六年级数学长方体正方体
苏教版六年级上册数学《长方体和正方体的认识》教案

苏教版六年级上册数学《长方体和正方体的认识》教案一. 教材分析《长方体和正方体的认识》是苏教版六年级上册数学的一节课。
本节课主要让学生掌握长方体和正方体的特征,理解它们之间的关系,并能够运用这些知识解决实际问题。
教材通过丰富的图片和实例,引导学生探究长方体和正方体的性质,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对长方体和正方体有一定的了解。
但是,部分学生可能对长方体和正方体的特征理解不深刻,难以运用这些知识解决实际问题。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过适当的引导和辅导,帮助他们理解和掌握长方体和正方体的特征。
三. 教学目标1.知识与技能:让学生掌握长方体和正方体的特征,能够识别长方体和正方体,并能够运用这些知识解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.教学重点:长方体和正方体的特征。
2.教学难点:长方体和正方体之间的关系,以及如何运用这些知识解决实际问题。
五. 教学方法1.情境教学法:通过展示实物和图片,引导学生观察和操作,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论和实践,培养学生的团队合作意识和解决问题的能力。
3.引导发现法:教师引导学生发现问题,引导学生通过思考和探究解决问题。
六. 教学准备1.教具准备:长方体和正方体的模型、图片、卡片等。
2.学具准备:学生每人准备一个长方体和正方体的模型。
七. 教学过程1.导入(5分钟)教师通过展示长方体和正方体的实物和图片,引导学生观察和思考:你们见过这样的物体吗?它们有什么特点?2.呈现(10分钟)教师呈现长方体和正方体的定义和特征,引导学生理解和掌握。
3.操练(10分钟)教师学生进行小组讨论和实践,让学生通过操作和交流,进一步理解和掌握长方体和正方体的特征。
六年级数学 《长方体和正方体》教材分析

第二单元《长方体和正方体》教材分析学生在一年级教材中直观认识了长方体和正方体,在数学学习中多次把长方体、正方体木块作为学具,对它们的形状有了初步的、整体的感受。
知道生活中许多物体的形状是长方体或正方体,能够识别一些常见的物体是什么形状。
本单元系统、深入地教学长方体和正方体的知识,内容很多。
下表是全单元的内容与编排。
认识形体长方体、正方体的面、棱、顶点,结构与特征。
(例 1、例2)长方体、正方体表面的展开图(例3)表面积表面积的意义和计算方法(例4)表面积的实际应用(例5)体积体积的意义、容积的意义(例6、例7)常用的体积单位和容积单位(例8)长方体、正方体的体积计算公式(例9、例10)体积单位的进率及简单换算(例11)“整理与练习”实践活动本单元教学内容在编排上有以下特点。
第一,有一条合理的编排线索。
先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。
把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。
如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。
如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。
把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。
而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。
在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。
建立了体积概念和体积单位概念,才能探索体积计算公式。
把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。
这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。
教学长方体和正方体,历来都很重视发展空间观念。
本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。
苏教版六年级数学(上册)长方体和正方体知识点汇总

长方体和正方体一、长方体和正方体的认识<一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )~8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( )13、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( )14、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )15、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:\1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4)正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前和后面的彩带长度=高的长度;左和右面的彩带长度=高的长度;上和下面的彩带长度=长的长度。
苏教版六年级数学(上册)长方体和正方体知识点汇总

长方体和正方体一、长方体和正方体的认识面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( )13、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( )14、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )15、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前和后面的彩带长度=高的长度;左和右面的彩带长度=高的长度;上和下面的彩带长度=长的长度。
需要彩带的长度=高×4+长×2+宽×2+打结部分长度20×4+30×2+10=150cm练习:(1)有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要( )米的铝合金。
六年级上册数学苏教版长方体和正方体(课件)(共22张PPT)

Байду номын сангаас
练习二
下图表示用棱长1厘米的正方体摆成的物体。 (1)从前面、上面和右面看到的分别是什么形状? 试着画一画。 (2)这个物体的表面积是多少平方厘米? (3)如果添加同样的正方体,把这个物体补成 大正方体,表面积至少是多少平方厘米?
长方体和正方体
两个同样大的玻璃杯,左边盛满水,右边放一个桃。
长方体和正方体
下面的长方体和正方体,哪个体积大?
为了准确测量或计量体积的大小,需要统一体积单位。常 用的体积单位有立方厘米、立方分米和立方米,也可以写 成cm3、dm3和m3。同时,1dm3=1L;1cm3=1ml
练习三
1.商店把同样的盒装饼干摆成3堆,这三堆饼干的体积相 等吗?为什么? 体积一样大
想一想:在两个同样大的玻 璃杯里分别放一个桃和一个 荔枝,再往这两个杯里到满 水。倒进几号杯的水多一些? 为什么?
长方体和正方体
同样,下面三个水果,哪一个占的空间大?想一想,如 果把它们放在同样大的杯中,再倒满水,哪个杯里水占 的空间大?
物体所占空间的大小叫作物体的体积。
长方体和正方体
把大小两块石子分别放入两个装满水的同样大的杯子里。 容器所能容纳物体的体积叫作容器的容积。
正方体的概念
拿一个长方体纸盒,沿着一条棱剪开,看看它的展开图
练习一
1.看图说出长方体的长、宽和高?
2.下面的长方体和正方体都是由棱长1厘米的小正方体 摆成的。它们的长、宽、高或棱长各是多少?
12个
27个
20个
正方体的概念
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒, 至少用硬纸板多少平方厘米?
苏教版数学六年级上册
小学六年级数学教案 长方体和正方体的表面积说课9篇

小学六年级数学教案长方体和正方体的表面积说课9篇长方体和正方体的表面积说课 1一、教学构思长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。
虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。
一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。
当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。
同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:一、引导学生学习正方体表面积的计算方法1.回忆上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?2.联想:(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?3.归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。
正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)4.教学例2提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。
(苏教版)六年级数学上册《长方体和正方体》单元知识点汇总

长方体和正方体
立体图形的切割:
(切割会使表面积增加,因此存在表面积增加最多或最少的问题)
长方体 沿与原来长方体最大面平行的方向切割,其表面积比原来增加的最多。 沿与原来长方体最小面平行的方向切割,其表面积比原来增加的最少。 而且每切一刀增加两个完全相同的面,切两刀增加四个完全相同的面…… 正方体 无论沿那个面平行的方向切,都将增加两个正方形的面,增加的面积均为 2a2 不存在增加最多最少的问题。
长度单位:mm、cm、dm、m 面积单位:mm2、cm2、dm2、m2 体积单位:mm3、cm3、dm3、m3 容积单位:mL、L 特别的:1mL=cm3 1L=1dm3 相邻两个单位进率为10 相邻两个单位进率为100 相邻两个单位进率为1000 相邻两个单位进率为1000 1方=1m³
高级单位化低级单位乘进率,低级小单位化高级单位除以进率。
长方体的长扩大a倍,宽扩大b倍,高扩大c倍,棱长总和变化无规 律,表面积变化也无规律,体积扩大a×b×c倍。
小正方体拼大长方体的规律
首先观察大长方体各棱长分别是小正方体棱长的几倍,如, 长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高 是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方 体组成的。
长方体和正方体
小正方体拼大正方体的规律
由于正方体,每条棱的长度相等,所以要用小的正方体拼 出大的正方体每条棱上摆放的小正方的个数应该是相等的,因 此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每 条棱上放2个小正方体),接着再往大了拼正方体,就是每条 棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是 4×4×4=43=64个;5×5×5=53=125个…… 从中我们可以发现要用小的正方体拼出大的正方体所需要 的小正方体的个数应该是一个数的立方。这就要求我们能够熟 记一些数的立方: 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729 103=1000
苏教版六年级上册数学第一单元长方体和正方体 (共36张PPT)

复习驿站
6.长方体和正方体体积计算
(1)长方体的体积=长×宽×高。如果用字母 V 表示长方体的体积,用 a、b、h 表示长方体的长、宽、高,那么用字母表示长方体的体积公式为 V=abh。 (2)正方体的体积=棱长×棱长×棱长。如果用字母 V 表示正方体的体积,用 a 表示正方体的棱长,那么用字母表示正方体的体积公式为 V=a 。 (3)通常把长方体和正方体下面的面叫作底面, 长方体和正方体的底面的面积叫 作底面积。长方体、正方体的体积还可以用底面积×高来计算。用 V 表示体积,S 表示底面积,h 表示高,那么用字母表示长(正)方体的体积公式为 V=Sh。
复习驿站
4.长方体和正方体表面积计算的应用
在生活中,我们常常遇到粉刷墙面求粉刷面积和制作鱼缸、木箱、 通风管等求所需原材料面积的问题。计算时,要根据实际情况,理 清要计算几个面的面积。例如:制作鱼缸,一般是求5个面(没有上 面)的面积;制作通风管,一般是求 4个面( 没有上下面 ) 的面积;粉 刷墙面,一般是先求5个面(没有下面)的面积,再减去门窗等的面积。
典型例题分析
例2 把两个棱长是3分米的正方体拼成一个大长方体,这个长方 体的表面积是多少平方分米?表面积减少了多少平方分米?
分析一:
把两个相同的正方体拼成一个长方体,它的长是3×2=6(分米),宽 是 3 分米,高是 3 分米。根据长、宽、高求出它的表面积,再进行比 较。
典型例题分析
解答:
3×2×3×4+3×3×2=72+18=90(平方分米) 3×3×6×2=108(平方分米) 108-90=18(平方分米) 答:这个长方体的表面积是90平方分米,表面积减少了18平方分米。
复习驿站
(3)长方体长、宽、高的意义:长方体相交于同一顶点的三条棱的长度, 分别叫作它的长、宽、高。长方体的长、宽、高不是固定不变的,它与长方 体的摆放位置有关。(如图②) (4)长方体的棱长总和=(长+宽+高)×4 或长方体的棱长总和=长×4 +宽×4+高×4。 (5)正方体的特征:正方体的 6 个面完全相同,都是正方形,12 条棱的 长度都相等,有 8 个顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学长方体和正方体
【典型例题】
1.填空题。
(1)一个长方体的长是15厘米,宽是12厘米,高是8厘米,它的上面的长是( )厘米,宽是( )厘米,面积是( )平方厘米;前面的长是( )厘米.宽是( )厘米,面积是( )平方厘米;右面的长是( )厘米,宽是( )平方厘米,面积是( )平方厘米。
(2)用铁丝焊接成一个长12厘米、宽10厘米、高5厘米的长方体的框架,至少需要铁丝( )厘米。
(3)一个长方体的长是9分米,宽是5分米,高是5分米,这个长方体有( )个面是正方形,每个面的面积是( )平方分米;其余四个面是长方形,其面积大小( ),每个面的面积是( )平方分米;这个长方体的表面积是( )平方分米。
(4)一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米.不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )。
(5)一个正方体的棱长总和是72厘米,它的一个面是边长( )厘米的正方形,它的表面积是( )平方厘米
2.判断题。
(l)长方体的六个面一定都是长方形。
()
(2)长方体相对的两个面的面积一定相等。
()
(3)长方体的六个面中有可能有四个面是正方形。
()
(4) 一张很薄的纸,只有正反两面。
()
(5) 一个长方体如果有四个面是正方形,这个长方体一定是正方体。
()
(6)正方体的棱长扩大2倍,棱长和扩大2倍,表面积扩大2倍。
()
(7)正方体的每一个面都有4条棱,正方体有6个面,所以正方体有24条棱。
( )
(8)如果长方体有两个相对的面是正方形,那么其余的四个面的面积都相
等。
( )
(9)棱长是1分米的正方体纸盒放在桌子上,纸盒所占桌面的面积是1平方分米。
( )
(10)把一个长方体木料锯成两个长方体,一共增加了4个面。
( )
3.选择题。
(1)下图中能围成正方体的是()
A.B.C.D.
(2) 一个棱长是6分米的正方体,它的表面积和体积 ( )
A.表面积大 B.体积大 C.-样大 D.不能比较大小
(3)用棱长是1厘米的正方体木块,拼成一个较大的正方体,至少需要( )
A.4块 B.6块 C.8块 D.9块
(4)从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图),它的表面积 ( )
A.和原来同样大 B.比原来小 C.比原来大 D.无法判断
4.应用题。
(1) 一个长方体的棱长总和是160厘米,它的长是12厘米,宽是5厘米。
这个长方体的高是多少厘米?
(2) 一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米。
求正方体的棱长。
(3) 一个长方体木块,它的长是12厘米,宽是10厘米,高是8厘米,现把这个长方体的木块截成一个最大的正方体。
这个正方体的棱长总和是多少厘米?
知识点二:正方体和长方体的表面积
1. 长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积= 长×宽×2+长×高×2+宽×高×2 =(长×宽+长×高+宽×高)×2
2. 正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积= 棱长×棱长×6
【典型例题】
1.填空题。
(l)填表:
图形长宽高底面积表面积
长方体8厘米5厘米4厘米
长方体12分米10分米5分米
长方体8厘米4厘米3厘米
正方体8米
(2)一个正方体纸盒的表面积是5.1平方分米,它的占地面积是()平方分米。
(3)一个正方体的棱长和是48分米,正方体表面积是()平方分米。
(4)一个长方体,长4分米,宽3分米,高2分米,它的占地面积最大是()平方分米。
(5)有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一个鱼缸需要()平方厘米的玻璃。
(6)如右图,把一个长方体的木块沿着虚线锯成两段,表面积增加()平方厘米。
(7)一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,分成的两个
长方体表面积的和是()平方分米,每个长方体的表面积是()。
(8)把一个长6厘米、宽5厘米、高4厘米的长方体木块锯成两个小长方体,表面积至少
增加()平方厘米,至多增加()平方厘米。
(9)把一个长16厘米、宽6厘米、高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是()平方厘米。
(10) -个正方体的棱长是5厘米,用4个这样的正方体拼成一个大长方体。
大长方体的表面积可能是()平方厘米,也可能是()平方厘米。
请你把图画一画。
(11)要将长为60厘米、宽为45厘米的长方形划分为面积相等的小正方形,那么每个小正方形的面积最大是()平方厘米。
(12)要将长为60厘米、宽为45厘米、高30厘米的长方体划分为表面积相等的小正方体,那么每个小正方体的表面积最大是()平方厘米。
2.应用题。
(3)某学校挖了一个长5米、宽2.2米、深0.4米的长方体沙坑,需要多少吨沙子才能填满沙坑?(如果每立方米沙为1.5吨)
(4)一个长方体的油箱,从里面量长6分米、宽5分米、高3分米,每升汽油0. 82千克。
这个油箱最多可以装多少千克汽油?
(5)一个长方体的长是9厘米,宽是6厘米,高是3厘米,把它切割成三个完全相同的长方体,表面积之和最多比原来增加多少平方厘米?
(6)一个长方体的容器,底面积是16平方分米,装的水高6分米,现水中沉人一个体积是24立方分米的铁块。
这时的水面高多少?
(7)有一个完全封闭的容器,里面的长是20厘米,宽是16厘米,高是10厘米,平放时里面装了7厘米深的水。
如果把这个容器竖起来放,水的高度是多少?
1. 求下图(单位:厘米)中四边形ABCD的面积。