瞬变电磁原理、仪器及应用讲述
瞬变电磁法原理介绍

瞬变电磁法原理介绍瞬变电磁法俗称TEM (Time domain electromagnetic methods )法,属时间域电磁感应方法。
其探测原理是:在地面布设一回线,并给发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向地下传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。
该过渡过程又产生一个衰减的二次磁场向地表传播,由地面的接收回线接收二次磁场,该二次磁场的变化将反映地下地质体的电性分布情况。
如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。
如果地下没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现地下导体的存在。
瞬变电磁法特图3-1 瞬变电磁法原理示意图(1)对高阻层的穿透能力强,在高阻屏蔽地区用较小的回线可达到较大的探测深度,同时对低阻层有较高的分辨能力,利于在高阻围岩地区开展水文电法工作。
(2)瞬变电磁法一次磁场和被测磁场在时间上是分开的,所以,分辨率较高,并且可以在近区观测。
(3)方法本身受地形影响小。
使用回线源实现了装置的对称性,z x t>0Tx t=t 12t=t t=t 3可以减少断面的不均匀性和地层倾斜的影响。
工作中根据实际情况采用了大回线源装置,用探头接收。
大回线装置的Tx采用边长较大的矩形回线,Rx采用小型线圈(或探头)沿垂直于Tx长边的测线逐点观测磁场分量dB/dt值。
地下感应涡流向下、向外扩散的速度与大地导电率有关,导电性越好,扩散速度越慢,这意味着在导电性较好的大地上,能在更长的延时后观测到大地瞬变电磁场。
从“烟圈效应”的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反映浅部电性分布;晚期瞬变地磁场主要是由深部的感应电流产生的,反映深部的电性分布。
瞬变电磁法 解释

瞬变电磁法解释
什么是瞬变电磁法?
瞬变电磁法是一种地球物理勘探方法,用于探查地下的电性和磁性特征。
它利用瞬变电磁场在地下介质中传播的特性来获取地下结构的信息。
这种方法通常通过发送短脉冲电流来产生瞬变电磁场,并测量感应的电磁响应。
通过分析接收到的信号,可以推断地下介质的电导率、磁导率和形态等特征。
瞬变电磁法在石油勘探、地质灾害预测和地下水资源评估等领域具有重要应用价值。
瞬变电磁法的原理
在瞬变电磁法中,发送器通过电流脉冲产生瞬变磁场。
这个瞬变磁场会在地下介质中感应出涡流,产生感应电场和磁场。
接收器会测量感应电场和磁场的变化,并将这些信号转化为数字数据。
这些数据可以用来分析地下介质的电磁性质。
不同类型的地下介质对瞬变电磁场的响应不同,因此可以通过分析信号来识别地下结构的特征。
瞬变电磁法的应用
瞬变电磁法在以下领域具有广泛的应用:
•石油和矿产资源勘探
•地下水资源评估
•地质灾害预测(例如地震和滑坡)
•环境地质研究。
瞬变电磁法报告

瞬变电磁法报告引言瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非侵入性地下物探方法,广泛应用于矿产勘探、地质调查和水资源评价等领域。
该方法通过测量地下介质对电磁场的响应,可以获取地下的电阻率和电导率等信息,从而推测地下的地质结构和水文特征。
本报告将介绍瞬变电磁法的原理、仪器设备、数据处理方法以及其在勘探领域的应用情况。
原理瞬变电磁法是基于法拉第电磁感应定律和电磁场传播理论的。
其核心原理是在地下埋设主发射线圈和用于接收电磁信号的线圈,通过给主发射线圈施加瞬变电流,产生瞬变电磁场。
这个瞬变电磁场会感应地下的电流,进而产生感应电磁场,其中电磁场的传播过程会导致接收线圈中电磁信号的变化。
通过测量接收线圈中的电磁信号变化情况,可以推测地下介质的电阻率和电导率等物理参数。
仪器设备瞬变电磁法的仪器设备主要包括发射线圈和接收线圈两部分。
发射线圈通常由一对同心圆线圈组成,中间隔离一段距离,并通过一个高电压电流源施加瞬变电流。
接收线圈通常也是一对同心圆线圈,与发射线圈对应放置。
为了减少噪音干扰,接收线圈一般会使用差分模式进行测量。
此外,为了提高测量精度,仪器还包括数据采集设备、控制器和电缆等。
数据处理方法瞬变电磁法的数据处理主要分为两个步骤:预处理和解释处理。
预处理主要包括数据校正和数据滤波。
校正过程主要是对接收线圈信号进行校正,去除仪器和噪音引起的偏移。
滤波过程主要是对数据进行滤波处理,去除高频噪音和低频漂移等。
解释处理是根据已校正并滤波的数据,利用数学模型和反演算法对地下电阻率进行推测。
常用的解释处理方法包括二维反演、三维反演和测深等。
应用情况瞬变电磁法在矿产勘探、地质调查和水资源评价等领域有广泛的应用。
在矿产勘探中,可以利用瞬变电磁法探测地下的矿床和矿体分布情况,帮助寻找矿产资源。
在地质调查中,可以利用瞬变电磁法推测地下构造和地质体分布,辅助地质勘探和地质灾害预测。
ATEM瞬变电磁测量系统资料

ATEM瞬变电磁测量系统资料ATEM瞬变电磁测量系统是一种用于瞬变电磁场测量和分析的设备。
本文将介绍ATEM系统的基本原理、应用、技术特点等方面的资料。
基本原理ATEM瞬变电磁测量系统基于瞬态电磁法的测量原理,通过测量地下物质对瞬变电磁场的响应,来推断地下结构、岩性、水文地质等信息。
其主要原理可以概括为:1.激发源在地面上放置一对互相平行的电流线圈,利用一台高压脉冲发生器产生电流或电压突变信号激发电流线圈。
2.地下结构接受到电磁波后会发生电流及电荷分布,导致感应线圈中出现电势差,记录线圈输出的信号,进而反演出地下结构信息。
ATEM系统能够采集高时间分辨率的数据,并且对地下岩石、矿物、液体等亚表面结构特征的探测具有较高精度和可靠性。
应用场景ATEM瞬变电磁测量系统被广泛应用于地下水文地质、矿产资源勘探、土地利用规划、道路、桥梁、隧道、地铁等工程中的地质隐患分析等领域。
具体应用场景包括:•地下水资源勘探:对水源地水资源分布情况进行探测,帮助水利部门进行水资源管理和规划,保障城市及农业用水需求。
•矿产资源勘探:通过刻意的激发源、观测线选点的选择,透过地表特定的负荷电流等方法,可在照明状况相同下,从地下找到某些特定矿产的含量等信息。
•土地利用规划:系统可用于动态监测地下管道和建筑物等结构体至设立的埋深水平、及时跟踪物质运移和稳滞域进程,实现土地利用规划的科学化和经济化。
•隧道、地铁及其他工程钻探:对于排列较密、位置相近难以保证钻探施工安全的工程钻井,ATEM能够在一定范围内将被测量目标高度度量出来,从而对钻探的目标和步骤提供保障。
技术特点ATEM瞬变电磁测量系统具有以下技术特点:1.采样速度快:系统可以实现多通道数据采集,采样速度可达数百万个采样点每秒。
2.数据准确:ATEM系统可以实现高分辨率的振幅测量和高精度、高分辨率的时间同步测量,从而实现数据准确性。
3.信噪比高:系统设计了具有良好抗干扰的电路和软件算法,有效提高了信噪比。
瞬变电磁法简介

瞬变电磁法简介第三节瞬变电磁法(TEM)一、方法原理瞬变电磁法是利用不接地回线或接地线源通以脉冲电流为场源,以激励探测目的物感应二次电流,在脉冲间歇测量二次场随时间变化的响应。
当发射回线中的电流突然断开时,在介质中激励出二次涡流场(激发极化场),二次场从产生到结束的时间是短暂的,这就是“瞬变”名词的由来。
在二次涡流场的衰减过程中,早期以高频为主,反映的是浅层信息,晚期以低频为主,反映的是深层地下信息。
研究瞬变电磁场随时间变化规律,即可探测不同导电性介质的垂向分布。
瞬变电磁法的探测深度与回线线圈的大小、匝数有关,线圈越大、匝数越多,探测的深度就越深。
瞬变电磁法的观测是在脉冲间隙中进行,不存在一次场源的干扰,这称之为时间上的可分性,脉冲是多频率的合成,不同的延时观测的主频率不同,相应的时间场在地层中的传播速度不同,调查的深度也就不同,这称之为空间的可分性。
由这两种可分性导致瞬变电磁法有以下特点:把频率域法的精确度问题转化成灵敏度问题,加大功率,灵敏度可以增大信噪比,加大勘探深度;在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩地区由于是多道观测,早期道的地形影响也较易分辨;可以采用同点组合(同一回线、重叠回线等)进行观测,使与探测目标的耦合最好,取得的异常强,形态简单,分层能力强;线圈点位、方位或接收距要求相对不严格,测地工作简单,功效高;有穿透低阻覆盖层的能力,探测深度大;剖面测量与测深工作同时完成,提供了更多有用信息,减少了多解性。
二、地球物理前提由于瞬变电磁法是观测断电后由一次脉冲激励出的二次涡流场随时间的变化规律,二次涡流场随时间的衰减快慢和强弱与被探测介质(道碴、混凝土、岩石等)及介质状态(含水与干燥、完整与破裂)有关,TEM法衰减曲线的变化过程反映了检测点由高频到低频、由浅层到深层的地质信息变化过程。
检测的参数是各层规一化的电阻率,对实测的衰减曲线进行反演拟合,绘制地下电性分层及分层的电阻率柱状图,进而以反演拟合曲线为基础,绘制成曲线簇断面图、等值线断面图及电性分级断面图。
煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理
煤矿瞬变电磁法是一种地球物理勘探技术,其基本原理是利用变化的电磁场在地下物质中引起的感应电流的变化来推断地下结构和地质特征。
瞬变电磁法的原理可以归结为以下几个步骤:
1. 发射电磁场:在地表上放置一个发射线圈,通过电流激发线圈产生变化的电磁场。
2. 感应电流产生:地下物质对电磁场的变化会产生感应电流。
地下物质的电导率和磁导率决定了感应电流的大小和分布。
3. 接收电磁信号:在地表上放置接收线圈,接收感应电流产生的变化信号。
4. 数据采集和处理:将接收到的信号传输到数据采集设备上,然后通过数学模型和计算方法对数据进行处理,将其转化为地下结构和电性特征的信息。
根据瞬变电磁法的原理,可以通过分析感应电流的变化来推断地下的物质性质和特征,如地层的厚度、电导率和磁导率等,进而对煤矿区域进行勘探和评估。
试谈瞬变电磁法的应用

试谈瞬变电磁法的应用一、瞬变电磁法的概述瞬变电磁法(简称TEM法)属于时间域电磁法,由于该方法是纯二次场测量,故与传统直流电法勘探相比较,具有对低阻异常体反映灵敏,勘探深度大,受地形影响小,工作效率高等优势。
瞬变电磁法开始只应用于金属矿勘探,上世纪90年代以后随着仪器的数字智能化发展,瞬变电磁法才开始应用于煤田水文探测中,如查明断层和陷落柱等构造的含导水性、地下采空区勘查、评价含水层富水性、结合水文钻孔预测矿井涌水量、矿井迎头超前探测等方面都取得了良好的效果。
地面瞬变电磁法多采用大定源回线装置,探测深度较大。
瞬变电磁法主要有:(1)地面动源类。
即发射系统和接收系统依点移动并观测记录结果,又可分为以下类型:同点类型:包括中心回线组合,同一回线组合,重叠回线组合。
该类型指发射回线的中心点与接收回线的中心点重合;分离回线类型:发射线圈与接收线圈相隔一段距离且同时移动;双回线类型:因使用步骤繁琐,使用效果不明显,故此方法极少使用,在此不做赘述。
(2)地面定源类。
不移动发射源,只移动接收线圈,并观测记录结果,又可分为以下类型:(大定源组合:发射回线边长一般较长;偶极定源组合:发射回线边长较小。
(3)地一井类。
发射回线在地面敷设,在井中逐点移动探头进行观测,可以在地面开孔,也可以是在坑道中开孔。
二、瞬变电磁法的特点及野外工作的要求2.1瞬变电磁法的特点瞬变电磁法能够在脉冲间隙中进行测量,这主要和这种方法不容易受到其他物质和磁场的干扰有关。
在使用这种方法的过程中,不同的脉冲强度是由不同的频率所合成的,这就使得脉冲在相同的时间场中有着不同的传播速度,勘察的深度也会不一样。
下面我们就具体的谈一下这种方法在空间和时间上的可分性特征。
(1)在提高煤炭資源勘察精确度的方法中,频率域法主要是通过提高自身精确度来实现的,但是瞬变电磁阀则是通过提高自身的灵敏度来实现,并成功的实现了提高精确度向提高灵敏度方面的转变。
(2)由于采空区的围岩区域地形差异比较大,所以如果采用原始的勘测方法,就容易受到地形的倾向而降低精确度,如果采用瞬变电磁法则能够避免这一问题。
瞬变电磁法的原理及野外工作技术简介

瞬变电磁法的原理及野外工作技术简介摘要:瞬变电磁法是地球物理勘察中应用较多的一种勘探方法之一,它基于电性差异,主要用于寻找低阻目标物,研究浅成至中深层地电结构。
具有较高的抗干扰能力和分辨率。
关键词:瞬变电磁;装置;回线;野外工作技术1原理及优点瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种人工源的时间域电磁法。
它的基本原理是利用不接地回线或电极向地下发送脉冲式一次电磁场,即在导电率为σ、导磁率为μ的均匀各向同性大地表面敷设面积为零的矩形发射回线在回线中供以的阶跃脉冲电流,将产生一个向地下传播的一次瞬变磁场,在该磁场的激励下,在地质体内产生涡流,在一次场消失后,涡流不能立即消失,它将有一个衰减过程,在此过程又产生一个衰减的二次场向地下传播。
在地表用接收线圈或接地电极观测该二次电磁场的空间和时间分布。
在瞬变过程的早期阶段,频谱中高频成分占优势,因此涡旋电流主要分布在地表附近,由于趋肤深度的高频效应,阻碍电磁场向地下深部传播,因此早期阶段的瞬变场主要反映地层的浅部地质信息。
在晚期阶段,高频成分被导电介质吸收,低频成分占主导地位,在这一阶段,局部地质体中的涡流,实际上全部消失,而各层产生的涡流磁场之间的连续相互作用使场平均化,这时瞬变场的大小主要依赖于地电断面总的纵向电导。
由于瞬变电磁测深法是在一次场断电后测量纯二次场,不存在一次场的干扰与普通电法相比,瞬变电磁法具有探测深度大、位置分辨率和测深分辨率高、不受静态位移影响、操作简便迅速、穿透高阻层能力强、不受接地电阻影响、地形影响小、对低阻地质体反应灵敏、生产效率高、可作大面积长距离堤防普查等优点。
2装置瞬变电磁法的激励场源主要有两种,一种是载流线圈或回线形式的磁源,另一种是接地电极形式的电流源。
发射的电流脉冲波形主要有矩形波、梯形波和半正弦波,不同波形有不同的频谱,激发的二次场频谱也不相同。
瞬变电磁自其发展以来,工作方式多种多样.例如:重叠回线装置、中心回线装置、同一回线装置、偶极装置等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬变电磁原理、仪器及应用第1章绪论 (1)1.1 瞬变电磁法发展概况 (1)1.2 瞬变电磁探测方法的特点及应用领域 (2)第2章瞬变电磁法探测原理 (4)第3章ATEM-II瞬变电磁探测系统 (7)3.1 ATEM-II瞬变电磁发射机 (7)3.2ATEM-II瞬变电磁接收机 (10)第4章瞬变电磁响应分析 (17)4.1各向同性水平层状大地上回线源的瞬变电磁响应 (17)4.2均匀大地表面上大回线源在地表形成的瞬变电磁场 (17)4.3中心回线下的隐伏球体的响应特征 (18)4.4中心回线下的隐伏无限延伸的水平圆柱体的响应特征 (20)4.5导电围岩中的局部导体瞬变电磁响应 (20)第5章瞬变电磁野外工作方法 (22)5.1 回线组合选择 (22)5.2 发射电流的选择 (24)5.3 发射脉冲宽度的选择 (25)5.4 关断时间的影响 (26)5.5 发射边长的选择 (27)5.5 接收最早取样时间的选择 (29)5.7 接收线圈的频率选择 (30)第6章瞬变电磁探测的数据处理与成图 (31)6.1数据质量判别 (31)6.2 数据处理 (33)6.2.1 平滑滤波 (33)6.2.2 近似对数等间隔取样 (34)6.3 基于“烟圈”理论的一维快速反演 (37)6.4 数据成图 (40)第7章 ATEM系统野外应用 (42)7.1 长春秦家屯模型验证研究 (42)7.2 长春伊通河活断层勘察研究 (44)7.3 内蒙正镶白旗水源勘察 (45)7.4 安徽铜陵矿山接替资源勘探 (49)7.5 浙江舟山连岛工程探测 (52)第1章绪论1.1 瞬变电磁法发展概况在1933年,美国科学家L.W.Blan最早提出利用电流脉冲激发供电偶极形成时间域电磁场,采用电偶极测量电场,并命名为“Eltran”法,于当年获得美国发明专利,该方法提出后美国石油公司做了很多野外实验,希望得到类似地震反射法的结果。
但由于脉冲激发的瞬变电磁响应频率较低,在沉积盆地难以得到能识别的分辨率,使得“Eltran”法的幻想破灭。
在30年代末,前苏联的А.П.Краев提出将瞬变电磁信号应用于地质构造测深,在1946年,А.Н.Тихонов等人作了论证,此后由Л.Л.Ваянъян建立远区建场测深方法(ЗСД),它主要采用电偶源(通以方波的接地导线),在距源r处用接收线圈测垂直分量,了解磁场的建立过程,初期发射-接收距r≤(4~6)H,(H为高阻基底上部沉积岩的总厚度),这是一种以分析地层深度变化特征的方法,此法主要用于地震探测油田效果不理想的地区。
在西方,1951年首先由学者J.R.Wait提出利用瞬变电磁场法寻找导电矿体的概念。
60年代В.В.Тикшаев、В.А.Сидоров等人将发射-接收距改成r≤0.7H,建立近区建场测深方法(ЗСБ)。
在同时期,前苏联科学家Ю.В.Якубовский、В.К.Коваленик及Ф.М.Камецкий等人创立了应用于勘查金属矿产的过渡过程法(МПП)。
60年代以后,建场法和过渡过程法得到更广泛及成功的应用和发展,该方法步入实用阶段。
20世纪60年代前苏联在全国各个盆地进行普查,发现了奥伦堡地轴上的大油田。
60年代中期到70年代末这段时间,人们认识到时间域电磁测深法可以利用远远小于期望探测深度的收发距时,这种方法有了快速发展,随之如“短偏移”、“晚期”、“近区”这类方法迅速发展起来。
美国等西方国家在20世纪70~80年代,短偏移法一直处于实验和研究阶段,未被广泛应用,而长偏移法得到了应用,特别是在地热调查和地壳结构调查中。
比较有代表的学者:G.V.Keller,1977;Stemberg,1979。
随后,J.R.Wait,G.V.Keller,A.A.Kaufman 等科学家对瞬变电磁法一维正、反演计算及方法技术进行了大量研究。
20世纪80年代以后随着计算机技术的发展,在二三维正演模拟技术方面,G.W.Hohmem,A.P.Raiche,B.R.Spies,M.N.Nabighian等学者,发表了大量论文。
我国的瞬变电磁法研究起始于20世纪70年代初,较早开展这项工作的有原长春地质学院的朴化荣、曾孝箴、王延良等人,推出了均匀大地上空时间域电磁响应,并将脉冲式航电仪用于地质填图和找矿。
1977年地矿部物化探勘查研究所的蒋邦远等将脉冲电磁法用于勘探良导体金属矿。
1985年牛之琏将脉冲电磁法用于金属矿勘探,并取得了明显的效果。
随后中南工业大学、西安地质学院、北京矿产地质研究所、中国地质大学、中国有色金属工业总公司矿产地质研究院等单位进行研究。
通过国内学者的二十多年的努力,取得了一些有价值的研究成果和大量的应用实例,在理论和方法技术方面推动了TEM在我国的应用和发展。
仪器研制方面,专门用于时间域电磁法仪器:1953年出现第一专利,为Newmont 勘探公司申请,1962年Mclanghlin和Dolan研制出Newmont EMP-1型仪器,1964年EMP-1野外实验成功,1974年Crone公司推出偶极系统的商品仪器,1974年Newmont EMP正式用于野外,1977年CSIRO研制出SIROTEM-I,1972年Lamontagne研制出UTEM -1,1980年Geonics研制出EM-37,1996年EM-67等。
20世纪80年代末以后,多功能电法仪器相继问世,美国Zonge公司的GDP12、GDP16、GDP32,加拿大的V-5、V-6、V5-2000等。
我国从20世纪70年代开始研制的脉冲式航电仪用于野外实验研究,80年代地矿部物化探研究所的WDC系列瞬变电磁仪,西安物化探研究所的LC瞬变电磁仪,90年代中南工业大学的SD-2仪器,中国有色金属工业总公司的TEM-3S仪器,2001年,吉林大学研制的ATEM-II型瞬变电磁仪器系统。
1.2 瞬变电磁探测方法的特点及应用领域在发射电流脉冲间歇期间(断电)后,观测地下介质产生的感应二次场随时间的变化,既瞬变电磁响应,不存在一次场源的干扰,这称之为时间上的可分性。
从傅里叶变换可知,一个阶跃脉冲是由各种高频和低频谐波叠加而成,产生的激发场(一次场)是宽频带电磁波,其瞬变电磁响应不同延时观测的主要频率成分不同,相应时间的场在地层中的传播速度不同,探测深度也就不同,这称之为空间的可分性。
瞬变电磁法的特点就基于这两个可分性。
因此与频率域电磁法相比具有以下特点:1.断电后观测二次场,可以近区观测,减少旁测影响,增强电性分辨能力;2.可用加大功率的方法增强二次场信号,提高信噪比,从而加大勘探深度;3.在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩区,由于是多道观测早期道的地形影响也较易分辨;4.可以采用同点组合(重叠回线,中心回线)进行观测,使与探测目标的耦合最紧,取得的异常响应强,形态简单,分层能力强;5.线圈形状、方位或接发距要求相对不严格,测地工作简单,工效高;6.有穿透低阻覆盖的能力,探测深度大;7.由于测磁场,受静态位移影响小;8.通过多次脉冲激发,响应信号的重复观测叠加和空间域多次覆盖技术的应用,提高信噪比和观测精度;9.剖面测量与测深工作同时完成,提供了更多有用信息减少了多解性。
由于瞬变电磁法这些特点,近几年在国内外得到迅速发展。
伴随仪器的数字化和智能化,功率的增大,数学模型计算正反演的应用,解释水平的提高与经验的丰富,可以解决的地质问题不断扩大。
如:矿产资源勘探、构造探测、工程地质调查、环境调查与监测以及考古等。
特别需要指出的是近年来在找水、市政工程、土壤盐碱化和污染调查以及浅层石油构造填图都有良好效果的报导。
目前几乎涉及了地球物理探测的各个领域包括空中和海洋,可见已成为重要的地球物理探测方法技术之一。
第2章瞬变电磁法探测原理瞬变电磁法(Transient Electromagnetic Methods),又称时间域电磁法(Time Domain Electromagnetic Methods)简称TEM或TDEM。
是近年来发展很快的电法勘探分支方法,在国际上有人称作是电法的“二次革命”。
由于它是一种无损高分辨率电磁探测技术,而且不同于探地雷达,它利用探测的电导率数据成图,可提供解释出地下埋藏的金属物体及相关信息。
利用瞬变电磁信号进行地球物理探测,早在30年代就由前苏联科学家提出,50年代开始应用于矿藏勘探,在钻井、航空和海洋等领域取得了一些成果。
我国对瞬变电磁法的研究也十分重视,自80年代初开始分别在方法理论、仪器及野外试验方面已经做了大量工作。
瞬变电磁测量是利用不接地线圈 (或称回线 )向地下发射一次瞬变磁场, 通常是在发射线圈上供一个电流方波 ,可在地下产生稳定的磁场分布, 当电流方波关断后, 地球介质将产生涡流, 其大小取决于地球介质的导电程度。
该涡流不能立即消失, 它将有一个过渡过程, 过渡过程产生的磁场向地表传播, 在地表接收线圈把磁场的变化转化为感应电压的变化。
瞬变电磁法的测深原理 Nabighian(1979)又可以“烟圈”效应形象地加以阐明,如图2.1所示,地表接收的二次电磁场是地下感应涡流产生的,其涡流以等效电流环向下并向外扩散,形如“烟圈”。
随着时间的推移,“烟圈”的传播与分布将受到地下介质的影响,这样从“烟圈效应”的观点看,可得早期瞬变电磁场是近地表感应电流产生的,反映浅部电性分布;晚期瞬变电磁场主要是由深部的感应电流产生的,反映深部的电性分布。
因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电性的垂向变化,这便是瞬变电磁测深的原理。
瞬变电磁法工作过程可以划分为发射、电磁感应和接收三部分。
当发射回线中的稳定电流突然切断后,根据电磁感应理论,发射回线中电流突然变化必将在其周围产生磁场、该磁场称为一次磁场。
一次磁场在周围传播过程中,如遇到地下良导电的地质体,将在其内部激发产生感应电流,又称涡流或二次电流(如图2.2所示)。
由于二次电流随时间变化,因而在其周围又产生新的磁场,称二次磁场。
由于良导电矿体内感应电流的热损耗,二次磁场大致按指数规律随时间衰减,如图2.3所示的瞬变磁场。
二次磁场主要来源于良导电矿体内的感应电流,因此它包含着与矿体有关的地质信息。
二次磁场通过接收回线来观测, 并对所观测的数据进行分析和处理,进而来解释地下矿体及相关物理参数。
图2.2瞬变电磁法工作原理示意图图2.3瞬变电磁法发射和接收波形示意图近年来,瞬变电磁法在国内外得到迅速发展,可以解决的地质问题范围不断扩大 ,目前几乎涉足了地球物理勘探的各个领域包括空中和海洋,并且取得了显著的效果,可见已经成为不可缺少的地球物理勘探方法之一。
而且其作为勘探地上溶洞、空洞、断层、地裂缝、地下水、有色金属矿、地层软弱带以及浅层至中深层的地电结构,比其它物探方法能取得更为理想的地质效果,在工程地球物理勘探方面不失为一种快捷、精细,先进并行之有效的方法。