解:(1)连结OM .∵点M 是AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN == ………………………3分在Rt △ODM 中,OM =4,MD =OD 2=. 故圆心O 到弦MN 的距离为2 cm . …………………………5分 (2)cos ∠OMD =MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(08年江苏南通27题)解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr ,∴圆的半径为4cm .………2分 由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+cm ,20+>∴方案一不可行. ………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1r R +=, ① 2π2π4Rr =. ② …………………………7分 由①②,可得R ==,r == ………………9分cm . ………10分17(08年江苏苏州23题)(本题6分)(第27题) 方案一 方案二(第22题)A CMNO· D如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:BN ACBP BM=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.(08年江苏宿迁21题)(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//∴FCE ABE CFE BAE ∠=∠∠=∠, ∵E 为BC 的中点 ∴EC EB =∴FCE ABE ∆≅∆ ∴CF AB =.(2)解:当AF BC =时,四边形ABFC 是矩形.理由如下: ∵CF AB CF AB =,//∴四边形ABFC 是平行四边形 ∵AF BC =∴四边形ABFC 是矩形.20(08年江苏宿迁23题)(本题满分10分) 如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、F E DCB A 第21题CD 和BC .(1)求证:CDB CBN ∠=∠;(2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长.(08年江苏宿迁23题)(1)证明: ∵AB 是⊙O 的直径 ∴︒=∠+∠=∠90CDB ADC ADB ∵MN 切⊙O 于点B∴︒=∠+∠=∠90CBN ABC ABN ∴CBN ABC CDB ADC ∠+∠=∠+∠ ∵ABC ADC ∠=∠ ∴CDB CBN ∠=∠.(2) 如右图,连接OC OD ,,过点O 作CD OE ⊥于点E . ∵CD 平分ADB ∠ ∴BDC ADC ∠=∠ ∴弧AC =弧BC ∵AB 是⊙O 的直径 ∴︒=∠90BOC 又∵︒=∠15DAB∴︒=∠30DOB ∵CD OE OC OD ⊥=, ∴︒=∠30ODE ∵2=OD∴3,1==DE OE ∴322==DE CD .21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类

江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ;(2)3种方法都运用了 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表人数阅读数量(本)051252a53本及以上合计50统计表中的a= ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 mg/100ml,中位数为 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)原式=×=.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.【答案】﹣1<x≤2,数轴见解答,整数解是:0,1,2.【解答】解:,解不等式①得,x≤2,解不等式②得,x>﹣1,∴不等式组的解集是﹣1<x≤2,在数轴上表示为,∴不等式组的整数解是:0,1,2.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ﹣2<x<3 ;(2)3种方法都运用了 D 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.【答案】(1)﹣2<x<3;(2)D;(3)见解答.【解答】解:(1)解方程x2﹣x﹣6=0,得x1=﹣2,x2=3,∴函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出二次函数y=x2﹣x﹣6的大致图象(如图所示),由图象可知:当﹣2<x<3时函数图象位于x轴下方,此时y<0,即x2﹣x﹣6<0.所以不等式x2﹣x﹣6<0的解集为:﹣2<x<3.故答案为:﹣2<x<3;(2)上述3种方法都运用了数形结合思想,故答案为:D;(3)当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.画出函数y=x﹣1和函数y=的大致图象如图:当x>0时,不等式x﹣1<的解集为0<x<3;当x<0时,不等式x﹣1>的解集为﹣2<x<0,∵当x=0时,不等式x2﹣x﹣6<0一定成立,∴不等式x2﹣x﹣6<0的解集为:﹣2<x<3.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.【答案】(1)反比例函数解析式为y=;一次函数的解析为y=﹣x+6.(2)C(0,0)或(0,12).【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴m=2×4=8,∴反比例函数解析式为y=;又∵点B(4,n)在y=上,∴n=2,∴点B的坐标为(4,2),把A(2,4)和B(4,2)两点的坐标代入一次函数y=kx+b得,解得,∴一次函数的解析为y=﹣x+6.(2)对于一次函数y=﹣x+6,令x=0,则y=6,即D(0,6),根据题意得:S△ABC=S△BCD﹣S△ACD==6,解得:CD=6,∴OC=0或12,∴C(0,0)或(0,12).七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:A种商品的销售单价为30元,B种商品的销售单价为24元;(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?【答案】(1)当一次性销售800千克时利润为16000元;(2)一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)当一次性销售为1300或1700或1768千克时利润为22100元.【解答】解:(1)根据题意,当x=800时,y=800×(50﹣30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50﹣30﹣0.01(x﹣1000)=﹣0.01x+30,∴y=x(﹣0.01x+30)=﹣0.01x2+30x=﹣0.01(x2﹣3000x)=﹣0.01(x﹣1500)2+22500,∵﹣0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)①当一次性销售量在1000~1750kg之间时,利润为22100元,∴﹣0.01(x﹣1500)2+22500=22100,解得x1=1700,x2=1300;②当一次性销售不低于1750千克时,均以某一固定价格销售,设此时函数解析式为y=kx,由(2)知,当x=1750时,y=﹣0.01(1750﹣1500)2+22500=21875,∴B(1750,21875),把B的坐标代入解析式得:21875=1750k,解得k=12.5,∴当一次性销售不低于1750千克时函数解析式为y=12.5x,当y=22100时,则22100=12.5x,解得x=1768综上所述,当一次性销售为1300或1700或1768千克时利润为22100元.八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.【答案】(1)证明见解析;(2)2.【解答】(1)证明:连接AE,∵BC′与圆相切于E,∴半径AE⊥BE,∴∠BEG+∠AEG=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,DC=AB=2,∴∠BAF=90°,∴∠AGF+∠F=90°,∵AF=AE,∴∠F=∠AEG,∴∠AGF=∠BEG,∵∠AGF=∠BGE,∴∠BEG=∠BGE,∴BE=BG;(2)解:∵∠AEB=90°,AE=1,AB=2,∴sin∠ABE==,∴∠ABE=30°,由折叠的性质得到∠CBD=∠DBC′,∵∠ABC=90°,∴∠CBD=×(90°﹣30°)=30°,∴BC=CD=2.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.【答案】(1)证明过程见解答;(2)图中阴影部分的面积为﹣2.【解答】(1)证明:连接OC,∵⊙O和底边AB相切于点C,∴OC⊥AB,∵OA=OB,∠AOB=120°,∴∠AOC=∠BOC=∠AOB=60°,∵OD=OC,OC=OE,∴△ODC和△OCE都是等边三角形,∴OD=OC=DC,OC=OE=CE,∴OD=CD=CE=OE,∴四边形ODCE是菱形;(2)解:连接DE交OC于点F,∵四边形ODCE是菱形,∴OF=OC=1,DE=2DF,∠OFD=90°,在Rt△ODF中,OD=2,∴DF===,∴DE=2DF=2,∴图中阴影部分的面积=扇形ODE的面积﹣菱形ODCE的面积=﹣OC•DE=﹣×2×2=﹣2,∴图中阴影部分的面积为﹣2.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.【答案】(1)作图见解答过程;(2)证明见解答过程.【解答】(1)解:如图:过B作BF⊥AB,交CE于F,直线BF即为所求直线;(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵AB∥CE,∴∠ABC=∠BCF,∴∠BCF=∠ACB,∵点D在以AB为直径的圆上,∴∠ADB=90°,∴∠BDC=90°,∵BF为⊙O的切线,∴∠ABF=90°,∵AB∥CE,∴∠BFC+∠ABF=180°,∴∠BFC=90°,∴∠BDC=∠BFC,在△BCD和△BCF中,,∴△BCD≌△BCF(AAS),∴BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)【答案】堤坝高为8米,山高DE为20米.【解答】解:过B作BH⊥AE于H,∵坡度i为1:0.75,∴设BH=4xm,AH=3xm,∴AB==5x=10m,∴x=2,∴AH=6m,BH=8m,过B作BF⊥CE于F,则EF=BH=8,BF=EH,设DF=am,∵α=26°35′.∴BF===2a,∴AE=6+2a,∵坡度i为1:0.75,∴CE:AE=(20+a+8):(6+2a)=1:0.75,∴a=12,∴DF=12(米),∴DE=DF+EF=12+8=20(米),答:堤坝高为8米,山高DE为20米.一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 C .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量人数(本)051252a3本及以上5合计50统计表中的a = 15 ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【答案】(1)C ;(2)15,补全条形统计图见解答;(3)320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).【解答】解:(1)下面的抽取方法中,应该选择从八年级所有学生中随机抽取50名学生,故答案为:C ;(2)由题意得,a =50﹣5﹣25﹣5=15,补全条形统计图如下:故答案为:15;(3)800×=320(人),答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 110.9 mg/100ml,中位数为 89.8 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?【答案】(1)18,20;(2)110.9,89.8;(3)人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).【解答】解:(1)∵1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%,∴售出“偏酸”的香醋的数量为150×40%=60(瓶).∴a+42=60,解得a=18.∵15+b+17+38+a+42=150,即130+b=150,解得b=20.综上,a=18,b=20.(2)售出的玻璃瓶装香醋的数量为20+38+42=100(瓶).其中:风味偏甜的有20瓶,风味适中的有38瓶,风味偏酸的有42瓶,∵售出的风味偏酸的数量最多,风味适中的数量居中,∴售出的玻璃瓶装香醋中的该种物质的含量的众数为110.9mg/100ml,中位数为89.8mg/100ml.故答案为:110.9,89.8.(3)根据小明绘制的条形统计图可知,人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 ①②③ (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.【答案】(1)①②③;(2)20;(3)直线的解析式为:y=x;这条直线可近似反映学生上学途中用时和放学途中用时一样.【解答】解:(1)根据在坐标系中点的位置,可知:这20名学生上学途中用时最长的时间为30min,故①说法正确;这20名学生上学途中用时在20min以内的人数为:17人,超过一半,故②说法正确;这20名学生放学途中用时最段的时间为5min,故③说法正确;这20名学生放学途中用时的中位数是用时第10和第11的两名学生用时的平均数,在图中,用时第10和第11的两名学生的用时均小于15min,故这20名学生放学途中用时的中位数为也小于15min,即④说法错误;故答案为:①②③.(2)根据图中信息可知,上学途中用时超过25min的学生有1人,故该校八年级学生上学途中用时超过25min的人数为400×120=20(人).(3)如图:设直线的解析式为:y=kx+b,根据图象可得,直线经过点(10,10),(7,7),将(10,10),(7,7)代入y=kx+b,得:,解得:,故直线的解析式为:y=x;则这条直线可近似反映学生上学途中用时和放学途中用时一样.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 90 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.【答案】(1)90;(2)八年级成绩较好,理由见解析.【解答】解:(1)若该校八年级共有300名学生参赛,估计优秀等次的约有300×=90(人),故答案为:90;(2)八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.【答案】(1);(2).【解答】解:(1)∵有同型号的a,b,c三把钥匙,∴从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于,故答案为:;(2)画树状图如下:共有6种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有2种,即Aa、Bb,∴取出的钥匙恰好能打开取出的锁的概率为=.。
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解

2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。
2023年中考数学模拟试题及答案(教师版)

上的一次壮举.火星与地球的最近距离约为 5500 万千米,该数据用科学记数法可表示为(
A.5.5×108
B.5.5×107
C.0.55×109
D.0.55×108
【答案】B
)千米
【解析】【解答】解:5500 万=
.
.
故答案为:B.
【分析】用科学记数法表示绝对值较大的数,一般表示成 a×10n 的形式,其中 1≤∣a∣<10,n 等于原数的
10
∴CB=OC+OB=4x,
∵OF∥BD,
∴△COF∽△CBD,
∴은ठठ 은 ,
∴
푥 푥
,
∴OF=9,
∴EF=OF−OE=9−6=3.
【解析】【分析】(1)先证明∠ODC=90°,即 OD⊥CD,从而可得 CD 与⊙O 相切于点 D;
(2)先证明△COF∽△CBD,可得은ठठ 段的和差可得 EF 的长。
【解析】【分析】由坡度可得 AB:BC=5:6,可设 AB=5x 米,BC=6x 米,则 BD=(140+6x)米 由 tanD=은은
9
可建立关于 x 方程并解之即可. 19.如图,AB 为⊙O 的直径,C 为 BA 延长线上一点,D 为⊙O 上一点,OF⊥AD 于点 E,交 CD 于点 F, 且∠ADC=∠AOF.
直角边长为 12,则小正方形 ABCD 的面积的大小为
.
6
【答案】49 【解析】【解答】解∶如图
根据勾股定理,得
.
所以 AB=12﹣5=7.
所以正方形 ABCD 的面积为:7×7=49.
故答案是:49
【分析】由勾股定理求出 AF=5,从而求出 AB=BF-AF=7,根据正方形的面积公式即可求解.
苏教版立体几何习题精选(含答案详解)

(江苏最后1卷)给出下列四个命题:(1)如果平面与平面相交,那么平面内所有的直线都与平面相交 (2)如果平面⊥平面,那么平面内所有直线都垂直于平面(3)如果平面⊥平面,那么平面内与它们的交线不垂直的直线与平面也不垂直(4)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面 真命题...的序号是 ▲ .(写出所有真命题的序号)【答案】(3)(4)(南师大信息卷)在棱长为1的正方体中,若点是棱上一点,则满足的点的个数为 6 . ?提示:点在以为焦点的椭圆上,分别在、、、、、上. 或者,若在上,设,有. 故上有一点(的中点)满足条件.同理在、、、、上各有一点满足条件. 又若点在上上,则.故上不存在满足条件的点,同理上不存在满足条件的点.(南通三模)已知正方体1C 的棱长为182,以1C 各个面的中心为顶点的凸多面体为2C ,以2C 各个面的中心为顶点的凸多面体为3C ,以3C 各个面的中心为顶点的凸多面体为4C ,依此类推。
记凸多面体n C 的棱长为n a ,则6a = ▲ .αβαααβαβαβαβαβαβ1111ABCD A B C D -P 12PA PC +=P P 1AC P AB AD 1AA 11C B 11C D 1C C P AB AP x =2211(1)(2)2,2PA PC x x x +=+-+=∴=AB P AB AD 1AA 11C B 11C D 1C C P 1BB 2211112PA PC BP B P +=+++>1BB P 1DD P解析:考查推理方法以及几何体中元素的关系理解应用。
正方体1C 的棱长为218111==B A a ,由1C 各个面的中心为顶点的几何体为正八面体2C ,其棱长182211222===B A B A a ,由2C 各个面的中心为顶点的几何体为正方体3C ,其棱长263222333===B A B A a ,如此类推:得到2,22,6654===a a a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年江苏省中考数学几何解答题精选37题1(08年江苏常州)(本小题满分7分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去. (1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△A l复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,ABC △内接于O ,AB 为O 的直径,2BAC B ∠=∠,6AC =,过点A 作O 的切线与OC的延长线交于点P ,求PA 的长.(08年江苏连云港18题)解:AB 是O 的直径,90ACB ∴∠=.又2BAC B ∠=∠,30B ∴∠=,60BAC ∠=. ························ 3分又OA OC =,所以OAC △是等边三角形,由6AC =,知6OA =. ······· 5分PA 是O 的切线,90OAP ∴∠=.在Rt OAP △中,6OA =,60AOC ∠=,所以,tan 6063PA OA == ······················ 8分9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.(08年江苏连云港20题)证明:(1)90A ∠=,AB DC ∥,90ADE ∴∠=. 由沿DF 折叠后DAF △与DEF △重合,知AD DE =,90DEF ∠=. ∴四边形ADEF 是矩形,且邻边AD AE ,相等.BCPOA(第18题图)E C B DAG F(第20题图)ECBDAG F(第20题答图)∴四边形ADEF 是正方形. ························· 3分 (2)CE BG ∥,且CE BG ≠,∴四边形GBCE 是梯形. ·········· 4分 四边形ADEF 是正方形,AD FE ∴=,90A GFE ∠=∠=.又点G 为AF 的中点,AG FG ∴=.连接DG .在AGD △与FGE △中,AD FE =,A GFE ∠=∠,AG FG =, AGD FGE ∴△≌△,DGA EGB ∴∠=∠. ················· 6分 BG CD =,BG CD ∥,∴四边形BCDG 是平行四边形. DG CD ∴∥.DGA B ∴∠=∠.EGB B ∴∠=∠.∴四边形GBCE 是等腰梯形. ························ 8分 注:第(2)小题也可过点C 作CH AB ⊥,垂足为点H ,证EGF CBH △≌△.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明); (3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.(08年江苏连云港25题)解:(1)如图所示: ················ 4分A AB B CC 80 100 (第25题图1) G49.8F53.8 44.0 47.1 35.1 47.8 50.0 (第25题图2) 80 100(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分) (2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; ··········· 6分若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. ····································· 8分(3)此中转站应建在EFH △的外接圆圆心处(线段EF 的垂直平分线与线段EH 的垂直平分线的交点处). ····················· 10分 理由如下:由47.835.182.9HEF HEG GEF ∠=∠+∠=+=,50.0EHF ∠=,47.1EFH ∠=,故EFH △是锐角三角形,所以其最小覆盖圆为EFH △的外接圆,设此外接圆为O ,直线EG 与O 交于点E M ,, 则50.053.8EMF EHF EGF ∠=∠=<=∠.故点G 在O 内,从而O 也是四边形EFGH 的最小覆盖圆.所以中转站建在EFH △的外接圆圆心处,能够符合题中要求.························ 12分 11(08年江苏南京21题)(6分)如图,在ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. 求证:(1)ABF DCE △≌△;(2)四边形ABCD 是矩形.(08年江苏南京21题)(本题6分)解:(1)BE CF =, BF BE EF =+,CE CF EF =+,BF CE ∴=.······························· 1分 四边形ABCD 是平行四边形,AB DC ∴=.······························· 2分 在ABF △和DCE △中,AB DC =,BF CE =,AF DE =, ABF DCE ∴△≌△. ··························· 3分 (2)解法一:ABF DCE △≌△,B C ∴∠=∠. ······························ 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠=.90B C ∴∠=∠=. ···························· 5分 ∴四边形ABCD 是矩形. ·························· 6分(第21题)A B CDE F49.8 F53.8 44.047.135.147.8 50.0 (第25题答图2)解法二:连接AC DB ,. ABF DCE △≌△, AFB DEC ∴∠=∠.AFC DEB ∴∠=∠.···························· 4分 在AFC △和DEB △中,AF DE =,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△.AC DB ∴=.······························· 5分 四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形. ·························· 6分12(08年江苏南京22题)(6分)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)(08年江苏南京22题)(本题6分) 解:(1)①;②;④; ··························· 3分 (2)①画图正确; ····························· 5分 ②答案不惟一,例如:对应线段相等,OC OE =等.······························· 6分13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m CD =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)图1 A (第22题) B图2E F ABCD 2023(08年江苏南京23题)(本题6分) 解:在Rt ABC △中,20CAB ∠=,tan tan 20BC AB CAB AB ∴=∠=. ···················· 2分在Rt ABD △中,23DAB ∠=,tan tan 23BD AB DAB AB ∴=∠=. ···················· 4分 tan 23tan 20(tan 23tan 20)CD BD BC AB AB AB ∴=-=-=-.30500(m)tan 23tan 200.4240.364CD AB ∴==--≈.答:此人距CD 的水平距离AB 约为500m . ·················· 6分14(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?21.解:过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠PAB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°,∴PC =BC . ……………………………2分 在Rt△PAC 中,tan30°=6PC PCAB BC PC=++, …………4分6PCPC=+,解得PC=3. 6分∵3>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分15(08年江苏南通22题)已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.ACNO ·B P 北 东 (第21题) A B P 60︒ 45︒ 北 东C (第21题)(08年江苏南通22题)解:(1)连结OM .∵点M 是AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN == ………………………3分在Rt △ODM 中,OM =4,MD =,∴OD 2=. 故圆心O 到弦MN 的距离为2 cm . …………………………5分 (2)cos ∠OMD =MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(08年江苏南通27题)解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr ,∴圆的半径为4cm .………2分 由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+,20+>∴方案一不可行. ………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1r R ++=, ① 2π2π4Rr =. ② …………………………7分由①②,可得R =r ==. ………………9分(第27题) 方案一 方案二(第22题)A BCMNO· Dcmcm . ………10分17(08年江苏苏州23题)(本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:BN ACBP BM=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.(08年江苏宿迁21题)(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//∴FCE ABE CFE BAE ∠=∠∠=∠, ∵E 为BC 的中点 ∴EC EB =∴FCE ABE ∆≅∆ ∴CF AB =.(2)解:当AF BC =时,四边形ABFC 是矩形.理由如下: ∵CF AB CF AB =,// ∴四边形ABFC 是平行四边形 ∵AF BC = F E DCB A 第21题∴四边形ABFC 是矩形.20(08年江苏宿迁23题)(本题满分10分) 如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、CD 和BC .(1)求证:CDB CBN ∠=∠; (2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长.(08年江苏宿迁23题)(1)证明: ∵AB 是⊙O 的直径 ∴︒=∠+∠=∠90CDB ADC ADB∵MN 切⊙O 于点B∴︒=∠+∠=∠90CBN ABC ABN∴CBN ABC CDB ADC ∠+∠=∠+∠ ∵ABC ADC ∠=∠ ∴CDB CBN ∠=∠.(2) 如右图,连接OC OD ,,过点O 作CD OE ⊥于点E . ∵CD 平分ADB ∠ ∴BDC ADC ∠=∠ ∴弧AC =弧BC ∵AB 是⊙O 的直径 ∴︒=∠90BOC 又∵︒=∠15DAB ∴︒=∠30DOB ∵CD OE OC OD ⊥=, ∴︒=∠30ODE ∵2=OD ∴3,1==DE OE∴322==DE CD .21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。