2018高考江苏版(理)数学一轮复习讲义: 附加题部分 第5章 第71课 矩阵与变换
(江苏专用)2018年高考数学总复习选做02矩阵

专题2 矩 阵【三年高考全收录】1.【2017年高考江苏】已知矩阵0110,.1002⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程. 【答案】(1);(2)228x y +=.(2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为点00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2:C 228x y +=. 【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦;(2)矩阵变换:a b x xc d y y'⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦表示点(,)x y在矩阵a bc d⎡⎤⎢⎥⎣⎦变换下变成点(,)x y''.2.【2016年高考江苏】已知矩阵12,02⎡⎤=⎢⎥-⎣⎦A矩阵B的逆矩阵111=202-⎡⎤-⎢⎥⎢⎥⎣⎦B,求矩阵AB.【答案】5 14 01⎡⎤⎢⎥⎢⎥-⎣⎦【解析】试题分析:先求逆矩阵的逆:11412⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦B,再根据矩阵运算求矩阵AB.试题解析:解:设a bc d⎡⎤=⎢⎥⎣⎦B,则1110120102a bc d-⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦B B,即11102201 22a cb dc d⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,故112122021a cb dcd⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得11412abcd=⎧⎪⎪=⎪⎨=⎪⎪=⎪⎩,所以11412⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦B.因此,15112144021012⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB.【考点】逆矩阵,矩阵乘法【名师点睛】矩阵乘法及逆矩阵需明确运算法则,实质是考查一种运算法则:1||||,(||0)||||db a b ad bc cd c a --⎡⎤⎢⎥⎡⎤⎢⎥=⇒==-≠⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦,A A A A A A A a b e f ae bg af bh c d g h ce dg cf dh ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦,类似求矩阵特征值及特征向量也是如此.3.【2015江苏高考,21】已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值. 【答案】1120-⎡⎤A =⎢⎥⎣⎦,另一个特征值为1.【考点定位】矩阵运算,特征值与特征向量 4.【2014江苏,理21B 】[选修4-2:矩阵与变换] 已知矩阵1211,121A B x -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,向量2a y ⎡⎤=⎢⎥⎣⎦,,x y 是实数,若Aa Ba =,求x y +的值. 【答案】72. 【解析】由题意得22224y y xy y -+=+⎧⎨+=-⎩,解得124x y ⎧=-⎪⎨⎪=⎩.∴72x y +=. 5.【2013江苏,理21B 】[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .【答案】 1 20 3--⎡⎤⎢⎥⎣⎦.【解析】解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦, 故a =-1,b =0,c =0,12d =,从而A 的逆矩阵为A -1= 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦, 所以A -1B = 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦.6.【2012江苏,理21B 】[选修4-2:矩阵与变换]已知矩阵A 的逆矩阵113 44=11 22⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-A ,求矩阵A 的特征值.【答案】λ1=-1,λ2=4..【解析】解:因为A -1A =E ,所以A =(A -1)-1.因为113 4411 22-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 所以()11 2 32 1--⎡⎤==⎢⎥⎣⎦A A, 于是矩阵A 的特征多项式为f(λ)= 2 32 1λλ----=λ2-3λ-4.令f(λ)=0,解得A 的特征值λ1=-1,λ2=4.【2018年高考命题预测】纵观近几年江苏高考试题,对矩阵的考查,主要考查矩阵的运算,矩阵变换,矩阵的特征值与特征向量及二阶逆矩阵.题目难度一般为中、低档,着重考查利用基本概念、基础知识求解矩阵,高考对这部分要求不是太高,会进行矩阵的乘法运算,会利用矩阵运算进行平面变换,会判断一个二阶矩阵有否逆矩阵及求得逆矩阵,会求矩阵的特征值与特征向量,并用特征值与特征向量进行矩阵的乘方运算.备考中应严格控制训练题的难度.高考对这部分要求不是太高,高考中在附加题部分.预测2017年矩阵仍是考试的重点.复习建议:在复习矩阵知识过程中,注意培养、强化与提高计算能力,逐步提升数学素养,提高分析解决综合问题的能力.【2018年高考考点定位】高考对矩阵的考查,主要考查矩阵的运算,考查矩阵变换,考查矩阵的特征值与特征向量及二阶逆矩阵的运算.【考点1】矩阵的运算与矩阵变换 【备考知识梳理】 1.乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法法则: [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21]. (2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11x 0+a 12y 0a 21x 0+a 22y 0. (3)两个二阶矩阵相乘的结果仍然是一个二阶矩阵,其乘法法则如下:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21 a 11b 12+a 12b 22a 21b 11+a 22b 21 a 21b 12+a 22b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律,即(AB )C =A (BC ). (5)A k A l=Ak +l,(A k )l =A kl (其中k ,l ∈N *).2.常见的平面变换 (1)恒等变换:因为⎣⎢⎡⎦⎥⎤1 001⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x y ,该变换把点(x ,y )变成(x ,y ),故矩阵⎣⎢⎡⎦⎥⎤1 001表示恒等变换.(2)反射变换:因为⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x y ,该变换把点(x ,y )变成(-x ,y ),故矩阵⎣⎢⎡⎦⎥⎤-1 0 0 1表示关于y 轴的反射变换;类似地,⎣⎢⎡⎦⎥⎤1 00 -1,⎣⎢⎡⎦⎥⎤0, 11 0,⎣⎢⎡⎦⎥⎤0, -1-1 0分别表示关于x 轴、直线y=x 和直线y =-x 的反射变换.(3)伸缩变换:因为⎣⎢⎡⎦⎥⎤100k ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ky ,该变换把点(x ,y )变成点(x ,ky ),在此变换中,点的横坐标不变,纵坐标变成原来的k 倍,故矩阵⎣⎢⎡⎦⎥⎤1, 00 k 表示y 轴方向上的伸缩变换;类似地,矩阵⎣⎢⎡⎦⎥⎤s 001可以用来表示水平伸缩变换.(4)旋转变换:把点A (x ,y )绕着坐标原点逆时针旋转α角的变换,对应的矩阵是⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α. (5)切变变换:⎣⎢⎡⎦⎥⎤1 s 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +sy y 表示的是沿x 轴的切变变换.沿y 轴的切变变换对应的矩阵是⎣⎢⎡⎦⎥⎤1 0t1.(6)投影变换:⎣⎢⎡⎦⎥⎤1000⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0,该变换把所有横坐标为x 的点都映射到了点(x,0)上,因此矩阵⎣⎢⎡⎦⎥⎤1 000表示的是x 轴上的投影变换.类似地,⎣⎢⎡⎦⎥⎤0001表示的是y 轴上的投影变换.【规律方法技巧】1.待定系数法在平面变换中的应用通过二阶矩阵与平面向量的乘法求出变换前与变换后坐标之间的变换公式,进而得到所求曲线(或点),求解时应注意待定系数法的应用.2.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等. 3.矩阵的乘法只满足结合律,不满足交换律和消去律. 4.对于平面图形的变换要分清是伸缩、反射、还是切变变换.5.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.6.在解决通过矩阵进行平面曲线的变换时,变换矩阵可以通过待定系数法解决,在变换时一定要把变换前后的变量区别清楚,防止混淆.7.曲线(或点)经过二阶矩阵变换后的曲线(或点)的求法,类似于平面解析几何中的代入法求轨迹,此类问题的关键是求对坐标之间的变换公式. 8.注意两个易错点:(1)二阶矩阵的乘法运算律中,易忽视AB ≠BA ,AB =AC ⇒/ B =C ,但满足(AB )C =A (BC ). (2)易混淆绕原点逆时针旋转90°的变换与绕原点顺时针旋转90°的变换.【考点针对训练】1.求使等式⎣⎢⎡⎦⎥⎤2435=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M . 【答案】⎣⎢⎡⎦⎥⎤1 -23 -5.【解析】设M =⎣⎢⎡⎦⎥⎤m n pq ,则⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤2m -2n p -q , 则⎩⎪⎨⎪⎧ 2m =2,-2n =4,p =3,-q =5,⇒⎩⎪⎨⎪⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5.2,已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1 201对应的变换作用下变为直线l ′:x +by =1.(1)求实数a ,b 的值;(2)若点P (x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.【答案】(1)⎩⎪⎨⎪⎧a =1,b =-1.;(2)(1,0).【解析】(1)设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下的像是M ′(x ′,y ′).由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y ,得⎩⎪⎨⎪⎧x ′=x +2y ,y ′=y .又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1, 即x +(b +2)y =1,依题意得⎩⎪⎨⎪⎧a =1,b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1.(2)由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0).【考点2】矩阵的特征值与特征向量 【备考知识梳理】 1.逆变换与逆矩阵(1)逆变换:设ρ是一个线性变换,如果存在线性变换σ,使得σρ=ρσ=1,则称变换ρ可逆,并且称σ是ρ的逆变换.(2)逆矩阵:设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E 2,则称矩阵A 可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵. (3)逆矩阵的性质性质①:设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的. 性质②:设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A -1.(4)定理:二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,当且仅当det A =ad -bc ≠0.2.逆矩阵与二元一次方程组 (1)定理:如果关于变量x ,y的二元一次方程组(线性方程组)⎩⎪⎨⎪⎧ax +by =e ,cx +dy =f 的系数矩阵A=⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤e f .(2)推论:关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =0,cx +dy =0.其中a ,b ,c ,d 是不全为零的常数,有非零解的充分必要条件是系数矩阵的行列式⎪⎪⎪⎪⎪⎪ab cd =0.3.特征值和特征向量设矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,如果存在数λ以及非零向量ξ,使得A ξ=λξ,则称λ是矩阵A 的一个特征值,ξ是矩阵A 的属于特征值λ的一个特征向量. 4.特征向量的性质设λ1,λ2是二阶矩阵A 的两个不同特征值,ξ1,ξ2是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于任意的非零平面向量α,设α=t 1ξ1+t 2ξ2(t 1,t 2为实数),则对任意的正整数n ,有A nα=t 1λn1ξ1+t 2λn2ξ2. 【规律方法技巧】 1.求逆矩阵的常见方法 (1)待定系数法: 设A 是一个二阶可逆矩阵⎣⎢⎡⎦⎥⎤a b cd ,AB =BA =E 2;(2)公式法:|A |=⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,有A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |,当且仅当|A |≠0;(3)从几何变换的角度求解二阶矩阵的逆矩阵; (4)利用逆矩阵的性质(AB )-1=B -1A -1. 2.求特征值和特征向量的方法(1)矩阵M =⎣⎢⎡⎦⎥⎤ab c d 的特征值λ满足(λ-a )(λ-d )-bc =0,属于λ的特征向量a =⎣⎢⎡⎦⎥⎤x y 满足M ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y . (2)求特征向量和特征值的步骤:①解f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0得特征值;②解⎩⎪⎨⎪⎧λ-a x -by =0,-cx +λ-d y =0⇔(λ-a )x -by =0,取x =1或y =1,写出相应的向量.3.注意3个易错点:(1)并不是每一个二阶矩阵都是可逆的: 矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆的充分必要条件是它对应的行列式|A |满足|A |=ad -bc ≠0,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |. (2)不是每个矩阵都有特征值与特征向量,矩阵M =⎣⎢⎡⎦⎥⎤ab c d 有特征值λ的充分必要条件是方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0有解. (3)属于矩阵的不同特征值的特征向量不共线. 【考点针对训练】1.已知矩阵A =⎣⎢⎡⎦⎥⎤ 21-13将直线l :x +y -1=0变换成直线l ′.(1)求直线l ′的方程;(2)判断矩阵A 是否可逆?若可逆,求出矩阵A 的逆矩阵A -1;若不可逆,请说明理由.【答案】(1)l ′的方程为4x +y -7=0;(2)A-1=⎣⎢⎢⎡⎦⎥⎥⎤37 -1717 27.(2)∵⎪⎪⎪⎪⎪⎪21-13≠0,∴矩阵A 可逆. 设A -1=⎣⎢⎡⎦⎥⎤ab c d ,∴AA -1=⎣⎢⎡⎦⎥⎤1001,∴⎩⎪⎨⎪⎧2a +c =1,2b +d =0,-a +3c =0,-b +3d =1,解之得⎩⎪⎪⎨⎪⎪⎧a =37,b =-17,c =17,d =27,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤37 -1717 27.2.已知矩阵M =⎣⎢⎡⎦⎥⎤4 -32 -1,向量α=⎣⎢⎡⎦⎥⎤75.(1)求矩阵M 的特征值及属于每个特征值的一个特征向量; (2)求M 3α.【答案】(1)特征值λ1=1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,特征值λ2=2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.; (2)⎣⎢⎡⎦⎥⎤4933.【解析】(1)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-4 3-2 λ+1=λ2-3λ+2,令f (λ)=0,得λ1=1,λ2=2.当λ1=1时,解方程组⎩⎪⎨⎪⎧-3x +3y =0,-2x +2y =0,得一个非零解⎩⎪⎨⎪⎧x =1,y =1.因此,矩阵M 属于特征值λ1=1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11;当λ2=2时,同理可得矩阵M 属于特征值λ2=2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.(2)设α=m α1+n α2,得⎩⎪⎨⎪⎧m +3n =7,m +2n =5,解得m =1,n =2.所以M 3α=M 3(α1+2α2)=M 3α1+2M 3α2=λ31α1+2λ32α2=⎣⎢⎡⎦⎥⎤11+2×23⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤4933.【两年模拟详解析】1.【扬州市2016—2017学年度第一学期期末检测】(本小题满分10分) 已知,a b ∈R ,若点(1,2)M -在矩阵14a b ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(2,7)N -,求矩阵A 的特征值.【解析】解:由题意得112427a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即2287a b -=⎧⎨-=-⎩,解得41a b =⎧⎨=⎩, 所以4114⎡⎤=⎢⎥⎣⎦A ,--------------------5分 所以矩阵A 的特征多项式为241()81514f λλλλλ--==-+--,令()0f λ=,解得5λ=或3λ=,即矩阵A 的特征值为5和3. ---------------------10分2. 【2017南通扬州泰州苏北四市高三二模】[选修4-2:矩阵与变换](本小题满分10分) 设矩阵A 满足:A 1206⎡⎤=⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦,求矩阵A 的逆矩阵1-A . 解:法一:设矩阵a b c d ⎡⎤=⎢⎥⎣⎦A ,则1206a b c d ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦1203--⎡⎤⎢⎥⎣⎦, 所以1a =-,262a b +=-,0c =,263c d +=. …… 4分 解得0b =,12d =,所以10102-⎡⎤⎢⎥=⎢⎥⎣⎦A . …… 6分 根据逆矩阵公式得,矩阵11002--⎡⎤=⎢⎥⎣⎦A . …… 10分法二:在A 1206⎡⎤=⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦两边同时左乘逆矩阵1-A 得, 1206⎡⎤=⎢⎥⎣⎦1-A 1203--⎡⎤⎢⎥⎣⎦. …… 4分 设1-=A a b c d ⎡⎤⎢⎥⎣⎦,则1206⎡⎤=⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦, 所以1a -=,232a b -+=,0c -=,236c d -+=. …… 6分 解得1a =-,0b =,0c =,2d =,从而11002--⎡⎤=⎢⎥⎣⎦A . …… 10分3. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】选修4-2:矩阵与变换 已知矩阵,若,求矩阵的特征值.【答案】,.4. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】选修4-2:矩阵与变换已知矩阵13a M b ⎡⎤=⎢⎥⎣⎦uu r 的一个特征值11λ=-及对应的特征向量11e ⎡⎤=⎢⎥-⎣⎦r .求矩阵M uu r的逆矩阵.【答案】【解析】 解:由题知,,,.,.5. 【南京市、盐城市2017届高三年级第一次模拟】(选修4-2:矩阵与变换)设矩阵 22 3m ⎡⎤=⎢⎥-⎣⎦M 的一个特征值λ对应的特征向量为12⎡⎤⎢⎥-⎣⎦,求m 与λ的值. 【答案】0m =,4λ=-.6. 【2017年第二次全国大联考江苏卷】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵212M x -⎡⎤=⎢⎥-⎣⎦的一个特征值为4,求1.M - 【解析】由2102xλλ-=-得(2)()20x λλ---=的一个解为4,代入得3x = , 因为 2123M -⎡⎤=⎢⎥-⎣⎦,所以13144.1122M -⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦…………10分 7. 【2017年第一次全国大联考江苏卷】【选修4-2:矩阵与变换】(本小题满分10分) 已知矩阵21414331M N --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,,求满足方程MX N = 的二阶矩阵.X 【解析】设a b X c d ⎡⎤=⎢⎥⎣⎦,由MX N =得21414331a b c d --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即2421433431a cb d ac bd -=⎧⎪-=-⎪⎨-+=-⎪⎪-+=⎩,解得92151a b c d ⎧=⎪⎪⎪=-⎨⎪=⎪=-⎪⎩,所以91.251X ⎡⎤-⎢⎥=⎢⎥-⎣⎦……………10分 8. 【2017年高考原创押题预测卷03(江苏卷)】【选修4—2:矩阵与变换】(本小题满分10分)已知点(,)P a b ,先对它作矩阵M 1212⎡⎢⎥=⎥⎥⎦对应的变换,再作N 2002⎡⎤=⎢⎥⎣⎦对应的变换,得到的点的坐标为,求实数,a b 的值.9. 【2017年高考原创押题预测卷01(江苏卷)】[选修4-2:矩阵与变换](本小题满分10分) 已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦,并且矩阵M 将点(1,3)-变换为(4,16),求矩阵M .【答案】B .2356M ⎡⎤=⎢⎥⎣⎦【解析】设a b M c d ⎡⎤=⎢⎥⎣⎦,由11811a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦及14316a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦中,得8834316a b c d a b c d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得5326a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,∴5326M ⎡⎤=⎢⎥⎣⎦. ·······10分 10.【江苏省扬州中学2015—2016学年第二学期质量检测】已知矩阵 10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】11203A B ---⎡⎤=⎢⎥⎣⎦【解析】由逆矩阵公式得110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,再利用矩阵运算得11203A B ---⎡⎤=⎢⎥⎣⎦11.【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90得到点B ',求点B '的坐标.【答案】()1,4- 【解析】设(),B x y ',依题意,由10110122--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得()1,2A '. 则()()2,2,1,2A B A B x y '''==--. 记旋转矩阵0110N -⎡⎤=⎢⎥⎣⎦, 则01211022x y --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2122x y --⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,解得14x y =-⎧⎨=⎩,所以点B '的坐标为()1,4-.12.【南京市、盐城市2016届高三年级第二次模拟考试】已知a ,b 是实数,如果矩阵A =32a b ⎡⎤⎢⎥-⎣⎦所对应的变换T 把点(2,3)变成点(3,4). (1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2. 【答案】(1)a =-1,b =5.(2)⎥⎦⎤⎢⎣⎡--=45112B【解析】(1)由题意,得323234a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得6+3a =3,2b -6=4, 所以a =-1,b =5.(2)由(1),得3152A -⎡⎤=⎢⎥-⎣⎦.由矩阵的逆矩阵公式得2153B -⎡⎤=⎢⎥-⎣⎦, 所以⎥⎦⎤⎢⎣⎡--=45112B13.【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】变换T 1是逆时针旋转2π角的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=1101⎡⎤⎢⎥⎣⎦. (1)点P (2,1)经过变换T 1得到点P',求P'的坐标;(2)求曲线y =x 2先经过变换T 1,再经过变换T 2所得曲线的方程. 【答案】(1)P '(-1,2).(2)y -x =y 2.【解析】(1)M 1=0110-⎡⎤⎢⎥⎣⎦, M 121⎡⎤⎢⎥⎣⎦=12-⎡⎤⎢⎥⎣⎦.所以点P (2,1)在T 1作用下的点P '的坐标是P '(-1,2). (2)M =M 2·M 1=1110-⎡⎤⎢⎥⎣⎦, 设x y ⎡⎤⎢⎥⎣⎦是变换后图象上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦, 则M 00x y ⎡⎤⎢⎥⎣⎦=x y ⎡⎤⎢⎥⎣⎦,也就是000x y x x y -=⎧⎨=⎩ 即00y y x x y =-⎧⎨=⎩所以,所求曲线的方程是y -x =y 2.14.【南京市2016届高三年级第三次模拟考试】已知曲线C :x 2+2xy +2y 2=1,矩阵A =1210⎡⎤⎢⎥⎣⎦所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程. 【答案】x 2+y 2=2【解析】设曲线C 上的任意一点P (x ,y ),P 在矩阵A =1210⎡⎤⎢⎥⎣⎦对应的变换下得到点Q (x ′,y ′). 则1210x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦, 即x +2y =x ′,x =y ′, 所以x =y ′,y =2x y ''-. 代入x 2+2xy +2y 2=1,得y ′2+2y ′2x y ''-·+2(2x y ''-)2=1,即x ′2+y ′2=2, 所以曲线C 1的方程为x 2+y 2=2.15.【苏锡常镇四市2016届高三教学情况调研(二)】已知变换T 把平面上的点(34)-,,(5 0),分别变换成(21)-,,(1 2)-,,试求变换T 对应的矩阵M . 【答案】113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 【解析】设a b c d ⎡⎤=⎢⎥⎣⎦M ,由题意,得35214012a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,∴342513415 2.a b a c d c -=⎧⎪=-⎪⎨-=-⎪⎪=⎩,,, 解得1,513,202,51120a b c d ⎧=-⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩. 即113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M . 16.【江苏省苏北三市2016届高三最后一次模拟】已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,向量53a ⎡⎤=⎢⎥⎣⎦,计算5A a . 【答案】371307⎡⎤⎢⎥⎣⎦17.【南通市2016届高三下学期第三次调研考试】在平面直角坐标系xOy 中,直线20x y +-=在矩阵1 12a A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线()0,x y b a b R +-=∈,求a b +的值. 【答案】4a b +=【解析】设(),P x y 是直线20x y +-=上一点,由1 122a x x ay y x y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,得()20x ay x y b +++-=即2022a b x y ++-=,由条件得,21,222a b+=-=-,解得04a b =⎧⎨=⎩,所以4a b +=18.【盐城市2016届高三年级第三次模拟考试】已知矩阵21m n ⎡⎤=⎢⎥⎣⎦M 的两个特征向量110α⎡⎤=⎢⎥⎣⎦,201α⎡⎤=⎢⎥⎣⎦,若12β⎡⎤=⎢⎥⎣⎦,求2βM .【答案】42⎡⎤⎢⎥⎣⎦【解析】设矩阵M 的特征向量1α对应的特征值为1λ,特征向量2α对应的特征值为2λ,则由111222M M αλααλα=⎧⎨=⎩可解得:120,2,1m n λλ====,又1211022201βαα⎡⎤⎡⎤⎡⎤==+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以2222121122104(2)242012M M βααλαλα⎡⎤⎡⎤⎡⎤=+=+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【一年原创真预测】1. 已知矩阵10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】1101212.1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【解析】设矩阵A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,于是11,0,2a b c d =-===,从而110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以1101212.1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【入选理由】本题考查矩阵的乘法运算,考查二阶逆矩阵的求法,意在考查学生逻辑思维能力和运算求解能力.本题首先求出二阶逆矩阵1A -,再计算,像这种题型考查知识基础,目的明确,是高考出题方向,故选此题.2.已知矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求A 的逆矩阵.【答案】121321132A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】由题意得11611a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,33122a b c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦则 66323322a b c d a b c d +=⎧⎪+=⎪⎨-=⎪⎪-=-⎩ , 解得3234a cb d =⎧⎪=⎪⎨=⎪⎪=⎩,即3324A ⎡⎤=⎢⎥⎣⎦,所以121321132A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【入选理由】本题考查矩阵的特征值与特征向量,本题通过特征值与特征向量概念求得矩阵A ,然后再求得逆矩阵,意在考查最基本的运算求解能力,意在考查学生逻辑思维能力.符合江苏高考对选做题的要求,故选此题. 3.变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦.求函数2y x =的图象依次在1T ,2T 变换的作用下所得曲线的方程. 【答案】2y x y -=【入选理由】本题考查矩阵的运算与平面变换之间的关系,考查用矩阵运算表示平面变换,意在考查学生分析问题与解决问题的能力,考查推理想象能力,考查运算求解能力,本题型考查知识基础,方法简单,是高考出题方向,故选此题.- 21 -。
2018版高考数学文江苏专用大一轮复习讲义课件 高考专

5.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点. 若PA⊥AC,PA=6,BC=8 ,DF=5.则直线PA与平面DEF的位置关系 平行 ;平面 BDE与平面ABC的位置关系是 _______.( 垂直 填 “平行” 或 是______ “垂直”)
答案 解析
题型分类
(1)证明:CD⊥平面A1OC;
证明
(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为 36 2,求a的值.
解答
思维升华
平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和 度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发 生变化,不在同一个平面上的性质发生变化.
3.(2016· 无锡模拟)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F 分别在C1D1与C1B1上,且C1E=4,C1F=3,连结EF,FB,DE,BD,则
几何体EFC1-DBC的体积为_____. 66
答案 解析
4.如图,在四棱锥V-ABCD中,底面ABCD为正方形,E、F分别为侧棱 VB 2 VC、VB上的点,且满足VC=3EC,AF∥平面BDE,则 =_____. FB
AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
在三棱柱ABC-A1B1C1中,BB1⊥底面ABC. 因为AB⊂平面ABC,所以BB1⊥AB.
证明
又因为AB⊥BC,BC∩BB1=B,
所以AB⊥平面B1BCC1.
又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.
割或补形转化为规出几何体,则应先根据三视图得到几何体的直
观图,然后根据条件求解.
2018届高考苏教版数学(理)一轮复习配套课件:第7章 第

答案:(2)
3.(2014· 常州模拟)给出下列命题:
(1)若一个平面经过另一个平面的垂线,则这两个平面相 互垂直; (2)若一个平面内的两条直线与另一个平面都平行,则这
两个平面相互平行;
(3)若两条平行直线中的一条垂直于直线 m, 则另一条直 线也与直线 m 垂直;
解析:①AE⊂平面 PAC,BC⊥AC,BC⊥PA⇒AE⊥BC, 故①正确,②AE⊥PB,AF⊥PB⇒EF⊥PB,故②正确,③若 AF⊥BC⇒AF⊥平面 PBC,则 AF∥AE 与已知矛盾,故③错 误,由①可知④正确.
3.面面垂直的性质定理在使用时易忘面内一线垂直于交线 而盲目套用造成失误.
[试一试]
1.“直线 a 与平面 M 内的无数条直线都垂直”是“直线 a 与平面 M 垂直”的 ________条件 (填“充分不必要”, “必要不充分”,“充要”或“既不充分也不必要”). 解析:根据直线与平面垂直的定义知“直线 a 与平面 M 的无数条直线都垂直”不能推出“直线 a 与平面 M 垂 直”,反之可以,所以应该是必要不充分条件.
(1)平面几何中证明线线垂直的方法;
(2)线面垂直的性质:a⊥α,b⊂α⇒a⊥b; (3)线面垂直的性质:a⊥α,b∥α⇒a⊥b. 4.判断面面垂直的方法
(1)利用定义:两个平面相交,所成的二面角是直二面角;
(2)判定定理:a⊂α,a⊥β⇒α⊥β.
[练一练] 1.(2014· 南通期末)已知直线 l⊥平面 α,直线 m⊂平面 β.给出
解析:依题意,由 l⊥β,l⊂α 可以推出 α⊥β;反过来, 由 α⊥β,l⊂α 不能推出 l⊥β.因此“l⊥β”是“α⊥β”成 立的充分不必要条件. 答案:充分不必要
2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.(教材改编)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1=________. 答案 35解析 由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27,得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.2.(教材改编)已知五个数成等差数列,它们的和为5,平方和为859,则这五个数的积为________.答案 -3581解析 设第三个数为a ,公差为d ,则这五个数分别为a -2d ,a -d ,a ,a +d ,a +2d ,由已知条件得⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 解得⎩⎪⎨⎪⎧a =1,d =±23.所求5个数分别为-13,13,1,53,73或73,53,1,13,-13.故它们的积为-3581.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. 答案 98解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2016·徐州、宿迁模拟)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 答案 (1)6 (2)179解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.(2)设等差数列{a n }的首项为a 1,则由S 5S 3=3得5a 1+10d 3a 1+3d =3,所以d =4a 1,所以a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是______. 答案 20解析 设等差数列{a n }的公差为d , 则由题设可得⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧d =3,a 1=-4, 从而a 9=a 1+8d =20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为________.(2)已知等差数列{a n }中,a 4+a 6=10,若前5项的和S 5=5,则其公差为________. 答案 (1)a n =1n(2)2解析 (1)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)因为a 4+a 6=10,所以2a 5=10, 则a 5=5,又S 5=5(a 1+a 5)2=5a 3=5,故a 3=1,从而2d =a 5-a 3=4,故d =2.(3)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑n k =1(a k +1-a k )=∑n k =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值为_____.答案 (1)114 (2)-2 018解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.答案 (1)88 (2)3727解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________。
2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第十四章 选修 14.4 第1课时

(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
解答
|x - 2y + 1| = |(x - 1) - 2(y - 1)|≤|x - 1| + |2(y - 2) + 2|≤1 + 2|y - 2| + 2≤5, 即|x-2y+1|的最大值为5.
思维升华
求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义. (2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|. (3)利用零点分区间法.
解答
①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当1<x<5时,原不等式可化为x-1-(5-x)<2, ∴x<4,∴1<x<4, ③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).
2.若存在实数x使|x-a|+|x-1|≤3成立,求实数a的取值范围.
通不等式;
(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不
含绝对值符号的普通不等式;
(3)利用绝对值的几何意义,数形结合求解.
跟踪训练1
(1)(2016· 全国乙卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象; 解答
(2)求不等式|f(x)|>1的解集.
2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a|-|b| ≤|a±b|≤ |a|+|b| ,当且仅当 ab≥0 时 , 等号成立. (2)如果a,b,c是实数,那么 |a-c|≤|a-b|+|b-c| ,当且仅当 (a-b)
(b-c)≥0 时,等号成立.
2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第一章 集合与常用逻辑用语1.1

3.集合的基本运算 运算 自然语言 符号语言 Venn图
交集
由所有属于集合A且属于集 A∩B={x|x∈A,
合B的元素构成的集合 且x∈B}
并集
由所有属于集合A或者属于 A∪B={x|x∈A,
集合B的元素构成的集合 或x∈B}
设A⊆S,由S中不属于A的
补集 所有元素组成的集合称为
S的子集A的补集
考点自测
1.( 教 材 改 编 ) 设 A = {x|x2 - 4x - 5 = 0} , B = {x|x2 = 1} , 则 A∪B = {-1,1,5} ____________.
答案 解析
∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
2. 已 知 集 合 A = {x|x2 - 6x + 5≤0} , B = {x|y = x-3 } , 则 A∩B = {x|3≤x≤5} ____________.
Q ___
2.集合间的基本关系
关系
自然语言
如果集合A的任意一个元素都是
符号语言
A⊆B _____ (或B⊇A) ________ A B _____
Venn图
子集
集合B的元素(若a∈A则a∈B)
真子集
如果A⊆B,并且A≠B
( 或B A) ________
如果两个集合所含的元素完 集合相等 全相同(即A中的元素都是B 的元素,B中的元素也都是 A的元素) A=B ______
答案 解析
因为集合B中,x∈A,所以当x=1时,y=3-2=1; 当x=2时,y=3×2-2=4; 当x=3时,y=3×3-2=7; 当x=4时,y=3×4-2=10; 即B={1,4,7,10}. 又因为A={1,2,3,4},所以A∩B={1,4}.
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.命题p∧q,p∨q,綈p的真假判断2.全称量词和存在量词3.4.【知识拓展】1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2)p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.2.含一个量词的命题的否定的规律是“改量词,否结论”.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题p∧q为假命题,则命题p、q都是假命题.(×)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p、q至少有一个是真命题,则p∨q是真命题.(√)(4)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)(5)“长方形的对角线相等”是存在性命题.(×)(6)命题“对顶角相等”的否定是“对顶角不相等”.(×)1.(2016·江苏泰州中学月考)命题“∃x>-1,x2+x-2 016>0”的否定是______________.答案∀x>-1,x2+x-2 016≤0解析命题“∃x>-1,x2+x-2 016>0”的否定是“∀x>-1,x2+x-2 016≤0”.2.已知命题p,q,“綈p为真”是“p∧q为假”的______________条件.答案充分不必要解析綈p为真知p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件.3.(教材改编)若不等式x2-x>x-a对∀x∈R都成立,则a的取值范围是________.答案a>1解析方法一不等式x2-x>x-a对∀x∈R都成立,即不等式x2-2x+a>0恒成立.结合二次函数图象得其Δ<0,即4-4a<0,所以a>1.方法二不等式x2-x>x-a对∀x∈R都成立,也可看作a>-x2+2x对∀x∈R都成立,所以a>(-x2+2x)max,而二次函数f(x)=-x2+2x的最大值为0-224×(-1)=1,所以a>1.4.已知实数a满足1<a<2,命题p:y=log a(2-ax)在[0,1]上是减函数,命题q:|x|<1是x<a 的充分不必要条件,则下列命题:①p∨q为真;②p∧q为假;③(綈p)∧q为真;④(綈p)∧(綈q)为假.其中正确的命题是________. 答案①④解析由y=log a(2-ax)在[0,1]上是减函数,得a>1且2-a>0,即1<a<2.所以p是真命题.由|x|<1,得-1<x<1.又1<a<2,所以|x|<1是x<a的充分不必要条件.所以q也是真命题.从而①④正确.5.(2015·山东)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 答案 1解析 ∵函数y =tan x 在⎣⎡⎦⎤0,π4上是增函数, ∴y max =tan π4=1.依题意,m ≥y max ,即m ≥1. ∴m 的最小值为1.题型一 含有逻辑联结词的命题的真假判断例1 (1)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是________.(填序号) ①p ∧q ②(綈p )∧(綈q ) ③(綈p )∧q ④p ∧(綈q )(2)(2016·盐城模拟)若命题“p ∨q ”是真命题,“綈p 为真命题”,则p ________,q ________.(填“真”或“假”) 答案 (1)④ (2)假 真解析 (1)∵p 是真命题,q 是假命题, ∴p ∧(綈q )是真命题.(2)∵綈p 为真命题,∴p 为假命题, 又∵p ∨q 为真命题,∴q 为真命题.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤 (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是________. 答案 ②③解析 当x >y 时,-x <-y ,故命题p 为真命题,从而綈p 为假命题. 当x >y 时,x 2>y 2不一定成立,故命题q 为假命题,从而綈q 为真命题.由真值表知:①p ∧q 为假命题;②p ∨q 为真命题;③p ∧(綈q )为真命题;④(綈p )∨q 为假命题.题型二 含有一个量词的命题命题点1 全称命题、存在性命题的真假例2 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D , x +2y ≥2,p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是________. 答案 p 1,p 2解析 画出不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的可行域D 如图阴影部分所示,两直线交于点A (2,-1),设直线l 0的方程为x +2y =0.由图象可知,∀(x ,y )∈D ,x +2y ≥0,故p 1为真命题,p 2为真命题,p 3,p 4为假命题.命题点2 含一个量词的命题的否定例3 (1)(2016·盐城模拟)命题“∃x ∈R ,x 2-2x >0”的否定是____________. (2)(2015·浙江改编)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是________. 答案 (1)∀x ∈R ,x 2-2x ≤0 (2)∃n ∈N *,f (n )∉N *或f (n )>n .解析 (1)将“∃”改为“∀”,对结论中的“>”进行否定. (2)由全称命题与存在性命题之间的互化关系可知.思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在限定集合内至少找到一个x ,使p (x )成立. (2)对全称、存在性命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词. ②对原命题的结论进行否定.下列命题的否定为假命题的是________.(填序号)①∀x ∈R ,-x 2+x -1<0; ②∀x ∈R ,|x |>x ;③∀x ,y ∈Z ,2x -5y ≠12;④∀x ∈R ,sin 2x +sin x +1=0. 答案 ①解析 命题的否定为假命题亦即原命题为真命题,只有①为真命题. 题型三 求含参数命题中参数的取值范围例4 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. (2)已知f (x )=ln(x 2+1),g (x )=(12)x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是__________.答案 (1)[-12,-4]∪[4,+∞) (2)[14,+∞)解析 (1)若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题,则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究在例4(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________. 答案 [12,+∞)解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假利用集合的运算求解参数的取值范围;(2)含量词的命题中参数的取值范围,可根据命题的含义,利用函数值域(或最值)解决.(1)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是____________.(2)已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是________________.答案(1)[e,4](2)(-∞,0)解析(1)由题意知p与q均为真命题,由p为真,可知a≥e,由q为真,知x2+4x+a=0有解,则Δ=16-4a≥0,∴a≤4.综上可知e≤a≤4.(2)f(x)=x2-2x+3=(x-1)2+2,当x∈[1,4]时,f(x)min=f(1)=2,g(x)max=g(4)=2+m,则f(x)min>g(x)max,即2>2+m,解得m<0,故实数m的取值范围是(-∞,0).1.常用逻辑用语考点分析有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等以下.解决这类问题应熟练把握各类内在联系.一、命题的真假判断典例1(1)已知命题p:∃x0∈R,x20+1<2x0;命题q:若mx2-mx-1<0恒成立,则-4<m<0,那么下列说法正确的是________.(填序号)①綈p为假命题②q为真命题③p∨q为假命题④p∧q为真命题(2)下列命题中错误的个数为________.①若p∨q为真命题,则p∧q为真命题;②“x>5”是“x2-4x-5>0”的充分不必要条件;③命题p:∃x∈R,x2+x-1<0,则綈p:∀x∈R,x2+x-1≥0;④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”.解析(1)由于x2-2x+1=(x-1)2≥0,即x2+1≥2x,所以p为假命题;对于命题q,当m=0时,-1<0恒成立,所以命题q为假命题.综上可知,綈p为真命题,p∧q为假命题,p∨q为假命题.(2)对于①,若p∨q为真命题,则p,q至少有一个为真,即可能有一个为假,所以p∧q不一定为真命题,所以①错误;对于②,由x 2-4x -5>0可得x >5或x <-1,所以“x >5”是“x 2-4x -5>0”的充分不必要条件,所以②正确;对于③,根据存在性命题的否定为全称命题,可知③正确;对于④,命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,所以④错误,所以错误命题的个数为2. 答案 (1)③ (2)2 二、求参数的取值范围典例2 (1)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是__________.解析 (1)由3x +1<1,得3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2, 由p 是q 的充分不必要条件,知k >2. (2)∵x ∈[12,3],∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意f (x )min ≥g (x )min ,∴a ≤0. 答案 (1)(2,+∞) (2)(-∞,0] 三、利用逻辑推理解决实际问题典例3 (1)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.(2)对于中国足球队参与的某次大型赛事,有三名观众对结果作如下猜测: 甲:中国非第一名,也非第二名; 乙:中国非第一名,而是第三名; 丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.解析 (1)由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过A 城市,由此可知,乙去过的城市为A .(2)由题意可知:甲、乙、丙均为“p 且q ”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名. 答案 (1)A (2)一1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是________.(填序号) ①p ∨q ②p ∧q ③q④綈p答案 ②解析 命题p 假,q 真,故命题p ∧q 为假命题.2.已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是__________.答案 (-1,3)解析 依题意可知“∀x ∈R ,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)(a -3)<0,解得-1<a <3.3.(2016·淮安模拟)已知命题p :∃x ∈R ,log 2(3x +1)≤0,则下列说法正确的是________. ①p 是假命题;綈p :∀x ∈R ,log 2(3x +1)≤0; ②p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0; ③p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0; ④p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0. 答案 ②解析 ∵3x >0,∴3x +1>1,则log 2(3x +1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0. 4.已知p :∀x ∈R ,x 2-x +1>0,q :∃x 0∈(0,+∞),sin x 0>1,则下列命题为真命题的是________.(填序号) ①p ∨(綈q ) ②(綈p )∨q ③p ∧q④(綈p )∧(綈q )答案 ①解析 因为x 2-x +1=(x -12)2+34>0恒成立,所以命题p 是真命题;∀x ∈R ,sin x ≤1,所以命题q 是假命题,所以p ∨(綈q )是真命题.5.(2016·泰州期末)若命题“∃x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是________. 答案 (2,+∞)解析 “∃x ∈R ,ax 2+4x +a ≤0”为假命题,则其否定“∀x ∈R ,ax 2+4x +a >0”为真命题,当a =0,4x >0不恒成立,故不成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=16-4a 2<0, 解得a >2,所以实数a 的取值范围是(2,+∞).6.已知命题p 1:∀x ∈(0,+∞),有3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是__________. 答案 q 1,q 4解析 因为y =(32)x 在R 上是增函数,即y =(32)x >1在(0,+∞)上恒成立,所以p 1是真命题;sin θ+cos θ=2sin(θ+π4)≤2,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,q 4:p 1∧(綈p 2)是真命题.7.(2107·江苏淮安中学月考)已知命题:“∃x ∈[1,2],使x 2+2x +a ≥0”是真命题,则a 的取值范围是________. 答案 [-8,+∞)解析 由已知得,∃x ∈[1,2],使a ≥-x 2-2x 成立;若记f (x )=-x 2-2x (1≤x ≤2),则a ≥f (x )min .而结合二次函数f (x )=-x 2-2x (1≤x ≤2)的图象得f (x )的最小值为f (2)=-22-2×2=-8,所以a ≥-8.8.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.则使p ∨q 为真,p ∧q 为假的实数m 的取值范围是__________. 答案 (-∞,-2]∪[-1,3)解析 p :x 2+2mx +1=0有两个不相等的正根,⎩⎪⎨⎪⎧Δ=4m 2-4>0,-2m >0,即m <-1. q :x 2+2(m -2)x -3m +10=0无实根,Δ=[2(m -2)]2-4(-3m +10)=4(m 2-m -6)<0, 即-2<m <3.分两种情况:①p 真q 假,m ≤-2;②p 假q 真,-1≤m <3.综上可知,使p ∨q 为真,p ∧q 为假的实数m 的取值范围是(-∞,-2]∪[-1,3). 9.下列命题中的假命题是________.(填序号) ①∀x ∈R ,2x -1>0②∀x ∈N *,(x -1)2>0 ③∃x 0∈R ,lg x 0<1④∃x 0∈R ,tan ⎝⎛⎭⎫x 0+π4=5 答案 ②解析 ①中,∵x ∈R ,∴x -1∈R ,由指数函数性质得2x -1>0;②中,∵x ∈N *,∴当x =1时,(x -1)2=0与(x -1)2>0矛盾;③中,当x 0=110时,lg 110=-1<1;④中,当x ∈R 时,tanx ∈R ,∴∃x 0∈R ,tan ⎝⎛⎭⎫x 0+π4=5. 10.(2016·泰州模拟)已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________. 答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=0. 11.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是:“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________. 答案 ①③解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧(綈q )为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确,所以正确结论的序号为①③. 12.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(綈q )∧p ”为真,则x 的取值范围是________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是{x |x ≥3或1<x ≤2或x <-3}.13.(2016·连云港模拟)已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________. 答案 (-∞,-2]∪(-1,+∞)解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.14.已知命题p :“∀x ∈R ,∃m ∈R ,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.*15.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2). (1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)[3,+∞) (2)(1,3]解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为[3,+∞).(2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].。
2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第5章 第71课 矩阵与变换
第五章 矩阵与变换 第71课 矩阵与变换[最新考纲]内容要求 AB C 矩阵的概念 √ 二阶矩阵与平面向量 √ 常见的平面变换 √ 变换的复合与矩阵的乘法√ 二阶逆矩阵√ 二阶矩阵的特征值与特征向量√ 二阶矩阵的简单应用√1.乘法规那么(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规那么:[a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=a 11×b 11+a 12×b 21.(2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规那么:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法那么如下: ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎡⎦⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ), AB ≠BA ,由AB =AC 不一定能推出B =C.一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进展乘法运算.2.常见的平面变换 (1)恒等变换:如⎣⎢⎡⎦⎥⎤1 00 1; (2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤10012; (3)反射变换:如⎣⎢⎡⎦⎥⎤1 00 -1; (4)旋转变换:如⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ,其中θ为旋转角度; (5)投影变换:如⎣⎢⎡⎦⎥⎤100 0,⎣⎢⎡⎦⎥⎤1 010; (6)切变变换:如⎣⎢⎡⎦⎥⎤1k 0 1(k ∈R ,且k ≠0). 3.逆变换与逆矩阵(1)对于二阶矩阵A 、B ,假设有AB =BA =E ,那么称A 是可逆的,B 称为A 的逆矩阵;(2)假设二阶矩阵A 、B 均存在逆矩阵,那么AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.5.特征多项式 设A =⎣⎢⎡⎦⎥⎤a b cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞) (1)每一个二阶矩阵都可逆.( )(2)每一个二阶矩阵都有特征值及特征向量.( )(3)把每个点的纵坐标变为原来的2倍,横坐标不变的线性变换对应的二阶矩阵为⎣⎢⎡⎦⎥⎤2001.( ) (4)对于矩阵A ,B 来说AB =BA .( ) [答案] (1)× (2)× (3)× (4)× 2.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的解析式为________. y =14x 2 [∵⎣⎢⎢⎡⎦⎥⎥⎤1 00 14⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 14y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎨⎧x ′=xy ′=14y代入y =x 2得y ′=14x ′2,即y =14x 2.]3.(教材改编)二阶矩阵A =⎣⎢⎡⎦⎥⎤1a 3 4对应的变换将点(-2,1)变换成(0,b ),那么a =________,b =________.2 -2 [由⎣⎢⎡⎦⎥⎤1 a3 4⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤0b ,得⎩⎪⎨⎪⎧ -2+a =0,-6+4=b ,即⎩⎪⎨⎪⎧a =2,b =-2.]4.设矩阵A=⎣⎢⎢⎡⎦⎥⎥⎤123232-12,那么矩阵A的特征向量为________.⎣⎢⎡⎦⎥⎤31,⎣⎢⎡⎦⎥⎤1-3[f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-12-32-32λ+12=λ2-1=0,得λ1=1,λ2=-1.当λ=1时,得特征向量a1=⎣⎢⎡⎦⎥⎤31;当λ=-1时,得特征向量a2=⎣⎢⎡⎦⎥⎤1-3.]5.矩阵A=⎣⎢⎡⎦⎥⎤1-2-2-1,B=⎣⎢⎡⎦⎥⎤5-15,假设AX=B,那么矩阵X=________.⎣⎢⎡⎦⎥⎤71[设X=⎣⎢⎡⎦⎥⎤ab,由⎣⎢⎢⎡⎦⎥⎥⎤1-2-2-1⎣⎢⎡⎦⎥⎤ab=⎣⎢⎡⎦⎥⎤5-15,得⎩⎪⎨⎪⎧a-2b=5,-2a-b=-15,解得⎩⎪⎨⎪⎧a=7,b=1.∴X=⎣⎢⎡⎦⎥⎤71.]二阶矩阵与线性变换(-1,-1)与(0,-2).(1)求矩阵M;(2)设直线l在变换M作用下得到了直线m:x-yl的方程.【导学号:62172370】[解](1)设二阶矩阵M=⎣⎢⎡⎦⎥⎤a bc d.依题意⎣⎢⎡⎦⎥⎤a bc d⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a bc d⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,也就是⎣⎢⎢⎡⎦⎥⎥⎤a -b c -d =⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎢⎡⎦⎥⎥⎤-2a +b -2c +d =⎣⎢⎡⎦⎥⎤0-2, ∴⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得a =1,b =2,c =3,d =4,因此所求矩阵M =⎣⎢⎡⎦⎥⎤1 23 4. (2)∵M =⎣⎢⎡⎦⎥⎤1 23 4,∴坐标变换公式为⎩⎪⎨⎪⎧x ′=x +2y ,y ′=3x +4y , ∵(x ′,y ′)是直线m :x -y =4上的点. ∴(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程为x +y +2=0.[规律方法] 1.二阶矩阵与线性变换的题目往往和矩阵的根本运算相结合命题.包括二阶矩阵的乘法,矩阵与向量的乘法等.2.(1)二阶矩阵与线性变换涉及变换矩阵、变换前的曲线方程、变换后的曲线方程三个要素.知其二可求第三个.(2)在解决通过矩阵进展平面曲线的变换问题时,要把变换前后的变量区别清楚,防止混淆.[变式训练1] (2021·南通二调)在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-1 0 0 1对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.[解] 设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2). 那么A ′B →=(2,2),A ′B ′→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0, 那么⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-22=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2,解得⎩⎪⎨⎪⎧x =-1,y =4,所以点B ′的坐标为(-1,4).求逆矩阵矩阵A =⎣⎢⎡⎦⎥⎤3 -7. (1)求逆矩阵A -1;(2)假设二阶矩阵X 满足AX =⎣⎢⎡⎦⎥⎤3015,试求矩阵X . [解] (1)∵det(A )=⎪⎪⎪⎪⎪⎪⎪⎪1 -23 -7=-1≠0. ∴矩阵A 是可逆的,∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤-7-1 2-1-3-11-1=⎣⎢⎢⎡⎦⎥⎥⎤7 -23 -1. (2)∵AX =⎣⎢⎡⎦⎥⎤3 01 5,∴A -1AX =A -1⎣⎢⎡⎦⎥⎤3 01 5, ∴X =⎣⎢⎢⎡⎦⎥⎥⎤7 -23 -1⎣⎢⎡⎦⎥⎤3 01 5=⎣⎢⎢⎡⎦⎥⎥⎤19 -108 -5. [规律方法] 求逆矩阵的方法: (1)待定系数法设A 是一个二阶可逆矩阵⎣⎢⎡⎦⎥⎤a b c d ,AB =BA =E ; (2)公式法A =⎪⎪⎪⎪⎪⎪a b c d =ad -bc ≠0,有A -1=⎣⎢⎡⎦⎥⎤d A -b A-c A aA . [变式训练2] 矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B . [解] 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d , 那么⎣⎢⎡⎦⎥⎤-1 0 0 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1, 故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎡⎦⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.特征值与特征向量(2021·苏州模拟)求矩阵M =⎣⎢⎡⎦⎥⎤2 6的特征值和特征向量. 【导学号:62172371】[解] 特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -4-2 λ-6=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2),由f (λ)=0,解得λ1=7,λ2=-2.将λ1=7代入特征方程组,得⎩⎪⎨⎪⎧8x -4y =0,-2x +y =0,即y =2x ,可取⎣⎢⎡⎦⎥⎤12为属于特征值λ1=7的一个特征向量,同理,λ2=-2时,特征方程组是⎩⎪⎨⎪⎧-x -4y =0,-2x -8y =0,即x =-4y ,所以可取⎣⎢⎡⎦⎥⎤4-1为属于特征值λ2=-2的一个特征向量.综上所述,矩阵M =⎣⎢⎡⎦⎥⎤-1 4 2 6有两个特征值λ1=7,λ2=-2; 属于λ1=7的一个特征向量为⎣⎢⎡⎦⎥⎤12,属于λ2=-2的一个特征向量为⎣⎢⎡⎦⎥⎤4-1.[规律方法] A =⎣⎢⎡⎦⎥⎤a b c d ,求特征值和特征向量的步骤: (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量. [变式训练3] (2021 ·江苏高考)x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.[解] 由,得Aα=-2α, 即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2, 那么⎩⎪⎨⎪⎧ x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 12 0. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.[思想与方法]1.二阶矩阵与平面列向量乘法:⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ax +cy bx +dy ,这是所有变换的根底.2.证明两个矩阵互为逆矩阵时,切记从两个方向进展,即AB =E =BA . 3.二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2相应的矩阵方程为AX =B ,其中A =⎣⎢⎡⎦⎥⎤a 1 b 1a 2 b 2为系数矩阵,X 为未知数向量⎣⎢⎡⎦⎥⎤x y ,B =⎣⎢⎡⎦⎥⎤c 1c 2为常数向量. 4.假设某一向量在矩阵交换作用下的像与原像共线,那么称这个向量是属于该变换矩阵的特征向量,相应共线系数为属于该特征向量的特征值.[易错与防范]1.两个矩阵相等,不但要求元素一样,而且要求一样元素的位置也一样. 2.对于矩阵的乘法运算不满足消去律,即由AC =BC 不一定得到A =B. 3.矩阵A 的属于特征值λ的特征向量不唯一,其特征值λ的特征向量共线.课时分层训练(十五)A 组 根底达标 (建议用时:30分钟)1.矩阵A =⎣⎢⎡⎦⎥⎤-1 2 1 x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,假设Aα=Bα,求实数x ,y 的值.[解] Aα=⎣⎢⎢⎡⎦⎥⎥⎤2y -22+xy ,Bα=⎣⎢⎢⎡⎦⎥⎥⎤2+y 4-y , 由Aα=Bα得⎩⎪⎨⎪⎧2y -2=2+y ,2+xy =4-y ,解得x =-12,y =4.2.(2021·如皋中学模拟)在平面直角坐标系xOy 中,设点P (x,5)在矩阵M =⎣⎢⎡⎦⎥⎤1234对应的变换下得到点Q (y -2,y ),求M -1⎣⎢⎡⎦⎥⎤x y . 【导学号:62172372】[解] 依题意,⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x 5=⎣⎢⎡⎦⎥⎤y -2y ,即⎩⎪⎨⎪⎧ x +10=y -2,3x +20=y ,解得⎩⎪⎨⎪⎧x =-4,y =8,,由逆矩阵公式知,矩阵M =⎣⎢⎡⎦⎥⎤1 23 4的逆矩阵M -1=⎣⎢⎡⎦⎥⎤-2 1 32 -12, 所以M -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2 1 32 -12⎣⎢⎡⎦⎥⎤-4 8=⎣⎢⎡⎦⎥⎤ 16-10.3.(2021·泰州二中月考)假设点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.[解] 由题意,得⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2, ∴⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1, ∴sin α=1,cos α=0, ∴M =⎣⎢⎡⎦⎥⎤0 -11 0. ∴⎪⎪⎪⎪⎪⎪0 -11 0=1≠0,∴M -1=⎣⎢⎡⎦⎥⎤0 1-1 0. 4.矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,其中a ∈R ,假设点P (1,1)在矩阵A 的变换下得到点P ′(0,-3).(1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 【导学号:62172373】 [解] (1)由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-3,得a +1=-3,∴a =-4. (2)由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤1 -1-4 1, 那么矩阵A 的特征多项式为f (x )=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 14 λ-1=(λ-1)2-4=λ2-2λ-3, 令f (λ)=0,得矩阵A 的特征值为-1或3.当λ=-1时二元一次方程⎩⎪⎨⎪⎧(λ-1)x +y =04x +(λ-1)y =0⇒y =2x .∴矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤12.当λ=3时,二元一次方程⎩⎪⎨⎪⎧(λ-1)x +y =04x +(λ-1)y =0⇒2x +y =0.∴矩阵A 的属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤1-2.B 组 能力提升 (建议用时:15分钟)1.(2021·苏州市期中)二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 将点(-1,3)变换为(0,8). (1)求矩阵M ;(2)求曲线x +3y -2=0在M 的作用下的新曲线方程.[解] (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11及⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 3=⎣⎢⎡⎦⎥⎤08, 得⎩⎪⎨⎪⎧a +b =8,c +d =8,-a +3b =0,-c +3d =8,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,∴M =⎣⎢⎡⎦⎥⎤6 24 4. (2)设原曲线上任一点P (x ,y )在M 作用下对应点P ′(x ′,y ′),那么⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=6x +2y ,y ′=4x +4y ,解得⎩⎨⎧x =2x ′-y ′8,y =-2x ′+3y ′8,代入x +3y -2=0得x ′-2y ′+4=0,即曲线x +3y -2=0在M 的作用下的新曲线方程为x -2y +4=0.2.(2021·南京盐城一模)设矩阵M =⎣⎢⎡⎦⎥⎤a 02 1的一个特征值为2,假设曲线C 在矩阵M 变换下的方程为x 2+y 2=1,求曲线C 的方程.[解] 由题意,矩阵M 的特征多项式f (λ)=(λ-a )(λ-1), 因矩阵M 有一个特征值为2,f (2)=0,所以a =2. 所以M =⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x ′=2x ,y ′=2x +y ,代入方程x 2+y 2=1,得(2x )2+(2x +y )2=1,即曲线C 的方程为8x 2+4xy +y 2=1.3.(2021·苏北三市三模)矩阵A =⎣⎢⎡⎦⎥⎤ 12-14,向量α=⎣⎢⎡⎦⎥⎤53,计算A 5α.[解] 因为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -21 λ-4=λ2-5λ+6 ,由f (λ)=0,得λ=2或λ=3. 当λ=2时,对应的一个特征向量为α1=⎣⎢⎡⎦⎥⎤21;当λ=3时,对应的一个特征向量为α2=⎣⎢⎡⎦⎥⎤11.设⎣⎢⎡⎦⎥⎤53=m ⎣⎢⎡⎦⎥⎤21+n ⎣⎢⎡⎦⎥⎤11,解得⎩⎪⎨⎪⎧m =2,n =1. 所以A 5α=2×25⎣⎢⎡⎦⎥⎤21+1×35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤371307.4.矩阵A =⎣⎢⎡⎦⎥⎤112 3,B =⎣⎢⎡⎦⎥⎤1 223 (1)求矩阵A 的逆矩阵;(2)求直线x +y -1=0在矩阵A -1B 对应的线性变换作用下所得的曲线的方程.[解] (1)设A -1=⎣⎢⎡⎦⎥⎤a b c d ,∵A·A -1=⎣⎢⎡⎦⎥⎤1 12 3·⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, ∴⎩⎪⎨⎪⎧a +c =1,b +d =0,2a +3c =0,2b +3d =1,∴⎩⎪⎨⎪⎧a =3,b =-1,c =-2,d =1,∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤3 -1-2 1. (2)A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 3 -1-2 1⎣⎢⎡⎦⎥⎤1 22 3=⎣⎢⎡⎦⎥⎤1 30 -1, 设直线x +y -1=0上任意一点P (x ,y )在矩阵A -1B 对应的线性变换作用下得P ′(x ′,y ′),那么⎣⎢⎡⎦⎥⎤1 30 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=x +3y ,y ′=-y ,即⎩⎪⎨⎪⎧x =x ′+3y ′,y =-y ′, 代入x +y -1=0得x ′+3y ′+(-y ′)-1=0, 可化为:x ′+2y ′-1=0, 即x +2y -1=0为所求的曲线方程.。
18年高考真题——理科数学(江苏卷)知识讲解
为
。
二.解答题 (本大题共 6 小题,共 90 分。解答应写出文字说明、证明过程
或演算步骤。 )
15.(本小题 14 分)在平行六面体 ABCD A1B1C1D1 中, AA1 AB ,
AB1 B1C1 。求证:⑴ AB // 平面 A1B1C ;⑵平面 ABB1 A1 平面 A1BC 。
16.( 本小题 14 分)已知 , 为锐角, tan
数 学 II 卷 【选做题】本题包括四小题,请选定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答... 小题评分。解答时应写出文字说明、证明过程或演算步骤
21—A .[ 选修 4—1:几何证明选讲 ] 如图,圆 O 的半径为 2, AB 为圆 O 的直径, P 为 AB 延长线上一点,过 P 作圆 O 的切线,切点为 C 。若
。若多做,则按作答的前两
PC 2 3 ,求 BC 的长。
12.在平面直角坐标系 xOy 中, A 为直线 l : y 2x 上在第一象限内的点, B 5,0 ,以 AB 为直径
的圆 C 与直线 l 交于另一点 D 。若 AB CD 0 ,则点 A 的横坐标为
。
13.在 ABC 中,角 A, B ,C 的对边分别为 a, b, c , ABC 1200 , ABC 的平分线交 AC 于点 D ,
列。⑴设 a1 0 ,b1 1 ,q 2 ,若 | an bn | b1对 n 1,2,3,4 均成立, 求 d 的取值范围; ⑵若 a1 b1 0 , m N , q 1,m 2 ,证明:存在 d R ,使得 | an bn | b1 对 n 2,3, , m 1 均成立,并求 d 的取值
范围(用 b1, m,q 表示)。
x
2018年高考理科数学江苏卷(含答案解析)
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。
一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条,则其离心率的值是 .9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共26页) 数学试卷 第8页(共26页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共26页) 数学试卷 第10页(共26页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 矩阵与变换 第71课 矩阵与变换
[最新考纲]
1.乘法规则
(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤
b 11b 21的乘法规则:
[a 11 a 12]⎣⎢⎡⎦
⎥⎤
b 11b 21=a 11×b 11+a 12×b 21.
(2)二阶矩阵⎣⎢
⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤
x 0y 0的乘法规则: ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦
⎥⎤
a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:
⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦
⎥⎤b 11 b 12b 21 b 22 =⎣⎢
⎡⎦
⎥⎤
a 11×
b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ), AB ≠BA ,
由AB =AC 不一定能推出B =C.
一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算.
2.常见的平面变换 (1)恒等变换:如⎣⎢
⎡⎦⎥⎤1 00 1; (2)伸压变换:如⎣
⎢⎢⎡⎦
⎥⎥⎤1
00
12; (3)反射变换:如⎣⎢
⎡⎦
⎥⎤
1 00 -1; (4)旋转变换:如⎣⎢
⎡⎦⎥⎤
cos θ -sin θsin θ cos θ,其中θ为旋转角度; (5)投影变换:如⎣⎢
⎡⎦⎥⎤1
00 0,⎣⎢⎡⎦
⎥⎤1 01 0; (6)切变变换:如⎣⎢
⎡⎦
⎥⎤
1
k 0 1(k ∈R ,且k ≠0). 3.逆变换与逆矩阵
(1)对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵;
(2)若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A
-1
.
4.特征值与特征向量
设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,
那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.。