最新人教版九年级数学上册23.2.1中心对称课件

合集下载

九年级数学人教版上册23.2.1中心对称课件(共19张PPT)

九年级数学人教版上册23.2.1中心对称课件(共19张PPT)
(2)以BC边的中点为对称中心。 九年级数学 上册
相等 在△AOB与△ A′ O B′中 (1)PA与PA′的数量关系是__。 区别:中心对称的旋转角度都是180°,一般的旋转的旋转角度不固定,中心对称是特殊的旋转.
例1(4) 已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于这一点对称。
九年级数学 上册
旋转概念: 把一个平面图形绕着平面内某一点O 转动一个角 度,叫做图形的旋转.这个定点O 叫旋转中心,转 动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点 P和P′叫做这个旋转的对应点.
A
F
E
B
O
C
D 轴对称
轴对称是指, 把一个图形沿着某一条直线折叠能与另一个图 形完全重合,那么就说这两个图形关于这条直线对称或轴对称.
在两个图形上。
C
A
B
对称中心:点A
D
对称点:点B和点D 点C和点E
E
了解中心对称的概念
问题1 如图,线段 AC,BD 相交于点 O,OA=OC,OB=OD.把 △OCD 绕
点 O 旋转 180°,你有什么发现?
两个图案能够完全重合在一起.
问题2
(1)图形中旋转中心是哪一点?
(点 O)
A
D
(2)旋转的角度是多少?
问题1 如图,线段 AC,BD 相交于点 O,OA=OC,OB=OD.把 △OCD 绕点 O 旋转 180°,你有什么发现?
中心对称的作图 九年级数学 上册
对称点:点B和点D 点C和点E
(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 点B和点D 九年级数学 上册 联系:中心对称和一般的旋转都是绕着某一点进行旋转;

人教版数学九年级上册..中心对称课件PPT优秀课件

人教版数学九年级上册..中心对称课件PPT优秀课件

练习:
• 1.下列说法中正确的有( c )
A.全等的两个图形的两个图形全等 D.旋转后能够重合的两个图形成中心对称
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
(1)如图1,把其中一个图案绕点O旋转180°,你 有什么发现?
(2)如图2,线段AC, BD相交于点O,OA=OC, OB=OD.把 △OCD绕点O旋转180°,你有 什么发现?
重合
重合
O
B
(2) C
人教版数学九年级上册23.2.1中心对 称课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
练习
• 3.已知如图所示,△AOB与△COD关于点O 成中心对称,连接BC,AD.
(1)求证:四边形ABCD为平行四边形;
(2)若△AOB的面积为15 cm2,求四边形 ABCD的面积.
人教版数学九年级上册23.2.1中心对 称课件
中心对称的作法: 人教版数学九年级上册23.2.1中心对称课件
C’ A
B’
O
B
A’ C
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
练习
• 1.如图所示,在下列四组图形中,右边图形 与左边图形成中心对称的有_(_1_)(_2.)(3)
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件

人教版九年级数学上册23.2.1 中心对称 课件

人教版九年级数学上册23.2.1 中心对称 课件
R·九年级上册
23.2 中心对称
23.2.1 中心对称
复习回顾
定义
在一个平面图形绕平面内某一点O转动 一个角度,叫做图形的旋转.
旋 三要素 转
旋转中心 旋转方向 旋转角
性质 对应点到旋转中心的距离相等
对应点与旋转中心所连线段的夹角等于旋转角
旋转前、后的图形全等
新课导入 思考
问题1:如图,把其中一个图案绕点O旋转 180°,你有什么发现?
2. 图中的两个四边形关于某点对称,找出 它们的对称中心.
解:由于旋转中心在任意
两个对称点所连的线段上,
.
所以画出两条相交连线就
O
可以确定对称中心. 如图
所示,点O即所找的点.
巩固训练
1. 下列四组图形中,成中心对称的有( C )
A. 1组
B. 2组
C. 3组
D. 4组
2. 下列说法中,关于中心对称的描述不正确的是( A ) A. 把一个图形绕着某一点旋转,如果它能与另一个 图形重合,那么就说这两个图形中心对称
知识点三 作已知图形关于某一点对称的图形
例 1 (1)如图,选择点 O 为对称中心,画出点 A 关于点 O 的对称点 A′.
解:第一步:连接 AO,并延长; 第二步:在 AO 的延长线上截取OA′=OA.
A
A'
O
点A′就是所求作的点.
(2)如图,选择点 O 为对称中心,画出与 △ABC 关于点 O 对称的△A′B′C′.
1.中心对称的两个图形,对称点所连
线段都经过对称中心,而且被对称中心
所平分. 即:对称中心在对称点的连线上,
对称中心到对称点的距离相等.
2.中心对称的两个图形是全等图形.

人教版九年级数学上册课件:23.2.1 中心对称(共19张PPT)

人教版九年级数学上册课件:23.2.1 中心对称(共19张PPT)

C
D别画出下列图形关于点O对称的图形 。
O
O
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
B与D
你知道这个图形的对称中心和关于中心的对称点是什么吗?
旋转和中心对称的联系和区别
中心对称 一般旋转
联系
区别
都是绕着某一点进行 旋转
旋转角度都是180° 旋转角度不固定
因此,中心对称是特殊的旋转。
轴对称和中心对称的联系和区别
比较
轴对称
中心对称
区别
有一条对称轴--直线 图形沿轴对折180°
有一个对称中心--点 图形绕中心旋转180°
中心对称的性质
中心对称的两个图形,对称点所连线段经过对称中心, 而且被对称中心所平分。
中心对称的两个图形是全等形。
利用中心对称的性质做图
1、点的中心对称点的作法 以点O为对称中心,作出点A的对称点A′
A
O
A′
点A′即为所求的点
【关键】在OA的延长线上取OA=OA’
利用中心对称的性质做图
2、线段关于点O对称图形的作法 以点O为对称中心,作出线段AB对称线段A′B′
A O
B
A′
【关键】先画出图形中的几个特殊
B′
点(如多边形的顶点、线段的端点,
圆的圆心等)关于某点的对称点,
然后再顺次连结有关对称点即可

九年级数学上册第二十三章旋转23.2中心对称23.2.1中心对称课件新版新人教版

九年级数学上册第二十三章旋转23.2中心对称23.2.1中心对称课件新版新人教版

2019/5/26
最新中小学教学课件
17

谢谢欣赏!
2019/5/26
最新中小学教学课件
18
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
2.△ABC与△A′B′C′中心对称,求出它们的对称中心O.
五、归纳小结
1.本节课所学的知识点有哪些? 2.本节课介绍了哪些数学方法? 3.你认为本节知识哪些是重点?哪些 是易错点? 4.学完本节课后你还有哪些困惑?
编后语

最新人教版初中数学九年级上册《23.2.1 中心对称》精品教学课件

最新人教版初中数学九年级上册《23.2.1 中心对称》精品教学课件

布置作业
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结点评 同学们,我们今天的探索很成
功,但探索远还没有结束,让我们 在今后的学习生涯中一起慢慢去发 现新大陆吧!
再见
探究新知
【思考】两个图形成中心对称需要具备什么条件?
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
探究新知
填一填: 如图,△OCD与△OAB关于点O中心对称 ,则 __O__是对称中心,点A与___C__是对称点, 点B 与__D__是对称点. C
就是成轴对称的图形. (×)
课堂检测
2. 如下所示的4组图形中,左边数字与右边数字成中心 对称的有( D )
A.1组
B.2组
C.3组
D.4组
3.如图,已知△AOB与△DOC成中心对称,△AOB的面积
是6,AB=3,则△DOC中CD边上的高是( B )
A.2
B.4
C.6
D.8
C
D
O
A
B
课堂检测
能力提升题
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B
有什么发现? A
探究新知
【观察】观察下列图形的运动,说一说它们有什么 共同点.你发现了什么?
C
O
D

B
旋转角为180°
重合
A
探究新知
你发现了什么?
把一个图形 绕着某一点旋转180° ,如果 它 能够与另一个图形重合 ,那么就说这两个图 形关于这个点 对称 或 中心对称 ,这个点 叫做 对称中心(简称中心) . 这两个图形在旋 转后能重合的对应点叫做关于对称中心的对称点.

人教版九年级上册23.2.1中心对称课件 (共38张PPT)


O
重合
ቤተ መጻሕፍቲ ባይዱ
B
(2) C
重合
概念
把一个图形绕 着某一个点旋 B’
A’
转180°,如果
O
它能够与另一 C’
C
个图形重合,那
么就说这两个 图形关于这个
B A
点对称,也称这
这个点叫作对称中心
两个图形成中
心对称
2个图形中的对应点叫做对称点
位够定置 重理两关合个系,1 图。所形从以图关关定这形于于义两是中中可个心全心知图对,形对等称关一称形,于定的。是中全两指心等个两对。个称所图的以形两有之个:间图的形形必状须、能
观察下面的图形,你有什么发现?
观察下面的两个图形你有什么发现?
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
灵活运用,体会内涵
1、点的中心对称点的作法
以点O为对称中心,作出点A的对称点A′;
AO
A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′

人教版九年级数学上册《23.中心对称》课件(共22张PPT)

第二十三章 旋 转
23.2 中心对称 23.2.1 中心对称
学习目标
学习目标 1.从旋转的角度观察两个图形之间的关系,类比旋转得出 中心对称的定义,渗透从一般到特殊的研究问题的方法.
2.通过操作、观察、归纳中心对称的性质,经历由具体到 抽象认识问题的过程。会画一个简单几何图形关于某一点对称的 图形,提高画图能力.
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
关于点O对称的△A′B′C′ .
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
练习巩固,综合应用
1.下列说法不正确的是( D ).
A.关于中心对称的两个图形面积相等 B.关于中心对称的两个图形周长相等 C.关于中心对称的两个图形的对称点的连线经过对称中心 D.关于中心对称的两个图形一定关于直线对称
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
例题分析,深化提高
例(2)以点O为对称中心,作出线段AB的对称线 段A′B′ .
解:作出A,B两点关于点O的对称点A′,B′,连 接A′B′,就可以得到线段AB的对称线段A′B′.
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
练习巩固,综合应用
2.如图,△ABC以点O为旋转中心,旋转180°后得到 △A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知 BC=4,则E′D′=( A ).
创设情境,引入新知
中心对称的概念:
像这样,把一个图形绕着某一点旋转180度,如果它能够与另一 个图形重合,那么就说这两个图形关于这个点对称或中心对称.这 个点就叫对称中心.这两个图形中的对应点叫做关于对称中心的对 称点.

人教版九年级数学上册 23.2.1 中心对称 教学课件(共38张PPT)

N
F
B
B.
M
A
O
G
CA
C
E
D
D
6. 画△A′B′C′,使△A′B′C′和△ABC关于点O 成中心对称。
A
C′
B′
O
B
C
A′ △A′B′C′即为所求的三角形。
拓展资料 中心对称的应用
广告商标
工艺品(如:地毯、挂毯)
电扇的扇叶
车轮
齿轮
风车
课堂小结
1. 中心对称与轴对称的区别和联系?
轴对称
有一条对称轴——直线
图形沿对称轴对折 (翻折180°)后重合
对称点的连线被 对称轴垂直平分
中心对称
有一个对称中心——点
图形绕对称中心旋 转180°后重合
对称点连线经过对称中 心,且被对称中心平分
2. 中心对称的两条基本性质:
(1)关于中心对称的两个图形,对应点所 连线都经过对称中心,而且被对称中心所平 分。
(2)关于中心对称的两个图形是全等图形 及其它们的应用。
教学目标
【知识与能力】
了解中心对称、对称中心、关于中心的对称 点等概念。 通过具体实例认识两个图形关于某一点成中 心对称的本质:就是一个图形绕一点旋转180° 而成。 作出中心对称的图形。
【过程与方法】
利用中心对称的特征作出某一图形成中心对称 的图形,确定对称中心的位置。 培养学生独立思考、自学能力。 培养学生通过体验、感受中心对称的概念和性 质,培养学生的概括能力和动手能力。 通过对中心对称概念的概括和性质的探索和应 用培养学生的探索能力和空间想象能力。
8. 矩形ABCD中,AB=3,BC=4,若将矩 形折叠,使C点和A点重合,求折痕EF的长。

人教版九年级数学上册23.2.1中心对称(22张PPT)


中心D的对称点为C(B′)
(B′) C
A′
D
(2)连结A′B′、A′C′.
则△A′B′C′为所求作的三角形, 如图所示.
B (C′)
三检测
1、找出下列图形的对称中心
2、怎样判别两个图形关于某一点成中心对 称呢?如果两个图形的对应点连成的线段
都经 过某一点,并且被该点平分,那 么这两个图形一定关于这一点成中心对 称。
发现: 两个图案重合; △OCD与△OAB 重合
A
D
O
B
23.2-2
C
像这样,把一个图形绕某一个点旋转180º,如果 它能够与另一个图形重合,那么就说这两个图形关 于这个点对称或中心对称;这个点叫做对称中心;
这两个图形中的对应点叫做关于中心的对称点 例如: 图23.2-2中△OCD和△OAB关于点0对称, 点C与点A是关于点O的对称点。
布置作业
教科书第 66 页,练习 1,2 题.
说说你在本节课的收获
(1) 关于中心对称的两个图形,对称点所连 线段都经过对称中心,而且被对称中心所平 分;
(2) 关于中心对称的两个图形是全等图形.
(1) 画一个点关于某点(对称中心)的对称点 的画法是先连接这个点与对称中心并延长一倍即 可。
(2) 画一个图形关于某点的对称图形的画法 是先画出图形中的几个特殊点(如多边形的顶点、 线段的端点,圆的圆心等)关于某点的对称点, 然后再顺次连结有关对称点即可。
形呢?
例1: 如图,选择点O为对称中心,画出点A 关于点O的对称点A′;
A
O
A′



连接AO, OA = OA′
在AO的延长线上截取OA
′即=O可A求得点A关于点O的对称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高练习
画一个与已知四边形ABCD中心对称图形。 (1)以顶点A为对称中心; N (2)以BC边的中点为对称中心。
F A G D C A D B B

O C
M
E
你能说出轴对称图形与中心对称图形异同
中心对称
相同 点
轴对称
都是一个图形和另一个 图形重合。

不同 点
有一个对称 中心——点
有一条对称 轴——直线
A B′ O A′
B
例1 (2)如图23.2-5,选择点O为对称中心,画出与
△ABC关于点O对称的△A′B′C′.
B′ A′
C′
△A′B′C′即为所求的三角形。
例1(3) 已知四边形ABCD和点O,画四边 形A′B′C′D′,使它与已知四边形关于这一点 对称。
B’ C’ O D’ D A’
C
A
四边形A1B1C1D1即为所求的图形。
反过来,如果两个图形的对应点连成的线段都
经过某一点,并且都被该点平分,那么这两个图形
一定关于这一点成中心对称.
2、关于中心对称的两个图形是全等形。
灵活运用,体会内涵 1、点的中心对称点的作法 以点O为对称中心,作出点A的对称点A′;
A O A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
图)。
C
O B’
B
A’
A
C’
思考题:两人轮流往一个圆形桌面上平放同 样大小的硬币,每次一枚,但不允许任何 两枚硬币有重叠部分,规定谁放下最后一 枚,并使得对方没有再放的位置,就算是 谁获胜。假如两个人都是内行,试问是先
ห้องสมุดไป่ตู้
放者获胜,还是后放者获胜?怎样放才能
稳操胜券?
关于中心对称的描述不正确的是( ) A.把一个图形绕着某一点旋转,如果它能 与另一个图形重合,那么就说这两个图形对 称; B.关于中心对称的两个图形是全等的; C.关于中心对称的两个图形,对称点的连 线必过对称中心; D.如果两个图形关于点O对称,点A与A′是 对称点,那么OA=OA′
图形绕中心旋转 图形沿轴对折 180°
B
A A 对称中心
D
E
观察:两个图形关系如何?C.A.E三点的位
置关系怎样?线段AC.AE的大小关系呢?
下图中△A′B′C′与△ABC 关于点O是成中心对称的, 你能从图中找到哪些等量 关系?
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
中心对称的性质:
1、在成中心对称的两个图形中,连接对称 点的线段都经过对称中心,并且被对称中心 平分.
B
如图,已知△ABC与△A’B’C’中 心对称,求出它们的对称中心O。
C A’ B A B’
C’
解法一:根据观察,B、B’应是对应点,
连结BB’,用刻度尺找出BB’的中点O,
则点O即为所求(如图)
C O B A C’ B’
A’
解法二:根据观察,B、B’及C、C’应是
两组对应点,连结BB’、CC’,BB’、 CC’相交于点O,则点O即为所求(如
观察
(1)把其中一个图案绕点O旋转180°, 你有什么发现?
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OAB绕点O旋转180°,你有什么发现?
重合
重合
C
中心对称的定义:
把一个图形绕着某一 点旋转180度,如果它能 够和 另一个图形重合, 那么,我们就说这两个 图中心对称。
这个点就叫对称中心,这 两个图形中的对应点,叫 做关于中心的对称点.
相关文档
最新文档