河南省洛阳市2017-2018学年高三数学二模试卷(理科) Word版含解析
【数学解析版】河南省洛阳市2017-2018学年高二质量检测数学(文)(精校Word版)

【数学解析版】河南省洛阳市2017-2018学年高二质量检测数学(文)(精校Word版)洛阳市2017—2018学年高二质量检测数学试卷(文)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】分析:先求出B集合,然后再根据交集定义即可.详解:由题可得:B:,故选A.点睛:考查集合的基本运算,正确解得B是解题关键,属于基础题.2. 复数满足(是虚数单位),则在复平面对应的点所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:先根据得到z然后根据复数的坐标定义即可得出结论.详解:由题得:故z所对应的坐标为,为第四象限故选D.点睛:考查复数的四则运算和坐标表示,属于基础题.3. 已知等比数列中,,,,数列的前项和为,则()A. 36B. 28C. 45D. 32【答案】B【解析】分析:根据,可以先求出公比q,然后根据等比数列通项公式得到,从而得到为等差数列,再根据等差求和公式即可.详解:由题可得:所以,故,所以是以公差为1的等差数列,故,选B.点睛:考查等比数列和等差数列的通项和前n项和,先求出q=3得到等比数列的通项是解题关键,属于基础题.4. 以双曲线的焦点为顶点,离心率为的双曲线标准方程为()A. B. C. D.【答案】D【解析】分析:先求出双曲线的焦点作为新的双曲线的顶点故a=2,然后由离心率为可得c值,再根据双曲线a,b,c的关系即可得出b值从而得到方程.详解:由题得双曲的的焦点在x轴且为,故新的双曲线a=2,再由,又所以所求双曲线的标准方程为:,故选D.点睛:考查双曲的基本性质,正确理解题意,求出a值再结合和离心率求c是解题关键,属于基础题.5. 已知函数,函数在处切线方程为,则的值为()A. -2B. 2C. -4D. 4【答案】B【解析】分析:根据题意得到切点为又切线方程为,故可得=3,再求导得到斜率的表达式综合即可求出a,b的值从而得出结论.详解:由题得:,所以斜率为,。
河南省八市重点高中2017-2018学年高考数学二模试卷(理科)Word版含解析

2017-2018 学年河南省八市要点高中高考数学二模试卷(理科)一、选择题:本大题共12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.若会合A={x|>﹣1},会合B={x|1<3x<9},则(?R A)∩ B=(A.( 0,1]B.=0 恒成立,则方程 f ( x)﹣ f ′( x)=x 的解所在的区间是(A.(﹣ 1,﹣)B.(0,)C.(﹣,0)D.()))二、填空题:本大题共 4 小题,每题 5 分.13.若函数 f ( x) =奇函数,则 a 的值为 ______.14.若 x, y 知足拘束条件,则的最小值为______.15. 4 个半径为 1 的球两两相切,该几何体的外切正四周体的高是______.n} 的通项公式n2n n n16.已知数列 {a a =n 2,则数列 {a } 的前 n 项和S =______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.设△ ABC的内角 A, B, C 的对边分别为a,b,c,且知足sinA+sinB= ( cosA+cosB)sinC .(Ⅰ)求证:△ABC为直角三角形;(Ⅱ)若a+b+c=1+,求△ ABC面积的最大值.18.如图, PA⊥平面 ADE,B, C 分别是 AE, DE的中点, AE⊥ AD,AD=AE=AP=2.(Ⅰ)求二面角A﹣ PE﹣ D的余弦值;(Ⅱ)点Q是线段 BP 上的动点,当直线CQ与 DP所成的角最小时,求线段BQ的长.19.某农庄抓鸡竞赛,笼中有16 只公鸡和8 只母鸡,每只鸡被抓到的时机相等,抓到鸡而后放回,若累计 3 次抓到母鸡则停止,不然持续抓鸡直到第 5 次后结束.(Ⅰ)求抓鸡 3 次就停止的事件发生的概率;(Ⅱ)记抓到母鸡的次数为ξ ,求随机变量ξ 的散布列及其均值.20.如图, F1, F2是椭圆 C:的左、右两个焦点,|F 1F2|=4 ,长轴长为6,又 A, B 分别是椭圆 C 上位于 x 轴上方的两点,且知足=2.(Ⅰ)求椭圆C的方程;(Ⅱ)求直线AF1的方程;AA1B1B 的面积.(Ⅲ)求平行四边形21.已知函数 f (x) =1﹣x+lnx(Ⅰ)求 f ( x)的最大值;(Ⅱ)对随意的x1,x2∈( 0,+∞)且 x2< x1能否存在实数m,使得﹣﹣x1lnx1+x2lnx2> 0 恒成立;若存在,求出m的取值范围;若不存在,说明原因:(Ⅲ)若正数数列{a n} 知足=,且a1=,数列{a n}的前n项和为S n,试比较2与 2n+1 的大小并加以证明.22.如图,已知AB 是⊙ O的弦, P 是 AB 上一点.(Ⅰ)若AB=6,PA=4,OP=3,求⊙ O的半径;(Ⅱ)若C是圆 O上一点,且CA=CB,线段 CE交 AB 于 D.求证:△ CAD~△ CEA.23.在直角坐标系xOy 中,曲线 C 的参数方程为(θ 为参数),以原点O为起点,x 轴的正半轴为极轴,成立极坐标系,已知点P的极坐标为(2,﹣),直线l的极坐标方程为ρ cos (+θ) =6.(Ⅰ)求点P 到直线 l 的距离;(Ⅱ)设点Q在曲线 C 上,求点Q到直线 l 的距离的最大值.24.设函数 f ( x) =|x+a| ﹣ |x+1| .(Ⅰ)当a=﹣时,解不等式: f ( x)≤ 2a;(Ⅱ)若对随意实数x, f ( x)≤ 2a 都成立,务实数 a 的最小值.2016 年河南省八市要点高中高考数学二模试卷(理科)参照答案与试题分析一、选择题:本大题共12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.若会合 A={x|x< 9}R)>﹣ 1} ,会合 B={x|1 < 3,则( ? A)∩ B=(A.( 0,1]B.∪ =0 恒成立,则方程 f ( x)﹣ f ′( x) =x的解所在的区间是()A.(﹣ 1,﹣) B .(0,) C.(﹣, 0)D.()【考点】利用导数研究函数的单一性;函数恒成立问题.【剖析】由题意,可知 f (x)﹣ xe X是定值,令 t=f( x)﹣ xe X,得出 f ( x) =xe X+t ,再由 f ( t ) =te t +t=0求出 t的值,即可得出 f ( x)的表达式,求出函数的导数,即可求出 f ( x)﹣f ′( x) =x 的解所在的区间,即得正确选项.【解答】解:由题意,可知 f ( x)﹣ xe X是定值,不如令t=f( x)﹣ xe X,则 f ( x) =xe X+t ,又 f ( t ) =te t +t=0 ,解得 t=0 ,所以有 f ( x) =xe X,所以 f ′( x) =(x+1) e X,令 F( x) =f ( x)﹣ f ′( x)﹣ x=xe x﹣( x+1) e x﹣ x=﹣ e x﹣ x,可得 F(﹣ 1)=1﹣>0,F(﹣)= ﹣< 0即 F( x)的零点在区间(﹣ 1,﹣)内∴方程 f ( x)﹣ f ′( x)=x 的解所在的区间是(﹣1,﹣),应选: A.二、填空题:本大题共 4 小题,每题 5 分.13.若函数 f ( x) =奇函数,则 a 的值为﹣2.【考点】函数奇偶性的性质.【剖析】可解1﹣ x2> 0 获得﹣ 1<x< 1,进而有 |x ﹣ 2|=2 ﹣ x,这便获得,而由 f (x)为奇函数便有 f (﹣ x) =﹣ f ( x),这样即可获得2+x+a=﹣( 2﹣ x+a),进而可求出 a 的值.【解答】解:解1﹣ x2> 0 得,﹣ 1< x< 1;∴|x ﹣2|=2 ﹣ x;∴;∵f ( x)为奇函数;∴f (﹣ x) =﹣ f ( x);即;∴2+x+a=﹣( 2﹣x+a);∴2+a=﹣ 2﹣ a;∴a=﹣2.故答案为:﹣ 2.14.若 x, y 知足拘束条件,则的最小值为.【考点】简单线性规划.【剖析】做出不等式表示的平面地区,将化成 1+,即求过点(1,﹣ 1)的直线斜率的最小值问题.【解答】解:=1+,做出平面地区如图:有图可知当过点(1,﹣ 1)的直线经过点C(4, 0)时,斜率最小为,∴的最小值为1+ =.故答案为.15. 4 个半径为 1 的球两两相切,该几何体的外切正四周体的高是4+.【考点】球的体积和表面积.【剖析】把球的球心连结,则又可获得一个棱长为 2 的小正四周体,正四周体的中心究竟面的距离是高的,且小正四周体的中心和正四周体容器的中心应当是重合的,先求出小正四周体的中心究竟面的距离,再求出正四周体的中心究竟面的距离,把此距离乘以 4 可得正四棱锥的高.【解答】解:由题意知,底面放三个球,上再落一个球.于是把球的球心连结,则又可获得一个棱长为 2 的小正四周体,则不难求出这个小正四周体的高为,且由正四周体的性质可知:正四周体的中心究竟面的距离是高的,且小正四周体的中心和正四周体容器的中心应当是重合的,∴小正四周体的中心究竟面的距离是×= ,正四周体的中心究竟面的距离是+1,所以可知正四周体的高的最小值为(+1)× 4=4+,故答案为: 4+.16.已知数列 {a n} 的通公式a n=n22n,数列 {a n} 的前 n 和 S n=(n22n+3)?2n+16.【考点】数列的乞降.【剖析】两次利用“ 位相减法”与等比数列的前n 和公式即可得出.【解答】解:∵a n =n22n,数列 {a n} 的前 n 和 S n=2+22×22+32× 23+⋯ +n2?2n,∴2S n=22+22×23+⋯ +( n 1)2?2n+n2?2n+1,∴ S n=2+3× 22+5× 23+⋯ +( 2n 1)?2n n2?2n+1,数列 { ( 2n 1)?2n} 的前 n 和 T n,T n=2+3×22+5× 23+⋯+( 2n 1)× 2n,2T n=22+3× 23+⋯ +( 2n 3)× 2n+(2n 1)× 2n+1,∴ T n=2+2×(22+23+⋯ +2n)( 2n 1)× 2n+1=2( 2n 1)× 2n+1=(32n)?2n+16,∴T n=( 2n 3)?2 n+1+6,∴ S n=(2n 3)?2n+1+6 n2?2n+1=( 2n 3 n2)?2n+1+6,∴S n=( n2 2n+3)?2n+1 6.故答案:( n2 2n+3)?2 n+1 6.三、解答:解答写出文字明,明程或演算步.17.△ ABC的内角 A, B, C 的分a,b,c,且足sinA+sinB= ( cosA+cosB)sinC .(Ⅰ)求:△ABC直角三角形;(Ⅱ)若a+b+c=1+,求△ ABC面的最大.【考点】解三角形.【剖析】(Ⅰ)由sinA+sinB= ( cosA+cosB)sinC ,利用正、余弦定理,得a+b=c,化整理,即可明:△ABC直角三角形;(Ⅱ)利用 a+b+c=1+,a2+b2=c2,依据基本不等式可得1+=a+b+≥ 2+=(2+ )?,即可求出△ ABC面的最大.【解答】(Ⅰ)明:在△ ABC中,因 sinA+sinB= (cosA+cosB) sinC ,所以由正、余弦定理,得a+b= c ⋯化整理得( a+b)( a2+b2) =(a+b) c2因 a+b> 0,所以 a2+b2=c2⋯故△ ABC直角三角形,且∠ C=90°⋯(Ⅱ)解:因 a+b+c=1+, a2+b2=c2,所以 1+=a+b+≥2+=( 2+)?当且当a=b ,上式等号成立,所以≤.⋯故 S△ABC=ab≤ ×⋯即△ ABC面的最大⋯18.如, PA⊥平面 ADE,B, C 分是 AE, DE的中点, AE⊥ AD,AD=AE=AP=2.(Ⅰ)求二面角 A PE D的余弦;(Ⅱ)点Q是段 BP 上的点,当直CQ与 DP所成的角最小,求段BQ的.【考点】用空向量求平面的角;二面角的平面角及求法.【剖析】以 { ,, } 正交基底成立空直角坐系 Axyz,由意可得 B( 1,0,0),C( 1,1, 0), D( 0, 2, 0), P ( 0,0, 2)(Ⅰ)易得=( 0,2,0)是平面 PAB的一个法向量,待定系数可求平面PED的法向量坐,由向量的角公式可得;(Ⅱ)=λ=(λ, 0, 2λ)( 0≤ λ≤ 1),由角公式和二次函数的域以及余弦函数的性可得.【解答】解:以{,,} 正交基底成立空直角坐系Axyz,各点的坐B( 1, 0,0), C( 1, 1, 0), D( 0, 2, 0), P(0, 0, 2)(Ⅰ)∵ AD⊥平面 PAB,∴是平面 PAB的一个法向量,= (0,2, 0).∵=( 1, 1,﹣ 2),=(0, 2,﹣ 2).设平面 PED的法向量为 =( x,y, z),则 ?=0,?=0,即,令 y=1,解得 z=1, x=1.∴ =( 1, 1, 1)是平面 PCD的一个法向量,计算可得 cos <,> ==,∴二面角 A﹣ PE﹣D 的余弦值为;(Ⅱ)∵=(﹣ 1, 0, 2),设=λ=(﹣λ, 0, 2λ)( 0≤ λ≤ 1),又=( 0,﹣ 1, 0),则 =+=(﹣λ,﹣ 1, 2λ),又=( 0,﹣ 2, 2),∴ cos <,> ==,设 1+2λ=t , t ∈,则 cos 2<,> ==≤,当且仅当 t=,即λ =时, |cos<,> | 的最大值为.由于 y=cosx 在( 0,)上是减函数,此时直线CQ与 DP所成角获得最小值,又∵ BP== ,∴ BQ= BP=19.某农庄抓鸡竞赛,笼中有16 只公鸡和8 只母鸡,每只鸡被抓到的时机相等,抓到鸡而后放回,若累计 3 次抓到母鸡则停止,不然持续抓鸡直到第 5 次后结束.(Ⅰ)求抓鸡 3 次就停止的事件发生的概率;(Ⅱ)记抓到母鸡的次数为ξ ,求随机变量ξ 的散布列及其均值.【考点】失散型随机变量的希望与方差.【剖析】(Ⅰ)由题意,抓到母鸡的概率为,抓鸡 3 次就停止,说明前三次都抓到了母鸡,由此能求出抓鸡 3 次就停止的事件发生的概率.(Ⅱ)依题意,随机变量ξ的全部可能取值为0,1,2, 3,分别求出相应的概率,由此能求出随机变量ξ 的散布列及其均值.【解答】解:(Ⅰ)由意,抓到母的概率,抓 3 次就停止,明前三次都抓到了母,抓 3 次就停止的事件生的概率P==⋯(Ⅱ)依意,随机量ξ 的全部可能取0, 1, 2, 3,P(ξ =0)?=,P(ξ =1) =? ?=,P(ξ =2) =??=,P(ξ =3) = ?+ ??? + ??? =⋯随机量ξ 的散布列ξ0123P⋯.随机量ξ的均 E(ξ ) =× 0+× 1+×2+ ×3=⋯20.如, F1, F2是 C:的左、右两个焦点,|F 1F2|=4 ,6,又 A, B 分是 C 上位于 x 上方的两点,且足=2.(Ⅰ)求C的方程;(Ⅱ)求直AF1的方程;(Ⅲ)求平行四形AA1B1B 的面.【考点】直与曲的合.【剖析】(Ⅰ)由F1, F2是 C:的左、右两个焦点,|F 1F2|=4 ,6,列出方程求出a,b,由此能求出方程.(Ⅱ)直1,得,由AF 的方程 y=k( x+2),由此利用根的判式、达定理、向量知,合已知条件能求出直AF1的方程.(Ⅲ)由,利用弦公式能求出四形AA1B1B的面.【解答】解:(Ⅰ)∵ F1, F2是 C:的左、右两个焦点,|F 1 F2|=4 , 6,∴由意知 2a=6, 2c=4 ,∴ a=3, c=2,∵,∴ b2=5⋯∴ 方程⋯(Ⅱ)直AF1的方程 y=k( x+2),且交于A( x1,y1), A1( x2, y2)两点.由意知,即,△> 0,,①,,②⋯∵,∴ y1= 2y2③立①②③消去y1y2,得.∴直 AF1的方程⋯(Ⅲ)∵ AA1B1B 是平行四形,∴⋯=∴四形AA1B1B 的面.⋯21.已知函数 f (x) =1x+lnx(Ⅰ)求 f ( x)的最大;(Ⅱ)随意的x1,x2∈( 0,+∞)且 x2< x1能否存在数m,使得x1lnx 1+x2lnx 2> 0 恒成立;若存在,求出m的取范;若不存在,明原因:(Ⅲ)若正数数列{a n} 足=,且a1=,数列{a n}的前n和S n,比2与 2n+1 的大小并加以明.【考点】数列与函数的合.【剖析】(Ⅰ)求得 f ( x)的数,区,可得 f (x)的最大 f (1);(Ⅱ)由意可得恒成立,φ (x)=mx2+xlnx,又0<x2< x1,只要?( x)在( 0,+∞)上减,求得数,令数小于等于0 恒成立,运用参数分别和结构函数法,求出数和区,可得最,即可获得所求m的范;(Ⅲ):> 2n+1.运用结构数列法和等比数列的通公式,可得a n=.运用数的运算性和放法,合裂相消乞降,即可得.【解答】解:(Ⅰ)由意得:.当 x∈( 0, 1), f' ( x)> 0,当 x∈( 1,+∞), f' ( x)< 0,所以, f ( x)在( 0,1)上增,在( 1, +∝)上减.所以 f (x)max=f ( 1)=0,即函数 f ( x)的最大 0;(Ⅱ)若恒成立,恒成立,φ(x) =mx2+xlnx ,又 0< x2< x1,只要 ?( x)在( 0, +∞)上减,故 ?′( x) =2mx+1+lnx ≤ 0 在( 0, +∞)上成立,得:2m≤,t ( x) =,,于是可知t ( x)在( 0, 1)上减,在(1, +∞)上增,故 min=t(1)=1,所以存在m≤,使恒成立;(Ⅲ)由== ?+得:=,又,知,=,即有a n=.:>2n+1.明以下:因 a n∈( 0, 1),由( 1)知 x> 0x 1> lnx , x> 1x> ln ( x+1).n n n) ln ( 2n﹣ 1所以 a > ln ( a +1) ==ln ( 2 +1+1)故 S n=a1+a2+⋯+a n>+⋯=ln ( 2n +1) ln (20+1) =,即> 2n+1.22.如,已知AB 是⊙ O的弦, P 是 AB 上一点.(Ⅰ)若AB=6,PA=4,OP=3,求⊙ O的半径;(Ⅱ)若C是 O上一点,且CA=CB,段 CE交 AB 于 D.求:△ CAD~△ CEA.【剖析】(Ⅰ)接OA, OA=r,取 AB 中点 F,接 OF, OF⊥ AB,利用勾股定理求出⊙O 的半径;(Ⅱ)利用CA=CB,得出∠ CAD=∠ B,利用三角形相像的判断定理明:△CAD~△ CEA.【解答】解:(Ⅰ)接OA, OA=r取 AB 中点 F,接 OF, OF⊥ AB,∵,∴,∴.⋯22又 OP=3, Rt △ OFP中, OF=OP2FP=92=7,⋯Rt △ OAF中,,⋯∴ r=5明:(Ⅱ)∵ CA=CB,∴∠ CAD=∠ B又∵∠ B=∠ E,∴∠ CAD=∠E⋯∵∠ ACE公共角,∴△ CAD∽△ CEA⋯23.在直角坐系xOy 中,曲 C 的参数方程(θ 参数),以原点O起点,x 的正半极,成立极坐系,已知点P的极坐(2,),直l的极坐方程ρ cos (+θ) =6.(Ⅰ)求点P 到直 l 的距离;(Ⅱ)点Q在曲 C 上,求点Q到直 l 的距离的最大.【剖析】(Ⅰ)把点P 与直线 l 的极坐标方程化为直角坐标方程,再利用点到直线的距离公式即可得出.(Ⅱ)能够判断,直线l 与曲线 C 无公共点,设,利用点到直线的距离公式及其三角函数的和差公式及其单一性即可得出.【解答】解:(Ⅰ)点的直角坐标为,即.由直线 l,得.则 l 的直角坐标方程为:,点 P 到 l 的距离.(Ⅱ)能够判断,直线l 与曲线 C 无公共点,设,则点 Q到直线的距离为,∴当max 时, d =9.24.设函数 f ( x) =|x+a| ﹣ |x+1| .(Ⅰ)当a=﹣时,解不等式: f ( x)≤ 2a;(Ⅱ)若对随意实数x, f ( x)≤ 2a 都成立,务实数 a 的最小值.【考点】带绝对值的函数.【剖析】(Ⅰ)对x 议论,分x≤﹣ 1,当时,当时去掉绝对值,解不等式,求并集即可获得所求解集;(Ⅱ)运用绝对值表达式的性质,可得 f ( x)的最大值,即有|a ﹣ 1| ≤ 2a,解出 a 的范围,可得 a 的最小值.【解答】解:(Ⅰ)当a=时,不等式化为:,当 x≤﹣ 1 时,,得,所以 x∈Φ .⋯当,,得,所以成立.⋯当,,得≤ 0,所以成立.上,原不等式的解集⋯(Ⅱ)∵ |x+a||x+1| ≤ | ( x+a)( x+1)|=|a1| ,∴f ( x) =|x+a||x+1| 的最大 |a 1| ⋯由意知: |a 1| ≤ 2a,即 2a≤ a 1≤ 2a,解得: a≥,所以数 a 的最小⋯2016年 10月 4 日。
河南省洛阳市2017-2018学年高三数学四模试卷(理科) Word版含解析

2017-2018学年河南省洛阳市高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2(x2﹣x)>1}则A∩B=()A.(2,3)B.(2,3]C.(﹣3,﹣2)D.[﹣3,﹣2)2.“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>03.复数在复平面内对应的点在第三象限是a≥0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.D.45.已知函数f(x)=sinx﹣cosx且f′(x)=2f(x),f′(x)是f(x)的导函数,则sin2x=()A.B.﹣C.D.﹣6.如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=7.在(1+x)(2+x)5的展开式中,x3的系数为()A.75 B.100 C.120 D.1308.距某码头400公里的正东方向有一个台风中心,正以每小时20公里的速度向西北方向移动,据经验,台风中心距码头300公里时,将对码头产生影响,则这个台风对码头产生影响的时间为()A.8小时B.9小时C.10小时D.12小时9.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为()A. B.C.D.10.双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A.B.C. D.11.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N (0,1)的密度曲线)的点的个数的估计值为()A.2386 B.2718 C.3413 D.477212.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=3x2+2x+1,若f(x)dx=2f(a),则a=.14.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=.15.抛物线y=x2,若过点(0,m)且长度为2的弦恰有两条,则m的取值范围是.16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知a=2,b=c,△ABC 面积的最大值是.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤17.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.18.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的30名路人进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.参考数据和公式:2×2列联表K2公式:K2=,K2的临界值表:.如图,四棱锥﹣中,底面为菱形,且,∠(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.20.分别过椭圆E:+=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)设点E1,E2的坐标分别为(﹣1,0),(1,0),证明|PE1|+|PE2|为定值.21.已知函数f(x)=﹣lnx+ax2+(1﹣a)x+2.(Ⅰ)当0<x<1时,试比较f(1+x)与f(1﹣x)的大小;(Ⅱ)若斜率为k的直线与y=f(x)的图象交于不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,证明:f′(x0)>k.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑[选修4-1:几何证明选讲]22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.(Ⅰ)当∠PEC=60°时,求∠PDF的度数;(Ⅱ)求PE•PF的值.[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.[选修4-5:不等式选讲]24.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.求实数a的取值范围.2016年河南省洛阳市高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2(x2﹣x)>1}则A∩B=()A.(2,3)B.(2,3]C.(﹣3,﹣2)D.[﹣3,﹣2)【考点】交集及其运算.【分析】求出A,B中x的范围确定出A,B,再求出两集合的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即A=[﹣1,3],由log2(x2﹣x)>1,得到x2﹣x﹣2>0,即x<﹣1或x>2,∴B=(﹣∞,﹣1)∩(2,+∞),由B中则A∩B=(2,3],故选:B.2.“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>0【考点】的否定.【分析】根据“存在x∈Z使x2+2x+m≤0”是特称,其否定是全称,将“存在”改为“任意的”,“≤“改为“>”可得答案.【解答】解:∵“存在x∈Z使x2+2x+m≤0”是特称∴否定为:对任意x∈Z使x2+2x+m>0故选D.3.复数在复平面内对应的点在第三象限是a≥0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】复数的代数表示法及其几何意义.【分析】利用除法的运算法则:复数=﹣a﹣3i,由于在复平面内对应的点在第三象限,可得﹣a<0,即可判断出.【解答】解:∵复数==﹣a﹣3i,在复平面内对应的点在第三象限,∴﹣a<0,解得a>0.∴复数在复平面内对应的点在第三象限是a≥0的充分不必要条件.故选:A.4.设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.D.4【考点】基本不等式在最值问题中的应用;简单线性规划的应用;基本不等式.【分析】先根据条件画出可行域,设z=ax+by,再利用几何意义求最值,将最大值转化为y 轴上的截距,只需求出直线z=ax+by,过可行域内的点(4,6)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,∴4a+6b=12,即2a+3b=6,∴=()×=(12+)≥4当且仅当时,的最小值为4故选D.5.已知函数f(x)=sinx﹣cosx且f′(x)=2f(x),f′(x)是f(x)的导函数,则sin2x=()A.B.﹣C.D.﹣【考点】二倍角的正弦.【分析】利用函数f(x)=sinx﹣cosx且f′(x)=2f(x),可得cosx+sinx=2sinx﹣2cosx,从而可得tanx=3,再利用二倍角公式,弦化切,即可得出结论.【解答】解:∵函数f(x)=sinx﹣cosx且f′(x)=2f(x),∴cosx+sinx=2sinx﹣2cosx,∴sinx=3cosx,∴tanx=3,∴sin2x=2sinxcosx===.故选C.6.如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【考点】程序框图.【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.7.在(1+x)(2+x)5的展开式中,x3的系数为()A.75 B.100 C.120 D.130【考点】二项式系数的性质.【分析】求出(2+x)5的展开式中含有x3的项和含有x2的项,与第一个式子作积得答案.【解答】解:二项式(2+x)5的通项.其中含有x3的项为,含有x2的项为,∴在(1+x)(2+x)5的展开式中,x3的系数为1×40+1×80=120.故选:C.8.距某码头400公里的正东方向有一个台风中心,正以每小时20公里的速度向西北方向移动,据经验,台风中心距码头300公里时,将对码头产生影响,则这个台风对码头产生影响的时间为()A.8小时B.9小时C.10小时D.12小时【考点】直线与圆的位置关系.【分析】由已知得AO=OD=400,OA⊥OD,OB=OC=300,∠OAB=45°,由余弦定理求出AB=CD=200,由此能求出这个台风对码头产生影响的时间.【解答】解:如图,由已知得AO=OD=400,OA⊥OD,OB=OC=300,∠OAB=45°,设CD=AB=x,则90000=160000+x2﹣800x×,解得AB=CD=200,∴BC=﹣2=200,由题意当台风中心位于BC线段上时,将对码头O产生影响,∵台风中心正以每小时20公里的速度向西北方向移动,∴这个台风对码头产生影响的时间为:小时.故选:C.9.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为()A. B.C.D.【考点】由三视图求面积、体积.【分析】几何体是三棱锥,根据三视图知最里面的面与底面垂直,高为2,结合直观图判定外接球的球心在SO上,利用球心到A、S的距离相等求得半径,代入球的表面积公式计算.【解答】解:由三视图知:几何体是三棱锥,且最里面的面与底面垂直,高为2,如图:其中OA=OB=OC=2,SO⊥平面ABC,且SO=2,其外接球的球心在SO上,设球心为M,OM=x,则=2﹣x⇒x=,∴外接球的半径R=,∴几何体的外接球的表面积S=4π×=π.故选:D.10.双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A.B.C. D.【考点】双曲线的简单性质.【分析】利用条件可得A()在双曲线上,=c,从而可得(c,2c)在双曲线上,代入化简,即可得到结论.【解答】解:∵双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,∴A()在双曲线上,=c∴(c,2c)在双曲线上,∴∴c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴∵e>1∴e=故选B.11.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N (0,1)的密度曲线)的点的个数的估计值为()A.2386 B.2718 C.3413 D.4772【考点】正态分布曲线的特点及曲线所表示的意义.【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.12.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.【考点】指数函数的图象与性质.【分析】因对任意实数a、b、c,都存在以f(a)、f(b)、f(c)为三边长的三角形,则f (a)+f(b)>f(c)恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t﹣1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(a)+f(b)的最小值与f(c)的最大值的不等式,进而求出实数t的取值范围.【解答】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=3x2+2x+1,若f(x)dx=2f(a),则a=﹣1或.【考点】定积分.【分析】先求出f(x)在[﹣1,1]上的定积分,再建立等量关系,求出参数a即可.【解答】解:∫﹣11f(x)dx=∫﹣11(3x2+2x+1)dx=(x3+x2+x)|﹣11=4=2f(a),f(a)=3a2+2a+1=2,解得a=﹣1或.故答案为﹣1或14.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则= 10 .【考点】向量在几何中的应用.【分析】建立坐标系,利用坐标法,确定A ,B ,D ,P 的坐标,求出相应的距离,即可得到结论.【解答】解:建立如图所示的平面直角坐标系,设|CA|=a ,|CB|=b ,则A (a ,0),B (0,b )∵点D 是斜边AB 的中点,∴,∵点P 为线段CD 的中点,∴P∴===∴|PA|2+|PB|2==10()=10|PC|2∴=10.故答案为:1015.抛物线y=x 2,若过点(0,m )且长度为2的弦恰有两条,则m 的取值范围是 (﹣∞,1) .【考点】抛物线的简单性质.【分析】由题意可得弦所在直线的斜率存在,设为k ,可得直线方程为y=kx+m ,(k ≠0),代入抛物线的方程,运用韦达定理和判别式大于0,弦长公式,运用换元法,以及函数的单调性和抛物线的对称性,即可得到所求范围.【解答】解:由题意可得弦所在直线的斜率存在,设为k , 可得直线方程为y=kx+m ,(k ≠0),代入抛物线的方程,可得x 2﹣kx ﹣m=0, 即有△=k 2+4m >0,设弦的端点的横坐标分别为x 1,x 2, 可得x 1+x 2=k ,x 1x 2=﹣m ,即有弦长为|x1﹣x2|=•=2,化为4m=﹣k2,令t=1+k2(t>1),即有f(t)=﹣t+1递减,则f(t)<4,即有4m<4,解得m<1.检验由抛物线关于y轴对称,成立.故答案为:(﹣∞,1).16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知a=2,b=c,△ABC面积的最大值是2.【考点】正弦定理.【分析】利用余弦定理计算cosA,得出sinA,代入面积公式得出S△ABC关于c的函数,利用基本不等式得出面积的最大值.【解答】解:由余弦定理得:cosA==,∴sinA==.∴S△ABC==.∵﹣c4+24c2﹣16=﹣(c2﹣12)2+128≤128,∴S△ABC≤=2.故答案为:2.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤17.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【分析】(I)由已知中(n∈N+),我们易变形得:,即,进而根据等差数列的定义,即可得到结论;(II)由(I)的结论,我们可以先求出数列的通项公式,进一步得到数列{a n}的通项公式a n;(Ⅲ)由(II)中数列{a n}的通项公式,及b n=n(n+1)a n,我们易得到数列{b n}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{b n}的前n项和S n.【解答】解:(Ⅰ)证明:由已知可得,即,即∴数列是公差为1的等差数列(Ⅱ)由(Ⅰ)知,∴(Ⅲ)由(Ⅱ)知b n=n•2nS n=1•2+2•22+3•23++n•2n2S n=1•22+2•23+…+(n﹣1)•2n+n•2n+1相减得:=2n+1﹣2﹣n•2n+1∴S n=(n﹣1)•2n+1+218.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的名路人进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.参考数据和公式:2×2列联表K2公式:K2=,K2的临界值表:【分析】(1)根据在全部30人中随机抽取1人抽到中国式过马路的概率,做出中国式过马路的人数,进而做出男生的人数,填好表格.再根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明反感“中国式过马路”与性别是否有关.(2)反感“中国式过马路”的人数为X的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可.设H0:反感“中国式过马路”与性别与否无关由已知数据得:K2=≈1.158<3.841,所以,没有充足的理由认为反感“中国式过马路”与性别有关.…(2)X的可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==…X的数学期望为:EX=0×+1×+2×=.…19.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.证明AD⊥平面PBE,然后证明PB⊥AD;(Ⅱ)以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,求出平面APD的一个法向量为=(0,1,0),平面PDC的一个法向量为,利用向量的数量积求解二面角A﹣PD﹣C的余弦值.【解答】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.∵PA=PD=DA,四边形ABCD为菱形,且∠BAD=60°,∴△PAD和△ABD为两个全等的等边三角形,则PE⊥AD,BE⊥AD,∴AD⊥平面PBE,…又PB⊂平面PBE,∴PB⊥AD;…(Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=,则PB2=PE2+BE2,∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD;以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,则E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),则=(1,0,),=(﹣1,,0),由题意可设平面APD的一个法向量为=(0,1,0);…设平面PDC的一个法向量为=(x,y,z),由得:,令y=1,则x=,z=﹣1,∴=(,1,﹣1);则•=1,∴cos<>===,…由题意知二面角A﹣PD﹣C的平面角为钝角,所以,二面角A﹣PD﹣C的余弦值为﹣…20.分别过椭圆E:+=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)设点E1,E2的坐标分别为(﹣1,0),(1,0),证明|PE1|+|PE2|为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)当l1与x轴重合时,可得k1+k2=k3+k4=0,可得l2垂直于x轴,可得|AB|,|CD|的长,解方程可得a,b,进而得到椭圆方程;(2)当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0).当直线l1、l2斜率存在时,设斜率分别为m1,m2.可得l1的方程为y=m1(x+1),l2的方程为y=m2(x﹣1).设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),与椭圆方程联立即可得出根与系数的关系,再利用斜率计算公式和已知即可得出m1与m2的关系,进而得出答案.【解答】解:(1)当l1与x轴重合时,k1+k2=k3+k4=0,即k3=﹣k4,即有l2垂直于x轴,可得|AB|=2a=2,|CD|==,解得a=,b=,可得椭圆的方程为+=1;(2)证明:当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0).当直线l1、l2斜率存在时,设斜率分别为m1,m2.∴l1的方程为y=m1(x+1),l2的方程为y=m2(x﹣1).设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),联立,得到(2+3m12)x2+6 m12x+3m12﹣6=0,∴x1+x2=﹣,x1x2=.同理x3+x4=,x3x4=.(*)∵k1===m1+,k2=m1+,k3=m2﹣,k4=m2﹣.又满足k1+k2=k3+k4.∴2m1+m1•=2m2﹣m2•,把(*)代入上式化为:2m1+m1•=2m2﹣m2•.(m1≠m2).化为m1m2=﹣2.设点P(x,y),则•=﹣2,(x≠±1)化为+x2=1.由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P在椭圆上,则存在点E1,E2的坐标分别为(﹣1,0),(1,0),|PE1|+|PE2|=2为定值.21.已知函数f(x)=﹣lnx+ax2+(1﹣a)x+2.(Ⅰ)当0<x<1时,试比较f(1+x)与f(1﹣x)的大小;(Ⅱ)若斜率为k的直线与y=f(x)的图象交于不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,证明:f′(x0)>k.【考点】利用导数研究函数的单调性.【分析】(1)利用作差法得出f(1+x)﹣f(1﹣x)=ln(1﹣x)﹣ln(1+x)+2x,构造函数令g(x)=ln(1﹣x)﹣ln(1+x)+2x,通过求导,判断函数单调性,得出结论.(2)求出k和f'(x0),利用分析法得出只需证<ln,构造函数h(t)=+lnt,利用导数判断单调性证得2<+lnt.【解答】解:(1)f(1+x)﹣f(1﹣x)=ln(1﹣x)﹣ln(1+x)+2x令g(x)=ln(1﹣x)﹣ln(1+x)+2x,∴g′(x)=∵0<x<1,g′(x)<0,g(x)单调递减∴g(x)<g(0)=0.∴f(1+x)<f(1﹣x);(2)不妨设x2>x1k==﹣+a(x2+x1)+1﹣af'(x0)=﹣+ax0+1﹣a=﹣+a(x1+x2)+1﹣a要证f′(x0)>k只需证<即证<ln令t=t>1∴<lnt即2<+lnt令h(t)=+lnt∴h'(t)=>0,h(t)递增∴h(t)>h(1)=2∴2<+lnt成立故f′(x0)>k.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑[选修4-1:几何证明选讲]22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.(Ⅰ)当∠PEC=60°时,求∠PDF的度数;(Ⅱ)求PE•PF的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)连结BC,依题意知,∠CAB+∠CBA=∠EAP+∠PEC,继而可得∠CBA=∠PEC,又∠PEC=60°,于是可得∠PDF=∠CBA=∠PEC=60°;(Ⅱ)解法1:由(Ⅰ)知∠PDF=∠PEC,利用D、C、E、F四点共圆PE•PF=PC•PD,及割线定理可得PC•PD=PB•PA=24,于是可得答案;解法2:由∠PEC=∠PDF,∠EPC=∠DPF可得△PEC~△PDF,从而可得PE•PF=PC•PD,再结合PC、PA都是圆O的割线,得到PC•PD=PB•PA=24,从而可求得PE•PF的值.【解答】解:(Ⅰ)连结BC,∵AB是圆O的直径,∴则∠ACB=90°,﹣﹣﹣﹣﹣又∠APF=90°,∠CAB+∠CBA=∠EAP+∠PEC﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴∠CBA=∠PEC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵∠PEC=60°∴∠PDF=∠CBA=∠PEC=60°;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解法1:由(Ⅰ)知∠PDF=∠PEC,∴D、C、E、F四点共圆,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=PC•PD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵PC、PA都是圆O的割线,∴PC•PD=PB•PA=24,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=24.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解法2:∵∠PEC=∠PDF,∠EPC=∠DPF,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴△PEC~△PDF﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴即PE•PF=PC•PD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵PC、PA都是圆O的割线,∴PC•PD=PB•PA=24﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=24.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【考点】直线的参数方程;简单曲线的极坐标方程.【分析】(Ⅰ)利用极坐标与直角坐标的互化公式即可把曲线C的极坐标方程化为直角坐标方程,利用消去参数t即可得到直线l的直角坐标方程;(Ⅱ)将直线L的参数方程,代入曲线C的方程,利用参数的几何意义即可得出|PA|•|PB|,从而建立关于a的方程,求解即可.【解答】解:(I)由ρsin2θ=2acosθ(a>0)得ρ2sin2θ=2aρcosθ(a>0)∴曲线C的直角坐标方程为y2=2ax(a>0)…直线l的普通方程为y=x﹣2…(II)将直线l的参数方程代入曲线C的直角坐标方程y2=2ax中,得t2﹣2(4+a)t+8(4+a)=0设A、B两点对应的参数分别为t1、t2则有t1+t2=2(4+a),t1t2=8(4+a)…∵|PA|⋅|PB|=|AB|2∴|t1t2|=(t1﹣t2)2,即(t1+t2)2=5t1t2…∴[2(4+a)]2=40(4+a)化简得,a2+3a﹣4=0解之得:a=1或a=﹣4(舍去)∴a的值为1…[选修4-5:不等式选讲]24.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的范围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.2016年7月25日。
河南省洛阳市2017-2018学年高考数学一模试卷(理科) Word版含解析

河南省洛阳市2017-2018学年高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( )A.3 B.11 C.8 D.122.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( )A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>}3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( )A.B.C.D.﹣4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( )A.B.8﹣2πC.πD.8﹣π6.已知f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( )A.a<b<c B.b<a<c C.c<a<b D.a<c<b7.执行如图的程序,则输出的结果等于( )A.B.C.D.8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( )A.B.C.D.9.设F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( )A.B.2 C.D.10.曲线y=(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的周长的最小值为( )A.4+2B.2C.2 D.5+211.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( )A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣)12.在平面直角坐标系中,点P是直线l:x=﹣上一动点,点F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( )A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.设随机变量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=__________.14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为__________.15.将函数y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为__________.16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知{a n},{b n} 均为等差数列,前n项和分别为S n,T n.(1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使S n为定值?若存在,请求出此定值;若不存在,请说明理由;(2)若对n∈N+,有=,求使为整数的正整数n的集合.18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上.(1)求圆S的方程(2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围.20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2.(1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由;(2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长.21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.22.已知函数f(x)=ln(1+x)m﹣x(1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围;(2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.河南省洛阳市2015届高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( )A.3 B.11 C.8 D.12考点:集合的表示法.专题:集合.分析:根据题意和z=xy,x∈A且y∈B,利用列举法求出集合C,再求出集合C中的元素个数.解答:解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9;当x=4时,z=4或8或12;当x=5时,z=5或10或15;所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11,故选:B.点评:本题考查集合元素的三要素中的互异性,注意集合中元素的性质,属于基础题.2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( )A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>}考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:求出复数的表达式,根据题意列出不等式组,求出a的取值范围.解答:解:∵复数z1=3﹣ai,z2=1+2i,∴===﹣i;∴,解得﹣6<a<,∴实数a的取值范围{a|﹣6<a<}.故选:B.点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题.3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( )A.B.C.D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:利用根与系数的关系表示出sinθ+cosθ=,sinθcosθ=,利用完全平方公式及同角三角函数间基本关系整理求出m的值,再利用完全平方公式求出sinθ﹣cosθ的值即可.解答:解:∵sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,∴sinθ+cosθ=,sinθcosθ=,可得(sinθ+cosθ)2=1+2sinθcosθ,即=1+m,即m=﹣,∵θ为第二象限角,∴sinθ>0,cosθ<0,即sinθ﹣cosθ>0,∵(sinθ﹣cosθ)2=(sinθ+cosθ)2﹣4sinθcosθ=﹣2m=1﹣+=,∴sinθ﹣cosθ==.故选:A.点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数考点:演绎推理的意义.专题:推理和证明.分析:根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.解答:解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式;故选:B点评:本题主要考查推理和证明,三段论推理的标准形式,属于基础题.5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( )A.B.8﹣2πC.πD.8﹣π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三视图可判断正方体的内部挖空了一个圆锥,该几何体的体积为23﹣×π×12×2运用体积计算即可.解答:解:∵几何体的三视图可得出:三个正方形的边长均为2,∴正方体的内部挖空了一个圆锥,∴该几何体的体积为23﹣×π×12×2=8,故选:D点评:本题考查了空间几何体的三视图,运用求解几何体的体积问题,关键是求解几何体的有关的线段长度.6.已知f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( )A.a<b<c B.b<a<c C.c<a<b D.a<c<b考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系,即可得到结论.解答:解:∵f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,∴f(x)在[0,+∞)上单调递减,则tanπ<﹣1,<sinπ,<cosπ<0,则tanπ<﹣sinπ<cosπ,则f(tanπ)<f(﹣sinπ)<f(cosπ),即f(tanπ)<f(sinπ)<f(cosπ),故c<a<b,故选:C点评:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.7.执行如图的程序,则输出的结果等于( )A.B.C.D.考点:程序框图.专题:计算题;点列、递归数列与数学归纳法;算法和程序框图.分析:执行程序框图,依次写出每次循环得到的S,T的值,当i=100,退出循环,输出T 的值.解答:解:执行程序框图,有i=1,s=0,t=0第1次执行循环,有s=1,T=1第2次执行循环,有i=2,s=1+2=3,T=1+第3次执行循环,有i=3,s=1+2+3=6,T=1++第4次执行循环,有i=4,s=1+2+3+4=10,T=1++…第99次执行循环,有i=99,s=1+2+3+..+99,T=1+++…+此时有i=100,退出循环,输出T的值.∵T=1+++…+,则通项a n===,∴T=1+(1﹣)+(﹣)+()+()+…+()=2=.∴输出的结果等于.故选:A.点评:本题主要考察了程序框图和算法,考察了数列的求和,属于基本知识的考查.8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( )A.B.C.D.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:根据已知条件,,能够分别用表示为:,k∈R,,所以带入便可得到,=,所以根据平面向量基本定理即可得到,解不等式组即得λ的值.解答:解:如图,B,F,D三点共线,∴存在实数k使,;∴==;=;∵;∴;∴,解得.故选C.点评:考查向量加法运算及向量加法的平行四边形法则,共面向量基本定理,以及平面向量基本定理.9.设F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( )A.B.2 C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;从而求出|F1P|=+1,|F2P|=﹣1;再出和即可.解答:解:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;故(|F1P|+|F2P|)2=2(|F1P|2+|F2P|2)﹣(|F1P|﹣|F2P|)2=2×8﹣4=12;故|F1P|+|F2P|=2;则|F1P|=+1,|F2P|=﹣1;故则sin∠PF1F2的所有可能取值之和为+==;故选D.点评:本题考查了圆锥曲线的应用,考查了圆锥曲线的定义,属于基础题.10.曲线y=(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的周长的最小值为( )A.4+2B.2C.2 D.5+2考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:利用导数求出函数y=(x>0)在点P(x0,y0)处的切线方程,得到直线在两坐标轴上的截距,由勾股定理求得第三边,作和后利用基本不等式求最值.解答:解:由y=,得,则,∴曲线y=(x>0)在点P(x0,y0)处的切线方程为:y﹣=﹣(x﹣x0).整理得:.取y=0,得:x=2x0,取x=0,得.∴|AB|==2.∴△OAB的周长为=(x0>0).当且仅当x0=1时上式等号成立.故选:A.点评:本题考查了利用导数研究过曲线上某点的切线方程,考查了利用基本不等式求最值,是中档题.11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( )A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣)考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.解答:解:(3λ+1)x+(1﹣λ)y+6﹣6λ=0等价为λ(3x﹣y﹣6)+(x+y+6)=0,则,解得,即直线过定点D(0,﹣6)作出不等式组对应的平面区域如图:其中A(2,1),B(5,2),此时AD的斜率k==,BD的斜率k==,当直线过A时,λ=9,当直线过B时,λ=﹣,则若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则满足直线的斜率≤≤,解得λ∈(﹣∞,﹣)∪(9,+∞),故选:A点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,运算量较大.12.在平面直角坐标系中,点P是直线l:x=﹣上一动点,点F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( )A.B.C.D.考点:圆的切线方程.专题:直线与圆.分析:由题意首先求出M的轨迹方程,然后在M满足的曲线上设点,只要求曲线上到圆心的距离的最小值,即可得到|ST|的最小值.解答:解:设M坐标为M(x,y),由MP⊥l知P(﹣,y);由“点Q为PF的中点”知Q(0,);又因为QM⊥PF,QM、PF斜率乘积为﹣1,即,解得:y2=2x,所以M的轨迹是抛物线,设M(y2,y),到圆心(3,0)的距离为d,d2=(y2﹣3)2+2y2=y4﹣4y2+9=(y2﹣2)2+5,∴y2=2时,d mln=,此时的切线长为,所以切点距离为2=;∴|ST|的最小值为;故选A.点评:本题考查了抛物线轨迹方程的求法以及与圆相关的距离的最小值求法,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.设随机变量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=0.2.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据正态分布的性质求解.解答:解:因为P(ξ<﹣1)=P(ξ>1),所以正态分布曲线关于y轴对称,又因为P(ξ>2)=0.3,所以P(﹣2<ξ<0)=故答案为:0.2.点评:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为(6﹣2)π.考点:球内接多面体.专题:计算题;空间位置关系与距离.分析:运用分割思想,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥,由大的四棱锥的体积等于四个三棱锥的体积和一个小的四棱锥的体积之和,根据正四棱锥的性质,求出斜高,即可求出球的半径r,从而得到球的表面积.解答:解:设球的半径为r,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥它们的高均为r,则V P﹣ABCD=V O﹣PAB+V O﹣PAD+V O﹣PBC+V O﹣PCD+V O﹣ABCD即×2×22=r(4×S△PBC+4),由四棱锥的高和斜高,及斜高在底面的射影构成的直角三角形得到,斜高为,∴S△PBC=×2×=,∴r=,则球的表面积为4π×()2=(6﹣2)π.故答案为:(6﹣2)π.点评:本题主要考查球与正四棱锥的关系,通过分割,运用体积转换的思想,是解决本题的关键.15.将函数y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为2.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质.分析:化简可得y=sin(ωx﹣)+将函数的图象向右平移个单位,所得解析式为:y=sin(ωx﹣ω﹣)+,所得图象关于y轴对称,可得﹣ω﹣=k,k∈Z,从而可解得正数ω的最小值.解答:解:∵y=sin(x)sin(X+)=sin2+sinωx==sin(ωx﹣)+,∴将函数的图象向右平移个单位,所得解析式为:y=sin[ω(x﹣)﹣]+=sin(ωx ﹣ω﹣)+,∵所得图象关于y轴对称,∴﹣ω﹣=k,k∈Z,∴可解得:ω=﹣6k﹣4,k∈Z,∴k=﹣1时,正数ω的最小值为2,故答案为:2.点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于基本知识的考查.16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为.考点:余弦定理;正弦定理.专题:计算题;解三角形;不等式的解法及应用.分析:运用余弦定理和基本不等式,求出最小值,注意等号成立的条件,再由面积公式,即可得到.解答:解:由于b=1,a=2c,由余弦定理,可得,cosC====(3c+)≥=,当且仅当c=,cosC取得最小值,即有C取最大值,此时a=,则面积为absinC==.故答案为:.点评:本题考查余弦定理和三角形面积公式的运用,考查基本不等式的运用:求最值,考查运算能力,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知{a n},{b n} 均为等差数列,前n项和分别为S n,T n.(1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使S n为定值?若存在,请求出此定值;若不存在,请说明理由;(2)若对n∈N+,有=,求使为整数的正整数n的集合.考点:数列与向量的综合;数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:(1)根据平面向量的基本定理和A,B,C三点共线,以及等差数列的性质和求和公式,即可求出定值;(2)根据等差数列的求和公式得到====31+,继而求出正整数n的集合.解答:解:(1)∵A,B,C三点共线.∴∃λ∈R,使=λ,=λ(),即=(1﹣λ)+λ,又平面向量的基本定理得,,消去λ得到a3+a15=1,∵a3+a15=a1+a17=1,∴S17=×17×(a1+a17)=即存在n=17时,S17为定值.(2)由于====31+根据题意n+1的可能取值为2,4,所以n的取值为1或3,即使为整数的正整数n的集合为{1,3}点评:本题主要考查了向量以及等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力,属于中档题18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.考点:三角形中的几何计算.专题:计算题;解三角形.分析:(1)运用余弦定理,解出CD=1,再解直角三角形ADB,得到AE=1,再由面积公式,即可得到△ACE的面积;(2)在△ACE和△CDE中,分别运用正弦定理,求出CE,及sin∠CDE,再由诱导公式,即可得到∠DAB的余弦值.解答:解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.点评:本题考查解三角形的运用,考查正弦定理和余弦定理,及面积公式的运用,考查运算能力,属于基础题.19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上.(1)求圆S的方程(2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围.考点:直线与圆的位置关系;圆的标准方程.专题:直线与圆.分析:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),由此能求出圆S的半径|SA|.(2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,由此利用根的判别式和韦达定理结合已知条件能求出实数m的取值范围.解答:解:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),∵A(7,8),∴圆S的半径|SA|==5.∴圆S的方程为(x﹣4)2+(y﹣4)2=25.(2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,令△=(2m)2﹣8(m2﹣8m+7)>0,得,设点C,D上的横坐标分别为x1,x2,则x1+x2=m,,依题意,得<0,∴x1x2+(﹣x1+m)(﹣x2+m)<0,m2﹣8m+7<0,解得1<m<7.∴实数m的取值范围是(1,7).点评:本题考查圆的半径的求法,考查实数的取值范围的求法,解题时要注意根的判别式和韦达定理的合理运用.20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2.(1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由;(2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长.考点:点、线、面间的距离计算;直线与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,利用EF⊥平面ACD1,求出y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,即可得出结论;(2)设|DD1|=2k(k>0),求出平面ACK的法向量、平面ACD1的法向量,利用向量的夹角公式,结合平面D1AC与平面ACK所成锐二面角为60°,求出k,即可求DD1的长.解答:解:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2),若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,=(﹣2,y﹣1,z﹣1),=(2,﹣1,0),=(0,2,2),∵EF⊥平面ACD1,∴,∴y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,∴不存在满足条件的点F;(2)设|DD1|=2k(k>0),则K(0,0,k),D1(2,2,2k),=(0,﹣1,k),=(2,1,2k),设平面ACK的法向量为=(x,y,z),则,取=(k,2k,2),同理平面ACD1的法向量为=(﹣k,﹣2k,2),则=∴k=±或(负值舍去),∴DD1的长为或.点评:本题考查直线与平面垂直的判定,考查向量知识的运用,正确求出平面的法向量是关键.21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B 的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.22.已知函数f(x)=ln(1+x)m﹣x(1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围;(2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)先求出函数的导数,通过f′(x)≥0恒成立,或f′(x)≤0恒成立,得到m的范围;(2)由题意得:ln(x+1)<x,令g(x)=sinx﹣x,通过函数的单调性得sin1<1,sin<,…,sin<,从而ln[(1+sin1)(1+sin)…(1+sin)]<2,进而证出结论.解答:解:(1)∵f(x)=mln(1+x)﹣x,∴f′(x)=﹣1,∵函数f(x)为(0,+∞)上的单调函数,∴f′(x)≥0恒成立,或f′(x)≤0恒成立,∵x∈(0,+∞),∴m≥1+x不能恒成立,而1+x>1,∴m≤1时,f(x)为单调递减函数,综上:m≤1;(2)由(1)得m=1时,f(x)在(0,+∞)上是减函数,∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞),∵sin1•sin…sin>0,∴ln(1+sin1)<sin1,…,ln(1+sin)<sin,令g(x)=sinx﹣x,x∈(0,),则g′(x)=cosx﹣1<0,∴g(x)在(0,)上是减函数,∴g(x)<g(0),即sinx<x,x∈(0,),∴sin1<1,sin<,…,sin<,∴ln(1+sin1)+ln(1+sin)+…+ln(1+sin)<sin1+sin+…+sin<1++…+<1+++…+=1+(1﹣)+(﹣)+…+(﹣)=2﹣<2,即ln[(1+sin1)(1+sin)…(1+sin)]<2,∴(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.点评:本题考查了函数的单调性问题,导数的应用,考查了不等式的证明问题,考查转化思想,有一定的难度.。
河南省洛阳市2017-2018学年高三考前综合练习(二)理数试题 Word版含解析

2017-2018学年第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数212ii+-( ) A .i B .i - C .42i + D .1i + 【答案】D 【解析】 试题分析:()()21225511255i i i ii i +-++===+-,故选D. 考点:复数的运算 2.若1:1,:1p x q x><,则p 是q 的( ) A . 既不充分也不必要条件 B .必要不充分条件 C .充要条件 D .充分不必要条件 【答案】D 考点:逻辑命题3.将函数()sin(2)f x x ϕ=+的图象向左平移8π个单位,所得的函数关于y 轴对称,则ϕ的一个可能取值为( ) A .34π B .4π C .0 D .4π-【答案】B 【解析】考点:y=Asin (ωx+φ)的图象变换 4.若110(1)xS edx =-⎰,120S xdx =⎰,130sin S xdx =⎰,则( )A .231S S S >>B .132S S S >>C .213S S S >>D .123S S S >> 【答案】D 【解析】 试题分析:111001(1)|22x x S e dx e x e =-=-=->⎰, 12120011|22S xdx x ===⎰ ,113001sin cosx |1cos12S xdx ==-=-<⎰, 123S S S ∴>>,故选D.考点:定积分;比较大小5.若如图所示的程序框图输出的S 是126,则条件①可为( ) A .5?n ≤ B .6?n ≤ C .7?n ≤ D .8?n ≤【答案】B【方法点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.考点:程序框图6.设,x y满足约束条件3020x y ax yx y--≤⎧⎪-≥⎨⎪+≥⎩,若目标函数z x y=+的最大值为2,则实数a的值为()A.2 B.1 C.-1 D.-2 【答案】【解析】试题分析:先作出不等式组20x yx y-≥⎧⎨+≥⎩的图象如图,∵目标函数z=x+y的最大值为2,∴z=x+y=2,作出直线x+y=2,由图象知x+y=2如平面区域相交A,由02x y x y -=+=⎧⎨⎩ 得x=1,y=1, 即A (1,1),同时A (1,1)也在直线3x-y-a=0上, ∴3-1-a=0,则a=2,故选:A .考点:简单的线性规划7.如图所示22⨯方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,若填入A 方格的数字大于B 方格的数字,则不同的填法共有( ) A .192种 B .128种 C .96种 D .12种【答案】C考点:排列组合及简单的计数问题8.若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +=( )A . 6B .7C .8D .9 【答案】D考点:一元二次方程根与系数的关系;等差数列和等比数列的性质9.设双曲线22221x y a b -=的两渐近线与直线2a x c=分别交于,A B 两点,F 为该双曲线的右焦点,若006090AFB <∠<,则该双曲线的离心率的取值范围是( ) A. B .(1,2) C. D.)+∞ 【答案】B 【解析】试题分析:双曲线的两条渐近线方程为2y x b a a c x ±==,时,aby c =±,2260901FB a ab a ab A B AFB k c c c c ∴︒<∠<︒<< (,),(,-),,,2222211111132333ab a a c e e a b c a c c<<<<∴<<∴<-<<<--,,,,. 故选B考点:双曲线的简单性质10.在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =三棱锥S ABC -的外接球的表面积为( ) A .6π B .12π C .32π D .36π 【答案】 【解析】试题分析:根据三棱锥为正三棱锥,可证明出AC ⊥SB ,结合SB ⊥AM ,得到SB ⊥平面SAC ,因此可得SA 、SB 、SC 三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC 的外接球的表面积.取AC 中点,连接BN 、SN ,∵N 为AC 中点,SA=SC ,∴AC ⊥SN , 同理AC ⊥BN ,∵SN ∩BN=N ,∴AC ⊥平面SBN ,∵SB ⊂平面SBN ,∴AC ⊥SB ,∵SB ⊥AM 且AC ∩AM=A , ∴SB ⊥平面SAC ⇒SB ⊥SA 且SB ⊥AC , ∵三棱锥S-ABC 是正三棱锥,∴SA 、SB 、SC 三条侧棱两两互相垂直.∵底面边长AB =∴侧棱SA=2,∴正三棱锥S-ABC的外接球的直径为:2R R =∴= , ∴正三棱锥S-ABC 的外接球的表面积是2412S R ππ== ,故选:B .考点:空间线面垂直的判定与性质;球内接多面体11.设,a b为单位向量,若向量c 满足()c a b a b -+=- ,则c 的最大值是( )A.. 2 C.1 【答案】A考点:平面向量的几何性质12.已知函数()y f x =的定义域的R ,当0x <时,()1f x >,且对任意的实数,x y R ∈,等式()()()f x f y f x y =+成立,若数列{}n a 满足11()1()1n nf a f a +=+,(*n N ∈),且1(0)a f =,则下列结论成立的是( )A .20132016()()f a f a >B .20142015()()f a f a >C .20162015()()f a f a <D .20142015()()f a f a <【解析】试题分析:∵()()()f x f y f x y ∙=+恒成立, ∴令x =-1,y =0,则101f f f -=-()()(), ∵当x<0时,11001f x f f >∴-≠∴=(),(),(),()()1111011111n n n n f a f a f f a a f ++=⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭∴== ,() ,111110011n n n nf a f a a a a ++∴+==∴+=++()(),,111n na a +=-+∴,2341212a a a =-=-=∴,,, ∴数列{}n a 是以3为周期的周期数列,2013320141201522016312122a a a a a a a a ∴==-====-==-,,,,故选:B .考点:抽象函数的应用【方法点睛】1. 换元法:换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法;2. 方程组法:运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;3. 待定系数法:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题;4. 赋值法:有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决;5. 转化法:通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便;6. 递推法:对于定义在正整数集N*上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解;7. 模型法:模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法;应掌握下面常见第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.) 13.某几何体的三视图如图所示,则该几何体的体积为________.【答案】13π+ 【解析】试题分析:由题根据所给三视图易知该几何体为水平放置的半个圆柱与一个直三棱锥,故所求几何体的体积为211112211323ππ⨯⨯+⨯⨯⨯⨯=+. 考点:三视图求体积14.已知对任意实数x ,有6270127()(1)m x x a a x a x a x ++=++++ .若135732a a a a +++=,则m =________.【答案】0考点:二项式定理【方法点睛】赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n、(ax 2+bx +c )m(a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.15.已知点(,)P x y 是直线40kx y ++=(0k >)上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,,A B 为切点,若四边形PACB 的最小面积是2,则k 的值为________. 【答案】2 【解析】考点:直线和圆的位置关系;点到直线的距离公式16.数列{}n a 是等差数列,数列{}n b 满足12n n n n b a a a ++=(*n N ∈),设n S 为{}n b 的前n 项和,若125308a a =>,则当n S 取得最大值时n 的值为________. 【答案】16 【解析】试题分析:设{a n }的公差为d ,由1251125376810 0855n a a a d a a d a n d ⎛⎫=∴=-∴∴<∴=-⎭<⎪> ⎝,,,,,从而可知116n ≤≤时,017n a n >≥,时,0n a <.从而121417181515161716161718000b b b b b b a a a b a a a =>>>>>><>=> ,,, 故1413114151516S S S S S S S >>>>< ,,.1518151815161617151869694000055555a d a d a a d d db b a a a a =->=<∴+=-+=<∴+=+> ,,,(),所以1614S S >,故S n 中S 16最大. 考点:数列的函数特性【方法点睛】数列与函数的特性问题主要是通过研究数列通项的单调性、周期性,最值来解决有关数列的问题,属于综合性题目,一定要注意数列单调变化对项的正负的影响,决定了数列求和的最值问题.三、解答题 :本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,且25sin sin cos 3a A Bb A a +=.(1)求ba;(2)若22285c a b =+,求角C .【答案】(1)53b a =;(2)23C π=(2)设5(0)b t t =>,则3a t =,于是222222889254955c a b t t t =+=+∙=. 即7c t =.由余弦定理得222222925491cos 22352a b c t t t C ab t t +-+-===-∙∙. 所以23C π=. 考点:正弦定理;余弦定理;同角三角函数基本关系 18.(本小题满分12分)生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(1)试分别估计元件甲、乙为正品的概率;(2)生产一件元件甲,若是正品可盈利40元,若是次品则亏损5元;生产一件元件乙,若是正品可盈利50元,若是次品则亏损10元。
2017年河南省洛阳市高考数学二模试卷(理科)(解析版)

2017年河南省洛阳市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符台题目要求的.1.(5分)已知集合,N={x|y=log2(2﹣x)},则∁R(M∩N)=()A.[1,2)B.(﹣∞,1)∪[2,+∞)C.[0,1]D.(﹣∞,0)∪[2,+∞)2.(5分)设复数z满足(1+i)z=|1﹣i|(i为虚数单位),则=()A.1+i B.1﹣i C.D.3.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则=()A.2B.3C.5D.74.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.35.(5分)甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有()A.144种B.180种C.288种D.360种6.(5分)已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l夹角为45°的直线交l于A,则|P A|的最小值为()A.B.1C.D.7.(5分)如图所示,使用模拟方法估计圆周率值的程序框闰,P表示估计的结果,刚图中空白框内应填入P=()A.B.C.D.8.(5分)设一圆锥的外接球与内切球的球心位置相同,且外接球的半径为2,则该圆锥的体积为()A.πB.3πC.8πD.9π9.(5分)F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F1的直线l与双曲线的左右两支分别交于A、B两点,若△ABF2是等边三角形,则该双曲线的离心率为()A.B.C.D.10.(5分)设函数,若a,b满足不等式f(a2﹣2a)+f(2b﹣b2)≤0,则当1≤a≤4时,2a﹣b的最大值为()A.1B.10C.5D.811.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且=﹣,则角A的最大值是()A.B.C.D.12.(5分)已知函数关于x的方程2[f(x)]2+(1﹣2m)f(x)﹣m=0,有5不同的实数解,则m的取值范围是()A.B.(0,+∞)C.D.二、填空题:本题共4个小题.每小题5分,共20分.13.(5分)已知角α的始边与x轴非负半轴重台,终边在射线4x﹣3y=0(x≤0)上,则cosα﹣sinα=.14.(5分)意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,则(a1a3﹣a22)+(a2a4﹣a32)+(a3a5﹣a42)+…+(a2015a2017﹣a20162)=.15.(5分)如图,扇形AOB的弧的中点为M,动点C,D分别在线段OA,OB上,且OC =BD.若OA=1,∠AOB=120°,则的取值范围是.16.(5分)已知椭圆C:的左、右顶点分别为A、B,F为椭圆C的右焦点,圆x2+y2=4上有一动点P,P不同于A,B两点,直线P A与椭圆C交于点Q,则的取值范围是.三、解答题:本文题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤17.(10分)已知数列{a n}中,a1=1,其前n项和为S n,且满足2S n=(n+1)a n,(n∈N*).(1)求数列{a n}的通项公式;(2)记b n=3n﹣λa n2,若数列{b n}为递增数列,求λ的取值范围.18.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人.求该厂每月获利的均值.19.(12分)已知三棱锥A﹣BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2,E,F分别是AC,BC的中点.(1)P为线段BC上一点.且CP=2PB,求证:AP⊥DE.(2)求直线AC与平面DEF所成角的正弦值.20.(12分)已知动圆M过定点E(2,0),且在y轴上截得的弦PQ的长为4.(1)求动圆圆心M的轨迹C的方程;(2)设A,B是轨迹C上的两点,且,F(1,0),记S=S△OF A+S△OAB,求S 的最小值.21.(14分)已知函数f(x)=lnx﹣,g(x)=ax+b.(1)若a=2,F(x)=f(x)﹣g(x),求F(x)的单凋区间;(2)若函数g(x)=ax+b是函数f(x)=lnx﹣的图象的切线,求a+b的最小值;(3)求证:>0.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(a为参数),以坐标原点为极点,以x轴的正半周为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos (θ﹣)=3.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.选修4-5:不等式选讲23.已知关于x的不等式|x+3|+|x+m|≥2m的解集为R.(1)求m的最大值;(2)已知a>0,b>0,c>0,且a+b+c=1,求2a2+3b2+4c2的最小值及此时a,b,c的值.2017年河南省洛阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符台题目要求的.1.(5分)已知集合,N={x|y=log2(2﹣x)},则∁R(M∩N)=()A.[1,2)B.(﹣∞,1)∪[2,+∞)C.[0,1]D.(﹣∞,0)∪[2,+∞)【解答】解:由题意可得M={x|x﹣1≥0}={x|x≥1},N={x|2﹣x>0}={x|x<2},∴M∩N={x|1≤x<2}=[1,2),∴∁R(M∩N)=(﹣∞,1)∪[2,+∞),故选:B.2.(5分)设复数z满足(1+i)z=|1﹣i|(i为虚数单位),则=()A.1+i B.1﹣i C.D.【解答】解:由(1+i)z=|1﹣i|,得=,则=.故选:D.3.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则=()A.2B.3C.5D.7【解答】解:∵等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,∴a42=a2a8,∴(a1+3d)2=(a1+d)(a1+7d),∴d2=a1d,∵d≠0,∴d=a1,∴==3.故选:B.4.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A ﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ABE==,S△ACD==,故选:B.5.(5分)甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有()A.144种B.180种C.288种D.360种【解答】解:根据题意,分3步进行讨论:1、先安排甲,在6个位置中任选一个即可,有C61=6种选法;2、在与甲所选位置不在同一排也不在同一列的2个位置中,任选一个,安排乙,有C21=2种选法;3、将剩余的4个人,安排在其余的4个位置,有A44=24种安排方法;则这6名同学的站队方法有6×2×24=288种;故选:C.6.(5分)已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l夹角为45°的直线交l于A,则|P A|的最小值为()A.B.1C.D.【解答】解:由题意,P A平行于坐标轴,或就是坐标轴.不妨设P A∥y轴,设P(cosα,sinα),则A(cosα,2﹣cosα),∴|P A|=|2﹣cosα﹣sinα|=|2﹣sin(α+45°)|,∴|P A|的最小值为2﹣.故选:D.7.(5分)如图所示,使用模拟方法估计圆周率值的程序框闰,P表示估计的结果,刚图中空白框内应填入P=()A.B.C.D.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于2017时,圆周内的点的次数为4M,总试验次数为2017,所以要求的概率,所以空白框内应填入的表达式是P=.故选:C.8.(5分)设一圆锥的外接球与内切球的球心位置相同,且外接球的半径为2,则该圆锥的体积为()A.πB.3πC.8πD.9π【解答】解:过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外接圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O2的半径为r=2,∴△ABC的边长为2,∴圆锥的底面半径为,高为3,∴V==3π.故选:B.9.(5分)F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F1的直线l与双曲线的左右两支分别交于A、B两点,若△ABF2是等边三角形,则该双曲线的离心率为()A.B.C.D.【解答】解:因为△ABF2为等边三角形,不妨设AB=BF2=AF2=m,A为双曲线上一点,F1A﹣F2A=F1A﹣AB=F1B=2a,B为双曲线上一点,则BF2﹣BF1=2a,BF2=4a,F1F2=2c,由∠ABF2=60°,则∠F1BF2=120°,在△F1BF2中应用余弦定理得:4c2=4a2+16a2﹣2•2a•4a•cos120°,得c2=7a2,则e2=7,解得e=.故选:D.10.(5分)设函数,若a,b满足不等式f(a2﹣2a)+f(2b﹣b2)≤0,则当1≤a≤4时,2a﹣b的最大值为()A.1B.10C.5D.8【解答】解:函数,定义域为R,且对于任意的x∈R都有f(﹣x)+f(x)=ln(+x)+ln(﹣x)=ln(x2+1﹣x2)=0,∴函数y=f(x)定义域R上的为奇函数;由f(a2﹣2a)+f(2b﹣b2)≤0可得f(a2﹣2a)≤﹣f(2b﹣b2)由函数为奇函数可得式f(a2﹣2a)≤f(﹣2b+b2);又∵f′(x)=<0恒成立,∴函数f(x)为R上的减函数;∴a2﹣2a≥﹣2b+b2,即a2﹣b2﹣2(a﹣b)≥0,整理可得,(a+b﹣2)(a﹣b)≥0,作出不等式组所表示的平面区域即可行域如图所示的△ABC;令Z=2a﹣b,则Z表示2a﹣b﹣Z=0在y轴上的截距的相反数,由图可知,当直线经过点A(1,1)时Z最小,最小值为Z=2×1﹣1=1,当直线经过点C(4,﹣2)时Z最大,最大值为2×4﹣(﹣2)=10.故选:B.11.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且=﹣,则角A 的最大值是()A.B.C.D.【解答】解:∵=﹣,∴由余弦定理可得:=﹣3×,∴解得:2a2+b2=c2,∴cos A===≥=,∵A∈(0,π),∴角A的最大值是.故选:A.12.(5分)已知函数关于x的方程2[f(x)]2+(1﹣2m)f(x)﹣m=0,有5不同的实数解,则m的取值范围是()A.B.(0,+∞)C.D.【解答】解:设y=,则y′=,由y′=0,解得x=e,当x∈(0,e)时,y′>0,函数为增函数,当x∈(e,+∞)时,y′<0,函数为减函数.∴当x=e时,函数取得极大值也是最大值为f(e)=.方程2[f(x)]2+(1﹣2m)f(x)﹣m=0化为[f(x)﹣m][2f(x)+1]=0.解得f(x)=m或f(x)=.如图画出函数图象:可得m的取值范围是(0,).故选:C.二、填空题:本题共4个小题.每小题5分,共20分.13.(5分)已知角α的始边与x轴非负半轴重台,终边在射线4x﹣3y=0(x≤0)上,则cosα﹣sinα=.【解答】解:角α的始边与x轴非负半轴重台,终边在射线4x﹣3y=0(x≤0)上,不妨令x=﹣3,则y=﹣4,∴r=5,∴cosα==﹣,sinα==﹣,则cosα﹣sinα=﹣+=,故答案为:.14.(5分)意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,则(a1a3﹣a22)+(a2a4﹣a32)+(a3a5﹣a42)+…+(a2015a2017﹣a20162)=1.【解答】解:a1a3﹣a22=1×2﹣1=1,a2a4﹣a32=1×3﹣22=﹣1,a3a5﹣a42=2×5﹣32=1,…a2015a2017﹣a20162=1∴(a1a3﹣a22)+(a2a4﹣a32)+(a3a5﹣a42)+…+(a2015a2017﹣a20162)=1+(﹣1)+1+(﹣1)+…+1=1.故答案为1.15.(5分)如图,扇形AOB的弧的中点为M,动点C,D分别在线段OA,OB上,且OC=BD.若OA=1,∠AOB=120°,则的取值范围是.【解答】解:以OA为x轴,O为原点建立如图坐标系,则∵半径OA=1,且∠AOB=120°,∴弧AMB的中点M坐标为(,)求得BO方程为:y=﹣x,设C(1﹣m,0),则D(﹣m,m),(0≤m≤1)∴=(﹣m,﹣),=(﹣m﹣,m﹣)因此,•=(﹣m)(﹣m﹣)﹣(m﹣)=m2﹣m+=(m﹣)2+∴当m=时,•有最小值为;当m=0或1时,•有最大值为故答案为:16.(5分)已知椭圆C:的左、右顶点分别为A、B,F为椭圆C的右焦点,圆x2+y2=4上有一动点P,P不同于A,B两点,直线P A与椭圆C交于点Q,则的取值范围是(﹣∞,0)∪(0,1).【解答】解:椭圆C:焦点在x轴上,a=2,b=,c=1,右焦点F(1,0),由P在圆x2+y2=4上,则P A⊥PB,则k AP•k PB=﹣1,则k PB=﹣,==﹣,设Q(2cosθ,sinθ),则k AP•k QF=•,=,=,设t=cosθ,t∈(﹣1,1),则f(t)=,∴==+∈(﹣∞,1),且不等于0.故答案为:(﹣∞,0)∪(0,1).三、解答题:本文题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤17.(10分)已知数列{a n}中,a1=1,其前n项和为S n,且满足2S n=(n+1)a n,(n∈N*).(1)求数列{a n}的通项公式;(2)记b n=3n﹣λa n2,若数列{b n}为递增数列,求λ的取值范围.【解答】解:(1)∵2S n=(n+1)a n,∴2S n+1=(n+2)a n+1,两式相减可得2a n+1=(n+2)a n+1﹣(n+1)a n,即na n+1=(n+1)a n,∴,∴,∴a n=n(n∈N*).(2),.﹣(3n﹣λn2)=2•3n﹣λ(2n+1).∵数列{b n}为递增数列,∴2•3n﹣λ(2n+1)>0,即.令,则.∴{c n}为递增数列,∴λ<c1=2,即λ的取值范围为(﹣∞,2).18.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人.求该厂每月获利的均值.【解答】解:(1)一台机器运行是否出现故障可看作一次实验,在一次试验中,机器出现故障设为事件A,则事件A的概率为;该厂有4台机器就相当于4次独立重复试验,可设出现故障的机器台数为X,则,,,,,则X的分布列为:设该厂有n名工人,则“每台机器在任何时刻同时出现故障时能及时进行维修”为X≤n,则X=0,X=1,X=2,…,X=n,这n+1个互斥事件的和事件,则∵,∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%;(2)设该厂获利为Y万元,则Y的所有可能取值为:18,13,8,P(Y=18)=P(X=0),,;则Y的分布列为:则;故该厂获利的均值为.19.(12分)已知三棱锥A﹣BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2,E,F分别是AC,BC的中点.(1)P为线段BC上一点.且CP=2PB,求证:AP⊥DE.(2)求直线AC与平面DEF所成角的正弦值.【解答】证明:(1)∵PG∥BD,且PG交CD于G,∴,∴,在△ADG中,,∴∠DAG=30°.AC2=AD2+CD2=4+12=16,∴AC=4,E为中点,DE=AE=2,∴∠ADE=60°,∴AG⊥DE.∵AD⊥面BCD,∴AD⊥BD,又∵BD⊥CD,AD∩CD=D,∴BD⊥面ADC,∴PG⊥面ADC,∴PG⊥DE.∵AG∩PG=G,∴DE⊥面AGP,AP⊂面AGP,∴DE⊥AP.解:(2)以点D为坐标原点,以直线DB,DC,DA分别为x轴、y轴、z轴,建立空间直角坐标系,则A(0,0,2),B(2,0,0),,,,,,.设平面EDF的法向量为,则即取.设,的夹角为θ,.所以直线AC与平面DEF所成角的正弦值为.20.(12分)已知动圆M过定点E(2,0),且在y轴上截得的弦PQ的长为4.(1)求动圆圆心M的轨迹C的方程;(2)设A,B是轨迹C上的两点,且,F(1,0),记S=S△OF A+S△OAB,求S 的最小值.【解答】解:(1)设M(x,y),PQ的中点N,连MN,则:|PN|=2,MN⊥PQ,∴|MN|2+|PN|2=|PM|2.又|PM|=|EM|,∴|MN|2+|PN|2=|EM|2∴x2+4=(x﹣2)2+y,整理得y2=4x.(2)设,,不失一般性,令y1>0,则,∵,∴,解得y1y2=﹣8③直线AB的方程为:,(y1≠﹣y2),即,令y=0得x=2,即直线AB恒过定点E(2,0),当y1=﹣y2时,AB⊥x轴,,.直线AB也经过点E(2,0).∴.由③可得,∴S==.当且仅当,即时,.21.(14分)已知函数f(x)=lnx﹣,g(x)=ax+b.(1)若a=2,F(x)=f(x)﹣g(x),求F(x)的单凋区间;(2)若函数g(x)=ax+b是函数f(x)=lnx﹣的图象的切线,求a+b的最小值;(3)求证:>0.【解答】解:(1)a=2时,F(x)=f(x)﹣g(x)=,,,解F'(x)>0得0<x<1,解F'(x)<0得x>1,∴F(x)的单调增区间为(0,1),单调减区间为(1,+∞);(2)设切点坐标为(x0,lnx0﹣),,切线斜率,又,∴,∴,令,==,解h'(x)<0得0<x<1,解h'(x)>0得x>1,∴h(x)在(0,1)上递减,在(1,+∞)上递增.∴h(x)≥h(1)=﹣1,∴a+b的最小值为﹣1;(3)证法一:令,由(1)知(G(x))max=G(1)=0,∴.又由y=e x﹣x﹣1,y′=e x﹣1,可得函数y在(0,+∞)递增,在(﹣∞,0)递减,即有函数y有最小值0,即e x≥x+1,∴=2x﹣3(x>0)∴,(两个等号不会同时成立)∴.法二:令,显然P'(x)在(0,+∞)上递增,P'(1)<0,P'(2)>0∴P'(x)=0在(0,+∞)上有唯一实根x*,且x*∈(1,2),,∴P(x)在(0,x*)上递减,在(x*,+∞)上递增,∴P(x)≥P(x*)==∴.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(a为参数),以坐标原点为极点,以x轴的正半周为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos (θ﹣)=3.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(a为参数),普通方程为=1,曲线C2的极坐标方程为ρcos(θ﹣)=3,即ρcosθ+ρsinθ﹣6=0,直角坐标方程为x+y﹣6=0;(2)设P(cosα,sinα),则|PQ|的最小值为P到x+y﹣6=0距离,即=|sin(α+)﹣3|,当且仅当α=2kπ+(k∈Z)时,|PQ|取得最小值2,此时P(,).选修4-5:不等式选讲23.已知关于x的不等式|x+3|+|x+m|≥2m的解集为R.(1)求m的最大值;(2)已知a>0,b>0,c>0,且a+b+c=1,求2a2+3b2+4c2的最小值及此时a,b,c的值.【解答】解:(1)因为|x+3|+|x+m|≥|(x+3)﹣(x+m)|=|m﹣3|.当﹣3≤x≤﹣m或﹣m≤x≤﹣3时取等号,令|m﹣3|≥2m所以m﹣3≥2m或m﹣3≤﹣2m.解得m≤﹣3或m≤1∴m的最大值为1.(2)∵a+b+c=1.由柯西不等式,≥(a+b+c)2=1,∴,等号当且仅当2a=3b=4c,且a+b+c=1时成立.即当且仅当,,时,2a2+3b2+4c2的最小值为.。
2017-2018学年(新课标)最新河南省洛阳市高二下学期期末质量检测数学(理)有答案-精品试题
洛阳市2017-2018学年度高二年级质量检测数学试卷(理科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若i 为虚数单位,,a b R ∈且2a i b i i +=+,则复数a bi +的模等于A. B. C. 2.命题“若a b >,则ac bc >”的逆否命题是A. 若a b >,则ac bc ≤B. 若ac bc ≤,则 a b ≤C. 若ac bc >,则a b >D. 若a b ≤,则ac bc ≤3.设0x >,由不等式2314272,3,4,x x x x x x +≥+≥+≥,类比推广到1n a x n x+≥+,则a = A. 2n B. 2n C. 2n D.n n4.设随机变量()2,1N ξ,若()3P m ξ>=,则()13P ξ<<等于 A. 122m - B. 1m - C. 12m - D.12m - 5.抛掷一枚质地均匀的骰子两次,记事件A=“两次的点数均为奇数” ,B=“两次的点数之和小于7”,则()|P B A =A. 13B.49C. 59D.236.用数学归纳法证明“()1111232n F n ++++<”时,由n k =不等式成立,证明1n k =+时,左边应添加的项数是A. 12k -B. 21k -C. 2kD.21k+ 学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:7.若由此认为“学生对2018年俄罗斯世界杯的关注与否与性别有关”,则此结论的错误的概率不超过A. 0.10B. 0.05C. 0.025D. 0.01 8.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本不同的书赠送给4位同学,每位同学1本,则不同的赠送方法有A. 20种B.15种C. 10种D.4种9.设随机变量()2,X B p ,随机变量()3,y B p ,若()519P X ≥=,则)1D += A. 2 B. 3 C. 6 D. 710.已知抛物线2y =的焦点为F,A,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则ABO ∆的面积为A.B.C.11.设等差数列{}n a 满足()()5100810081201611,a a -+-= ()()5100910091201611a a -+-=-,数列{}n a 的前n 项和为n S ,则A. 2016100810092016,S a a =>B. 2016100810092016,S a a =->C. 2016100810092016,S a a =<D.2016100810092016,S a a =-<12.设函数()2ln ,021,0x x f x x x x ⎧->⎪=⎨+-≤⎪⎩,若()()()()f a f b f c f d ===,其中,,,a b c d 互不相等,则对于命题():0,1p abcd ∈和命题122:2,2q a b c d e e e e --⎡⎤+++∈+-+-⎣⎦真假的判断,正确的是A. p 假q 真B. p 假q 假C. p 真q 真D. p 真q 假二、填空题:本大题共4小题,每小题5分,共20分.13.设函数()3,01,1x x f x x x ⎧≤≤=⎨>⎩,则定积分()20f x dx =⎰为 . 14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据得线性回归方程ˆˆˆybx a =+的ˆ20b =-,预测当产品价格定为9.5元时,销量为 .15.已知,x y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,若y x -的最大值为a ,则二项式61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 .(用数字作答)16.若函数()()320h x ax bx cx d a =+++≠图象的对称中心为()()00,M x h x ,记函数()h x 的导函数为()g x ,则有()00g x '=,设函数()3232f x x x =-+,则12403240332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知ABC ∆的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos .2b C c a += (1)求ABC ∆的内角B 的大小;(2)若ABC ∆的面积为24b ,试判断ABC ∆的形状.18.(本题满分12分)已知正项数列{}n a 的首项为11a =,且()221110n n n n n a a a na ++++-=对n N *∀∈都成立. (1)求{}n a 的通项公式;(2)记2121n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:12n T <.19.(本题满分12分)第35届牡丹花会期间,我班有5名同学参加志愿者服务活动,服务场所是王城公园和牡丹园.(1)若学生甲和乙必须在同一公园,且甲和丙不能在同一公园,则共有多少种不同的分配方案;(2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹园的人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望()E ξ.20.(本题满分12分)如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,111//,,.2AN BB AB AN CB BA AN BB ⊥===(1)求证:BN ⊥平面11B C N ;(2)求二面角11C C N B --的大小.21.(本题满分12分) 已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b -=的一条渐近线与x 轴所成角为30,且双曲线的焦距为(1)求椭圆C 的方程;(2)设12,F F 分别是椭圆C 的左、右焦点,过2F 作直线l (与x 轴不重合)交椭圆C 与A,B 两点,线段AB 的中点为E,记直线1F E 的斜率为k ,求k 的取值范围.22.(本题满分12分)设函数()ln ,.f x x x ax a R =⋅+∈(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;;(2).若对()()1,1x f x b a x b ∀>>+--恒成立,求整数b 的最大值.。
2017-2018届河南省洛阳市高三上学期期末考试理科数学(A卷)试题及答案
河南省洛阳市2017-2018届高三上学期期末考试数学理(A 卷)试题一、选择题:本题共12个小题,每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z =2+i 2i -1(i 为虚数单位)的共轭复数是A . -iB . iC .53iD .-53i2.函数()f x =的定义域是A . (-3,0)B . (-3,0 ]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)3.执行右图所示的程序框图,输出S 的值为 A .34 B .45C .114D . 1454.利用计算机产生0~1之间的均匀随机数a ,则事件“320181x dx >⎰”发生的概率为A .89B .19C .23D .135.已知数列{}n a 是等差数列,且365a a +=,数列{}n b 是等比数列,且5b =,则28b b ⋅=A .1B .5C .10D .156最大长度是A .4 2B .27C .2 6D .2 57.已知双曲线22221(0,0)x y a b a b-=>>的右焦点F (c, 0)直线x c + yb=1与圆222x y a +=相切,则双曲线的离心率为A .3+C .12+ D .18.设n 为正整数,2(n x展开式中存在常数项,则n 的一个可能取值为A .16B .10C .4D .29.已知函数()f x 满足()()f x f x π=-,且当(,)22x ππ∈-时,()e sin x f x x =+,则A .(1)(2)(3)f f f <<B .(2)(3)(1)f f f <<C .(3)(2)(1)f f f <<D .(3)(1)(2)f f f << 10.已知向量→a ,→b ,→c 满足|→a |=|→b |= 3 , →a ·→b =32 ,|→c -→a -→b |=1, 则|→c |的最大值为A .4B .1+ 3C .3+ 3D .211.若正数,,x y z 满足2243x y z xy +=+ ,则当xy z 取最大值时,1112x y z+-的最大值为A .2B .32 C .1D .1212.已知函数2()43f x x x m =--+恰有学科网两个不同的零点,则实数m 的取值范围是A .(-6,6)∪(254,+∞)B .(254,+∞)C .(-∞,-254)∪(-6,6) D .(-254,+∞) 二、填空题:本题共4个小题, 每小题5分, 共20分. 13.函数()sin sin(60)f x x x =++ 的最大值为_____________.14.已知a >0, ,x y 满足约束条件⎩⎨⎧y ≤2x +y ≥1x -ay ≤1, 若3z x y =+ 的最大值为11,则实数a 的值___________.15.椭圆22143x y += 的上,下顶点分别为A 1,A 2 ,左顶点为B 1 ,左焦点为F 1,若直线A 1F 1交直线A 2B 2于点D , 则cos ∠B 1DF 1=____________.16.已知三棱锥D-ABC 中,AB=BC=1,AD=2,BD= 5 ,AC= 2 ,BC ⊥AD, 则三棱锥的外接球的体积为 =_____________.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在∆ABC 中,角A 、B 、C 所对的边分别为,,a b c ,cos2C+22cosC+2=0.(Ⅰ)求角C 的大小;(Ⅱ)若b=2a ,∆ABC 的面积为22sinAsinB, 求sinA 及c的值.18.(本小题满分12分)在某中学举办的校园文化周活动中,从周一到周五的五天中,每天安排一项内容不同的活动供学生选择参加,要求每位学生必须参加三项活动. 其中甲同学必须参加周一的活动,不参加周五的活动,其余的三天的活动随机选择两项参加. 乙同学和丙同学可以在周一到周五中随机选择三项参加.(1)求甲同学选周三的活动且乙同学未选周三的活动的概率;(2)设X表示甲,乙,丙三名同学选择周三的活动的人数之和,求X的分布列和数学期望.19.(本小题满分12分)在长方体ABCD-A1B1C1D1中,AB= 3 ,AD=1,M是线段AD的中点.(1)试过M点作出与平面A1B1CD平行的直线l,说明理由,并证明:l⊥平面AA1D1D;(2)若(1)中的直线l交直线AC于点N,且二面角A-A1N-M的余弦值为155,求AA1的长.20.(本小题满分12分)已知椭圆C:22221(0)x y a b a b+=>>的右焦点F ( 3 ,0),且椭圆C经过点P ( 3 ,12 ).(1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m(m>a )于M 点,若,,PA PM PB k k k 成等差数列,求实数m 的值.21.(本小题满分12分) 已知函数22()e x f x ax e x =+- .(1)若曲线在点(2,(2))f 处的切线平行于x 轴,求函数()f x 的单调区间;(2)若(0,1)x ∈ 时,总有2(1)x xe e x f x -+>, 求实数a 的取值范围.请考生在第22、23、24题中任选一题做答. 如果多做,则按所做的第一题记分.做答时, 用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲.在圆内接四边形ABCD 中,AC 与BD 交于点E , 过点A 作圆的切线交CB 的延长线于点F .若AB=AD,AF=18, BC=15,求AE 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系. 设曲线C 的参数方程为⎩⎨⎧x=2cos αy=3sin α (α是参数),直线l 的极坐标方程为cos()6πρθ+= (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.24.(本小题满分10分)选修4—5:不等式选讲.已知函数()21=+-.f x x x(1)求不等式()0f x>的解集;(2)若存在x∈R,使得()f x≤m成立,求实数m的取值范围.。
河南省洛阳市2017-2018学年高三高考考前综合练习(五)数学(理)试题 Word版含答案
2017-2018学年 理科数学(五) 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.)1.已知全集{}(){}2,|20,|y lg 1U R A x x x B x x ==->==-集合,则集合()U C A B =( )A .{}|0,2x x x <>或 B .{}|12x x << C .{}|12x x <≤ D .{}|12x x ≤≤ 2.如图,复平面上的点1234,Z ,,Z Z Z 到原点的距离都相等,若复数z 所对应的点为1Z ,则复数z i (i 是虚数单位)的共轭复数所对应的点为( )A .1ZB .2ZC .3ZD .4Z3.平面向量a 与b 的夹角为60°,()2,0,1a b ==,则2a b +等于( )A ..4 C .12 D .164.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线310x y ++=垂直,则双曲线的离心率等于( )A B 5.将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( ) A .54π-B .4π-C .4π D .34π6.已知(){},|1,1x y x y Ω=≤≤,A 是由直线y x =与曲线3y x =围成的封闭区域,用随机模拟的方法求A 的面积时,先产生[]0,1上的两组均匀随机数,12,,,N x x x 和12,,,N y y y ,由此得N 个点()(),1,2,3,,N i i x y i =,据统计满足3(1,2,3,,)i i i x y x i N ≤≤=的点数是1N ,由此可得区域A 的面积的近似值是( )A .1N N B .12N N C .14N ND .18N N 7.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值( )A .29B .31C .33D .358.已知函数()1xf x e =-满足()()()f a f b a b =≠,在区间[],2a b 上的最大值为1e -,则b 为( )A .12 B .1ln 2 C .13 D .1ln 39.已知数列{}n a 中,111,n n a a a n +==+,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A .6n <?B .7?n <C .8?n ≤D .9?n ≤10.如图,在棱长为a 的正方体1111ABCD A BC D - 中,P 为11A D 的中点,Q 为11A B 上任意一点,,E F 为CD 上任意两点,且EF 的长为定值,则下面的四个值中不为定值的是( )A .点P 到平面QEF 的距离B .三棱锥P QEF -的体积C .直线PQ 与平面PEF 所成的角D .二面角P EF Q --的大小 11. ()10a b c ++展开并合同类项后的项数是( ) A .11 B .66 C .76 D .13412.已知函数()()0ln 1,0x f x x x ⎧≥⎪=⎨⎪--<⎩,若函数()()F x f x kx =-有且只有两个零点,则k的取值范围为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,+∞第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若某几何体的三视图如右图所示,则此几何体的体积是______________.14.若曲线2x y e =在点()0,1处的切线的斜率为k ,则直线y kx =与2y x =围成的封闭图形的面积为___________.15.已知实数,x y 满足条件05030x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩,若不等式()()222m x y x y +≤+恒成立,则实数m的最大值是____________.16.如图,从点()0,4M x 发出的光线,沿平行于抛物线28y x =的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --=上的点N ,经直线反射后又回到点M ,则0x 等于_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,,,A B C 的对边分别为,,a b c ,且22222c a b -=. (1)证明:2cos 2cos c A a C b -=; (2)若11,tan 3a A ==,求ABC ∆的面积. 18.(本小题满分12分)为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);(2)若这8人的数学成绩从小到大排序是:65,68,72,79,81,88,92,95.物理成绩从小到大排序是:72,77,80,84,86,90,93,98.①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示); ②已知随机抽取的8人的数学成绩和物理成绩如下表:若以数学成绩为解释变量x ,物理成绩为预报变量y ,求y 关于x 的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率(精确到0.01). 参考公式:相关系数()()22niix x y y r R r --==∑,回归方程ˆˆˆybx a =+,其中()()()121ˆ,niii nii x x y y b a y bx x x ==--==--∑∑参考数据:80,85x y ==,()()()()22111868,518,66422.8ssii i i siii x x y yx x y y ===-=-=--=≈≈∑∑∑19.(本小题满分12分)在三棱柱中111ABCA B C -中,侧面11ABB A 为矩形,12,AB AA D ==是1AA 的中点,BD与1AB 交于点O ,且CO ⊥平面11ABB A .(1)证明:1BC AB ⊥;(2)若OC OA =,求直线CD 与平面ABC 所成角的正弦值. 20.(本小题满分12分)已知椭圆()2222:10x yM a b a b +=>>,,B C 分别为M 的上、下顶点且()4,,2BC T t<为M 外的动点,且(),2T t 到M 上点的最近距离为1.(1)求椭圆M 的标准方程;(2)当0t ≠时,设直线,TB TC 分别与椭圆M 交于,F E 两点,若TBC ∆的面积是TEF ∆的面积的k 倍,求k 的最大值. 21.(本小题满分12分)已知函数()()ln xf x e a =+(a 为常数,e 为自然对数的底数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+在区间[]1,1-上是减函数. (1)求实数a 的值;(2)若()21g x t t λ≤++在[]1,1x ∈-上恒成立,求实数t 的取值范围; (3)讨论关于x 的方程()2ln 2xx ex m f x =-+的根的个数. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O 的直径,弦BD CA 、延长线相交于点,E F 为BA 延长线上一点,且BD BE BA BF =,求证:(1)EF FB ⊥;(2)090DFB DBC ∠+∠=.23. (本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系xOy ,曲线C的方程为2cos 2sin x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P点的极坐标为6π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为cos 2sin 7ρθρθ+=.(1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l 距离的最小值. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()1f x x x a =+-+.(1)若0a =,求不等式()0f x ≥的解集;(2)若方程()f x x =有三个不同的解,求a 的取值范围.参考答案一、选择题1.C2.B3.A4.D5.C6.B7.B8.A9.D 10.C 11.B 12.C 二、填空题 13.223 14.43 15.251316.6 三、解答题17.(1)证明 :因为22222c a b -=,所以2222222cos 2cos 2222b c a a b c c A a C c a bc ab+-+--=-又cos cos 0A C ≠,所以tan 3tan 1C A ==,故045C =..................................8分再由正弦定理及sin 10A =得sin sin a C c A ==,于是()22228,b c a b =-==1sin 12S ab C ==....................12分 18.解:(1)应选男生825540⨯=位,女生815340⨯=位,可以得到不同的样本个数为532515C C .....3分 (2)①这8位同学中恰有3位同学的数学和物理分数均在85分以上,则需要先从物理的4个85分以上的成绩中选出3个与数学85分以上的成绩对应,种数是34A ,然后将剩下的5个数学成绩和物理成绩任意对应,种数是58A .根据乘法原理,满足条件的种数是3545A A 这8位同学的数学成绩和物理成绩分别对应的种数共有88A ,故所求的概率354588114A A P A ==.....................................8分 ②根据所给的数据,可以计算出6640.76,850.768024.2868b a ≈≈=-⨯≈, 所以y 与x 的回归方程是0.7624.2y x =+, 变量y 与x 的相关系数是6640.9929.522.8r ≈≈⨯,220.98R r =≈,故数学成绩对于物理成绩的贡献率为0.98.............................12分 19.(1)由题意11tan ,tan 22AD AB ABD AB B AB BB ∠==∠==, 又10,2ABD AB B π<∠∠<,∴1ABD AB B ∠=∠,∴1112AB B BAB ABD BAB π∠+∠=∠+∠=,∵2AOB π∠=,∴1AB BD ⊥,又CO ⊥平面11ABB A ,∴1ABCO ⊥, ∵BD 与CO 交于点O ,∴1AB ⊥平面CBD ,又BC ⊂平面CBD , ∴1AB BC ⊥..........................................6分 (2)如图,分别以1,,OD OB OC 所在直线为,,x y z 轴,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则0,,B ,,A C D ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,262323236,,0,0,,,,0,333333AB AC CD ⎛⎫⎛⎫⎛=-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭设平面ABC 的法向量为(),,n x y z =,则00n AB nAC ⎧=⎨=⎩,即0033x y y z ⎧=⎪⎪⎨⎪+=⎪⎩,令1y =,则1,2z x =-=,所以12n ⎛⎫=- ⎪ ⎪⎝⎭. 设直线CD 与平面ABC 所成角为α,则()2,1,10132sin cos ,1022CD n CD n CD nα⎛⎫⎛⎛-++⨯- ⎪ ⎝⎭⎝=====20.(1)由于()0,2T 到椭圆上点的最近距离21b -=,∴1b =,又222c a b c a ==+,解得2,a c == 所以椭圆方程为2214x y +=........................................4分 (2)解法一:12TBC S BC t t ∆==, 直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得284t x t ε-=+,所以22284,44t t E t t ⎛⎫-- ⎪++⎝⎭到:30TC x ty t --=的距离2212t t d +==,......................................6分直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以2222436,3636t t F t t ⎛⎫- ⎪++⎝⎭,所以(221236t TF t +===+ ,...........................................8分所以()()()()()()2222222221292121211223636494TEF t t t t t t S TF d t t t t t ∆++++===+++++,所以()()()222236412TBC TEFt t S k S t ∆∆++==+,......................................10分 令21212t m +=>,则()()2282416192413m m k m mm -+==+-≤,当且仅当24m =,即t =±时,取“=”,所以k 的最大值为43...................12分解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得284t x t ε-=+,直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得22436F t x t =+,...................................................................6分1sin 2sin 2TBC T CT B TEFT E T F TB TC BTCS x x x x TB TC TB TC K S TE TF TE TF x x x x TE TF ETF ∆∆∠--=====--∠....................8分()()()()2222224368241212436t t ttt t t t t t t t ++==+++-++,...................................10分令21212tm +=>,则()()2282416192413m m k m mm -+==+-≤, 当且仅当24m =,即t =±时,取“=”, 所以k 的最大值为43................................................12分 21.解:(1)∵()()ln xf x e a =+是奇函数,∴()()f x f x -=-,即()()ln ln x xe a e a -+=-+恒成立, ∴()()1xxe aea -++=,∴211x x ae ae a -+++=,即()0x xa e e a -++=恒成立,故0a =........................................................3分 (2)由(1)知()()sin g x f x x λ=+,∴()[]cos ,1,1g x x x λ'=+∈-,∴要使()()sin g x f x x λ=+是区间[]1,1-上的减函数,则有()0g x '≤恒成立,∴1λ≤-. 又∵()()max 1sin1g x g λ=-=--,∴要使()21g x t t λ≤++,在[]1,1x ∈-上恒成立,只需2sin11t t λλ--≤++在1λ≤-时恒成立即可.∴()21sin110t t λ++++≥(其中1λ≤-)恒成立即可.令()()()21sin1101h t t λλλ=++++≥≤-,则()1010t h +≤⎧⎨-≥⎩,即210sin10t t t +≤⎧⎨-+≥⎩,而2sin10t t -+≥恒成立,∴1t ≤-..............................7分(3)由(1)知方程()2ln 2xx ex m f x =-+,即2ln 2x x ex m x =-+, 令()()212ln ,2xf x f x s ex m x ==-+, ∵()121ln xf x x -'=,当(]0,x e ∈时,()10f x '≥,∴()1f x 在(]0,e 上为增函数; 当[),x e ∈+∞时,()10f x '≤,∴()1f x 在[),e +∞上为减函数; 当x e =时,()1max 1f x e=, 而()()22222f x x ex m x e m e =-+=-+-,当(]0,x e ∈时,()2f x 是减函数,当[),x e ∈+∞时,()2f x 是增函数, ∵当x e =时,()22min f x m e =-.故当21m e e ->,即21m e e >+时,方程无实根; 当21m e e -=,即21m e e =+时,方程有一个根;当21m e e -<,即21m e e>+时,方程有两个根..............................12分22.解:(1)证明:连接AD ,在ADB ∆和EFB ∆中, ∵BD BE BA BF =,∴BD BFBA BE=, 又DBA EBF ∠=∠,∴ADBEFB ∆∆,则090EFB ADB ∠=∠=,∴EF FB ⊥..................................5分(2)在ADB ∆中,090ADB ADE ∠=∠=,又090EFB ∠=, ∴,,E F A D ,四点共圆;∴DFB AEB ∠=∠,又AB 是O 的直径,则090ACB ∠=,∴090DFB DBC AEB DBC ∠+∠=∠+∠=............................10分 23.解:(1)点P的直角坐标为(,由2cos 2sin x y ϕϕ=⎧⎪⎨=⎪⎩,消去ϕ得,(224x y +=,所以曲线C的直角坐标方程为(224x y +=.........................5分 (2)曲线C的参数方程为2cos 2sin x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数),直线l 的普通方程为270x y +-=,设()2cos ,2sin Q ϕϕ则3cos ,sin 2M ϕϕ⎛⎫+⎪⎝⎭,那么点M 到直线l 的距离为111d ===≥=所以点M 到直线l 1-..................................10分 24.解:(1)0a =时,()1,1121,101,0x f x x x x x x -<-⎧⎪=+-=+-≤<⎨⎪≥⎩,∴当1x <-时,()10f x =-<符合题意, ∴当10x -≤<时,()210f x x =+≥,解得102x -≤<; 当0x ≥时,()10f x =>符合题意, 综上所述,()0f x ≥的解集为1,2⎡⎫-+∞⎪⎢⎣⎭..................................5分(2)设()()1,u x x x y u x =+-=的图像和y x =的图像如图所示:易知()y u x =的图像向下平移1个单位以内(不包括1个单位)与y x =的图像始终有3个交点,从而10a -<<...................................................10分。
2017-2018学年河南省洛阳市高二(下)期末数学试卷(理科)(解析版)
110
女
50
合计
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取 1 人,共抽取 3 次,记被抽取的 3 人中 A 类学生的人数为 X,若每次抽取的结果是相互独立的,其 X 的 分布列、期望 E(X)和方差 D(X).
参考公式:K2=
,其中 n=a+b+c+d.
参考临界值:
第 3 页(共 14 页)
P(K2≥k0) k0
0.10 2.706
0.05 3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
20.(12 分)如图,已知在等腰梯形 ABCD 中,AE⊥CD,BF⊥CD,AB=1,AD=2,∠ADE =60°,沿 AE,BF 折成三棱柱 AED﹣BFC.
A.
B.1+i
C.﹣
D.﹣1﹣i
3.(5 分)若 a、b 为正实数,且 a≠1,b≠1,则“a>b>1”是“loga2<logb2”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.(5 分)五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为( )
A.33
(1)若 M,N 分别为 AE,BC 的中点,求证:MN∥平面 CDEF; (2)翻折后若 BD= ,求二面角 E﹣AC﹣F 的余弦值.
21.(12 分)已知 f(x)=lnx+ +1,g(x)=x+ (x>0).
(1)求 f(x)的极值; (2)函数 h(x)=f(x)﹣ag(x)有两个极值点 x1,x2(x1<x2),若 h(x1)<m 恒成立,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河南省洛阳市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.复数()A.i B.﹣i C.4+2i D.1+i2.已知条件p:x>1,q:,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A. B.C.0 D.4.若S1=(e x﹣1)dx,S2=xdx,S3=sinxdx,则()A.S2>S3>S1B.S1>S3>S2C.S2>S1>S3D.S1>S2>S35.若如图所示的程序框图输出的S是126,则条件①可以为()A.n≤5 B.n≤6 C.n≤7 D.n≤86.若x,y满足约束条件,则目标函数z=x+y的最大值为2,则实数a的值为()A.2 B.1 C.﹣1 D.﹣27.如图所示2×2方格,在每一个方格中填人一个数字,数字可以是l、2、3、4中的任何A方格的数字大于B方格的数字,则不同的填法共有()种B.128种C.96种D.12种8.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6 B.7 C.8 D.99.设双曲线﹣=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()A.(1,)B.(,2)C.(1,2)D.(,+∞)10.在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2,则正三棱锥S﹣ABC外接球表面积为()A.6πB.12πC.32πD.36π11.设,为单位向量,若向量满足|﹣(+)|=|﹣|,则||的最大值是()A.1 B.C.2 D.212.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)成立,若数列{a n}满足,(n∈N*),且a1=f(0),则下列结论成立的是()A.f(a2013)>f(a2016)B.f(a2014)>f(a2015)C.f(a2016)<f(a2015)D.f(a2014)<f(a2016)二、填空题:本大题共4小题,每小题5分,共20分13.某几何体的三视图如图所示,则该几何体的体积为.14.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=.15.已知点p(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为.16.数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和.若a12=a5>0,则当S n取得最大值时n的值等于.三、解答题17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.18.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.19.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB ⊥BC,AB=2CD=2BC,EA⊥EB.(Ⅰ)求证:AB⊥DE;(Ⅱ)求直线EC与平面ABE所成角的正弦值;(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出;若不存在,说明理由.20.已知F1、F2是椭圆=1(a>b>0)的左、右焦点,且离心率e=,点P为椭圆上的一个动点,△PF1F2的内切圆面积的最大值为.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,满足向量与共线,与共线,且=0,求||+||的取值范围.21.已知函数f(x)=﹣x3+x2,g(x)=alnx(a≠0,a∈R).(1)求f(x)的极值;(2)若对任意x∈[1,+∞),使得f(x)+g(x)≥﹣x3+(a+2)x恒成立,求实数a的取值范围;(3)证明:对n∈N*,不等式++…+>成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=﹣2cosθ,ρcos(θ+)=1 (1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使||•||=2,求点P 的轨迹,并指出轨迹是什么图形.[选修4-5:不等式选讲]24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.2016年河南省洛阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.复数()A.i B.﹣i C.4+2i D.1+i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,则答案可求.【解答】解:复数=,故选:A.2.已知条件p:x>1,q:,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义,分别证明其充分性和必要性,从而得到答案.【解答】解:由x>1,推出<1,p是q的充分条件,由<1,得<0,解得:x<0或x>1.不是必要条件,故选:A.3.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A. B.C.0 D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.【解答】解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.4.若S1=(e x﹣1)dx,S2=xdx,S3=sinxdx,则()A.S2>S3>S1B.S1>S3>S2C.S2>S1>S3D.S1>S2>S3【考点】定积分.【分析】首先利用微积分基本定理求三个定积分,然后比较大小.【解答】解:S1=(e x﹣1)dx==e﹣2,S2=xdx==,S3=sinxdx=﹣cosx|=1﹣cos1;所以S1>S2>S3;故选D.5.若如图所示的程序框图输出的S是126,则条件①可以为()A.n≤5 B.n≤6 C.n≤7 D.n≤8【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=2+22+…+2n的值,结合输出的S是126,即可得到退出循环的条件.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=2+22+…+2n的值,由于S=2+22+…+26=126,故①中应填n≤6.故选:B.6.若x,y满足约束条件,则目标函数z=x+y的最大值为2,则实数a的值为()A.2 B.1 C.﹣1 D.﹣2【考点】简单线性规划.【分析】先作出不等式组的图象,利用目标函数z=x+y的最大值为2,求出交点坐标,代入3x﹣y﹣a=0即可.【解答】解:先作出不等式组的图象如图,∵目标函数z=x+y的最大值为2,∴z=x+y=2,作出直线x+y=2,由图象知x+y=2如平面区域相交A,由得,即A(1,1),同时A(1,1)也在直线3x﹣y﹣a=0上,∴3﹣1﹣a=0,则a=2,故选:A.7.如图所示2×2方格,在每一个方格中填人一个数字,数字可以是l、2、3、4中的任何A方格的数字大于B方格的数字,则不同的填法共有()种B.128种C.96种D.12种【考点】排列、组合及简单计数问题.【分析】根据题意,先分析A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,由组合数公式计算可得其填法数目,对于C、D两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得答案.【解答】解:根据题意,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,有C42=6种情况,对于C、D两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种,故选C.8.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6 B.7 C.8 D.9【考点】等比数列的性质;等差数列的性质.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故选:D.9.设双曲线﹣=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()A.(1,)B.(,2)C.(1,2)D.(,+∞)【考点】双曲线的简单性质.【分析】确定双曲线﹣=1的两条渐近线方程,求得A,B的坐标,利用60°<∠AFB<90°,可得,由此可求双曲线的离心率的取值范围.【解答】解:双曲线﹣=1的两条渐近线方程为,x=时,y=,∴A(,),B(,﹣),∵60°<∠AFB<90°,∴,∴,∴,∴,∴1<e2﹣1<3,∴.故选B.10.在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2,则正三棱锥S﹣ABC外接球表面积为()A.6πB.12πC.32πD.36π【考点】球的体积和表面积;球内接多面体.【分析】根据三棱锥为正三棱锥,可证明出AC⊥SB,结合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S﹣ABC的外接球的表面积.【解答】解:取AC中点,连接BN、SN∵N为AC中点,SA=SC∴AC⊥SN,同理AC⊥BN,∵SN∩BN=N∴AC⊥平面SBN∵SB⊂平面SBN∴AC⊥SB∵SB⊥AM且AC∩AM=A∴SB⊥平面SAC⇒SB⊥SA且SB⊥AC∵三棱锥S﹣ABC是正三棱锥∴SA、SB、SC三条侧棱两两互相垂直.∵底面边长AB=2,∴侧棱SA=2,∴正三棱锥S﹣ABC的外接球的直径为:2R=外接球的半径为R=∴正三棱锥S﹣ABC的外接球的表面积是S=4πR2=12π故选:B.11.设,为单位向量,若向量满足|﹣(+)|=|﹣|,则||的最大值是()A.1 B.C.2 D.2【考点】平面向量数量积的坐标表示、模、夹角.【分析】由向量满足|﹣(+)|=|﹣|,可得|﹣(+)|=|﹣|≥,即.当且仅当||=|﹣|即时,.即可得出.【解答】解:∵向量满足|﹣(+)|=|﹣|,∴|﹣(+)|=|﹣|≥,∴≤==2.当且仅当||=|﹣|即时,=2.∴.故选:D.12.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)成立,若数列{a n}满足,(n∈N*),且a1=f(0),则下列结论成立的是()A.f(a2013)>f(a2016)B.f(a2014)>f(a2015)C.f(a2016)<f(a2015)D.f(a2014)<f(a2016)【考点】抽象函数及其应用.【分析】先由题意得到f(0)=1=a1,再根据,得到a n+1=﹣,分别求出a1,a2,a3,a4,数列{a n}是以3为周期的周期数列,再求出a2013=a3=﹣2,a2014=a1=1,a2015=a2=﹣,a2016=a3=﹣2,即可比较大小.【解答】解:∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,∴f(0)=1,∵,∴f(a n+1)f()=1=f(0)∴f(a n+1+)=f(0)=a1,∴a n+1+=0,即a n+1=﹣,当n=1时,a2=﹣,当n=2时,a3=﹣2,当n=3时,a4=1,∴数列{a n}是以3为周期的周期数列,∴a2013=a3=﹣2,a2014=a1=1,a2015=a2=﹣,a2016=a3=﹣2,故选:B.二、填空题:本大题共4小题,每小题5分,共20分13.某几何体的三视图如图所示,则该几何体的体积为+π.【考点】由三视图求面积、体积.【分析】该几何体由左右两部分组成:左边是三棱锥,右边是圆柱的一半.即可得出.【解答】解:该几何体由左右两部分组成:左边是三棱锥,右边是圆柱的一半.∴该几何体的体积=+=.故答案为: +π.14.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m= 0.【考点】二项式定理的应用.【分析】在所给的等式中,分别令x=1、x=﹣1,可得2个等式,再结合a1+a3+a5+a7=32,求得m的值.【解答】解:对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,令x=1,可得(m+1)(1+1)6=a0+a1+a2+…+a7①,再令x=﹣1,可得(m﹣1)(1﹣1)6=0=a0﹣a1+a2+…﹣a7②,由①﹣②可得64(m+1)=2(a1+a3+a5+a7)=2×32,∴m=0,故答案为:0.15.已知点p(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为2.【考点】直线与圆的位置关系;点到直线的距离公式.【分析】先求圆的半径,四边形PACB的最小面积是2,转化为三角形PBC的面积是1,求出切线长,再求PC的距离也就是圆心到直线的距离,可解k的值.【解答】解:圆C:x2+y2﹣2y=0的圆心(0,1),半径是r=1,=2S△PBC,四边形PACB的最小面积是2,由圆的性质知:S四边形PACB∴S△PBC的最小值S=1=rd(d是切线长)=2∴d最小值圆心到直线的距离就是PC的最小值,∵k>0,∴k=2故答案为:216.数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和.若a12=a5>0,则当S n取得最大值时n的值等于16.【考点】数列的求和.【分析】根据等差数列的通项公式,以及数列的递推关系,即可得到结论.【解答】解:设{a n}的公差为d,由a12=a5>0得a1=﹣d,a12<a5,即d<0,所以a n=(n﹣)d,从而可知1≤n≤16时,a n>0,n≥17时,a n<0.从而b1>b2>…>b14>0>b17>b18>…,b15=a15a16a17<0,b16=a16a17a18>0,故S14>S13>…>S1,S14>S15,S15<S16.因为a15=﹣d>0,a18=d<0,所以a15+a18=﹣d+d=d<0,所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故S n中S16最大.故答案为:16三、解答题17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理化简已知等式,整理即可得解.(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.【解答】(本题满分为12分)解:(I)由正弦定理得,,…即,故.…(II)设b=5t(t>0),则a=3t,于是.即c=7t.…由余弦定理得.所以.…18.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82100(Ⅰ)试分别估计元件,元件为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差. 【分析】(Ⅰ)查出正品数,利用古典概型的概率计算公式即可得出; (Ⅱ)(i )生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A 次B 次,利用相互独立事件的概率计算公式及数学期望的定义即可得出; (ii )先求出生产5件元件B 所获得的利润不少于140元的正品数,再利用二项分布列的计算公式即可得出.【解答】解:(Ⅰ)元件A 为正品的概率约为.元件B 为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A 次B 次.∴随机变量X 的所有取值为90,45,30,﹣15.∵P (X=90)==;P (X=45)==;P (X=30)==;P (X=﹣15)==.∴随机变量X 的分布列为:EX=.(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5﹣n 件.依题意得 50n ﹣10(5﹣n )≥140,解得.所以 n=4或n=5.设“生产5件元件B 所获得的利润不少于140元”为事件A ,则P (A )==.19.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB=2CD=2BC ,EA ⊥EB . (Ⅰ)求证:AB ⊥DE ;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出;若不存在,说明理由.【考点】用空间向量求直线与平面的夹角;直线与平面平行的判定;向量语言表述线面的垂直、平行关系.【分析】(Ⅰ)取AB中点O,连接EO,DO.利用等腰三角形的性质,可得EO⊥AB,证明边形OBCD为正方形,可得AB⊥OD,利用线面垂直的判定可得AB⊥平面EOD,从而可得AB⊥ED;(Ⅱ)由平面ABE⊥平面ABCD,且EO⊥AB,可得EO⊥平面ABCD,从而可得EO⊥OD.建立空间直角坐标系,确定平面ABE的一个法向量为,,利用向量的夹角公式,可求直线EC与平面ABE所成的角;(Ⅲ)存在点F,且时,有EC∥平面FBD.确定平面FBD的法向量,证明=0即可.【解答】(Ⅰ)证明:取AB中点O,连接EO,DO.因为EB=EA,所以EO⊥AB.…因为四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,所以四边形OBCD为正方形,所以AB⊥OD.…因为EO∩OD=O所以AB⊥平面EOD.…因为ED⊂平面EOD所以AB⊥ED.…(Ⅱ)解:因为平面ABE⊥平面ABCD,且EO⊥AB,平面ABE∩平面ABCD=AB所以EO⊥平面ABCD,因为OD⊂平面ABCD,所以EO⊥OD.由OB,OD,OE两两垂直,建立如图所示的空间直角坐标系O﹣xyz.…因为△EAB为等腰直角三角形,所以OA=OB=OD=OE,设OB=1,所以O(0,0,0),A (﹣1,0,0),B(1,0,0),C(1,1,0),D(0,1,0),E(0,0,1).所以,平面ABE的一个法向量为.…设直线EC与平面ABE所成的角为θ,所以,即直线EC与平面ABE所成角的正弦值为.…(Ⅲ)解:存在点F,且时,有EC∥平面FBD.…证明如下:由,,所以.设平面FBD的法向量为=(a,b,c),则有所以取a=1,得=(1,1,2).…因为=(1,1,﹣1)•(1,1,2)=0,且EC⊄平面FBD,所以EC∥平面FBD.即点F满足时,有EC∥平面FBD.…20.已知F1、F2是椭圆=1(a>b>0)的左、右焦点,且离心率e=,点P为椭圆上的一个动点,△PF1F2的内切圆面积的最大值为.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,满足向量与共线,与共线,且=0,求||+||的取值范围.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)根据,△PF1F2的内切圆面积的最大值为.求得r=,再根据△PF1F2的周长为定值,以及离心率,求得a,b的值,问题得以解决.(2)分两类讨论,斜率不存在,斜率存在,当斜率存在时根据弦长公式得到||+||=,再利用换元法,求得取值范围【解答】解:(1)由几何性质可知,当,△PF1F2的内切圆面积的最大值时,即,S△PF1F2取最大值,且(S△PF1F2)max=•2c•b=bc,由,解得r=,又由△PF1F2的周长为2a+2c定值,∴=,又e==,可得a=2c,即b=2,∴c=2,b=2,a=4,故椭圆方程为=1,(2)①当直线AC和BD中有一条垂直x轴时,||+||=6+8=14,②当直线AC的斜率存在但不为0时,设AC的方程为:y=k(x+2),由得(3+4k2)x2+16k2x+16k2﹣48=0,代入弦长公式得,=,同理由,消去y,代入弦长公式得=,∴||+||==,令∈(0,1),则﹣t2+t+12∈[,14),由①②可知||+||的取值范围是[,14].21.已知函数f(x)=﹣x3+x2,g(x)=alnx(a≠0,a∈R).(1)求f(x)的极值;(2)若对任意x∈[1,+∞),使得f(x)+g(x)≥﹣x3+(a+2)x恒成立,求实数a的取值范围;(3)证明:对n∈N*,不等式++…+>成立.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)求得f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,即可得到f(x)的极值;(2)由y=x﹣lnx的导数和单调区间可得x>lnx,运用参数分离可得a≤,设φ(x)=,求得导数和单调性,可得最小值,即可得到a的范围;(3)由(2)知:alnx﹣(a+2)x+x2≥0对x≥1恒成立,令a=﹣1,则lnx≤x2﹣x,可得≥=﹣,取x=n+1,n+2,…,n+2015,累加裂项相消求和即可得证.【解答】解:(1)函数f(x)=﹣x3+x2的导数为f′(x)=﹣3x2+2x,当0<x<时,f′(x)>0,f(x)递增;当x<0或x>时,f′(x)<0,f(x)递减.可得f(x)的极小值为f(0)=0;极大值为f()=;(2)f(x)+g(x)≥﹣x3+(a+2)x,化为a(lnx﹣x)≥2x﹣x2,由y=x﹣lnx的导数y′=1﹣,可得函数y在(1,+∞)递增;在(0,1)递减,可得函数y在x=1处取得最小值1,即有x﹣lnx>0,即lnx<x,即有a≤,设φ(x)=,φ′(x)=,设h(x)=x+2﹣2lnx,h′(x)=1﹣,可得h(x)在(1,2)递减,在(2,+∞)递增,即有h(x)的最小值为h(2)=4﹣2ln2>0,即φ′(x)≥0,即有φ(x)在[1,+∞)上是增函数,φ(x)min=φ(1)=﹣1,可得a≤﹣1;(3)证明:由(2)知:alnx﹣(a+2)x+x2≥0对x≥1恒成立,令a=﹣1,则lnx≤x2﹣x,可得≥=﹣,取x=n+1,n+2,…,n+2015可得>﹣,>﹣,…,>﹣,相加得:++…+>(﹣)+(﹣)+…+(﹣)=﹣=.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【考点】与圆有关的比例线段.【分析】(I)由已知与圆的切线的性质可得△CDB∽△AEF,∠DBC=∠EFA.利用B,E,F,C四点共圆,可得∠CFE=∠DBC,∠EFA=∠CFE=90°,即可证明.(II)连接CE,由于∠CBE=90°,可得过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2DB•BA=2DB2,可得CA2=4DB2+BC2=6DB2,而DC2=DB•DA=3DB2,即可得出.【解答】(I)证明:∵CD为△ABC外接圆的切线,∴∠BCD=∠A,由题设知:=,故△CDB∽△AEF,∴∠DBC=∠EFA.∵B,E,F,C四点共圆,∴∠CFE=∠DBC,故∠EFA=∠CFE=90°∴∠CBA=90°,因此CA是△ABC外接圆的直径.(2)解:连接CE,∵∠CBE=90°,∴过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2,而DC2=DB•DA=3DB2,故B,E,F,C四点的圆的面积与△ABC的外接圆面积的比值为.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=﹣2cosθ,ρcos(θ+)=1(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使||•||=2,求点P 的轨迹,并指出轨迹是什么图形.【考点】轨迹方程;简单曲线的极坐标方程.【分析】(1)曲线C1和C2的极坐标方程化为直角坐标方程,即可求出公共点的个数;(2)设P(ρ,θ),Q(ρ1,θ),则ρρ1=2,可得ρ1=,利用C2的极坐标方程,可得结论.【解答】解:(1)曲线C1的极坐标方程为ρ=﹣2cosθ可得ρ2=﹣2ρcosθ,即可得到x2+y2=﹣2x,即(x+1)2+y2=1;ρcos(θ+)=1,可化为ρcosθ﹣ρsinθ=1,即x﹣y﹣2=0,圆心到直线的距离d==>1,∴曲线C1和C2的公共点的个数为0;(2)设P(ρ,θ),Q(ρ1,θ),则ρρ1=2,∴ρ1=,∵ρ1cos(θ+)=1,∴cos(θ+)=1,∴2cos(θ+)=ρ,∴cosθ﹣sinθ=ρ,∴x2+y2=x﹣y,∴x2+y2=x﹣y,∴(x﹣)2+(y+)2=1,轨迹是以(,﹣)为圆心,1为半径的圆.[选修4-5:不等式选讲]24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.【考点】不等式的证明;带绝对值的函数.【分析】(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.【解答】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…2016年7月30日。