15.2分式的运算(第3课时)课件

合集下载

八年级数学上册15.2 分式的运算(有答案)

八年级数学上册15.2 分式的运算(有答案)

八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。

最简公式的定义:分子与分母没有公因式的分式。

分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。

注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。

人教版八年级数学上册《分式的运算(第3课时)》课件

人教版八年级数学上册《分式的运算(第3课时)》课件

布置作业 教科书习题15.2第3(3)(4)题.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午6时56分21.11.718:56November 7, 2021 ❖ 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观
察是思考和识记之母。”2021年11月7日星期日6时56分13秒18:56:137 November 2021 ❖ 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午6时56
运用分式的乘方法则计算
例2 计算:
(1)(
y 2x
)3;(2)(
-2a c2
)2;(3)(
2a2b -3c
)2.
解:
(1)(
y 2x
)3= y3 (2x)3
=
y3 8x3

(2)(
-2a c2
)2 =(-2a)2 (c2)2
=
4a2 c4

(3)(
2Hale Waihona Puke 2b -3c)2 =(2a2b)2 (-3c)2
分式的乘除、乘方混合运算与分数的乘除、乘方混 合运算有什么联系和区别吗?
课堂练习
练习2 计算:
(1)( -2x4 y2 )3; 3z
(2)(
2ab3 -c2d
)2
6a4 b3
( -3c )3. b2
课堂小结
(1)本节课学习了哪些主要内容? (2)运用分式乘方法则计算的步骤是什么?它与整
式的乘方运算有什么区别和联系? (3)分式的乘方与乘除混合运算的运算顺序是什么?
分13秒下午6时56分18:56:1321.11.7

人教版数学八年级上册15.2.1:分式的乘除法课件

人教版数学八年级上册15.2.1:分式的乘除法课件

分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
(2)12xy8x2y 5a
解:原式
12xy 5a
8
1 x2
y
12xy 5a 8x2 y
3 10 ax
巩固 练习
(3) xy yx ; xy xy
解:原式 x y -(x y) ; xy xy
(x y)(x y) (x y)(x y)
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
一定要注意符号变化呦!
当分子分母是多项式时,先分解因式便于约分的进行
3a16b 分 的乘法法则:
解:原 式 分 的乘法法则:
2
4b9a (3)因式分解在分式乘除法中的应用;
思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?
分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。
2 分式运算的结果通常要化成最简分式或整式.
4 xy (3)因式分解在分式乘除法中的应用; 当分子分母是多项式时,先分解因式便于约分的进行 2
3 3 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
6 x y 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
当分子分母是多项式时,先分解因式便于约分的进行
分 的乘法法则:
(3)因式分解在分式乘除法中的应用;
4xy 分 的除法法则:
解:原 式 (2)运用法则时注意符号变化;
(3)因式分解在分式乘除法中的应用;
3
3y2x (1)分式的乘除法法则;
当分子分母是多项式时,先分解因式便于约分的进行
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。

《15.2.1.2 分式的混合运算》课件

《15.2.1.2 分式的混合运算》课件

学生板演、纠错并及时总结做题方法及应注意的地 方:①对于乘、除和乘方的混合运算,应注意运算顺序,
但在做乘方运算的同时,可将除变乘;②做乘方运算要先 确定符号.
例 3 计算: (1)ba3n2-n+1c1 2·ba23nn--12; (2)(xy-x2)÷x2-2xxyy+y2·x-x2 y; (3)(a2-abb2)2÷(a-a b)2.
知识点 1:分式的乘除混合运算 1.计算:-mn2÷mn22·mn2=( A ) A.-mn22 B.-nm3 C.-mn4 D.-n 2.计算 1÷11+-mm·(m2-1)的结果是( B ) A.-m2-2m-1 B.-m2+2m-1 C.m2-2m-1 D.m2-1
3.计算: (1)x÷1y÷y·1y=____xy________; (2)(a4a--ab2)b2 2÷a(ab+2 b)·ba2=__a_-b_4_b__________.
易错提示: 1.弄错乘方的意义. 2.乘、除和乘方混合运算时顺序出错.
(2)同理: (ba)3=ba·ba·ba=ba33; (ba)n=ba·ba·…·ban 个=ba··ba··……··bann个个 =bann.
2.分式乘方法则: 分式:(ba)n=bann.(n 为正整数) 文字叙述:分式乘方是把分子、分母分别乘方.
3.目前为止,正整数指数幂的运算法则都有什么?
解:由x2-3xx+1=15知
x2-3x+1
x≠0,∴ x =5,即
x-3+1x=5,∴x
+1x=8,∴x4+xx22+1=x2+1+x12=(x+1x)2-1=82-1=63,∴x4+xx22+1=
1 63
方法技能: 1.分式的乘除混合运算,先统一为乘法,再按从左到右的顺序 依次运算,有括号的先算括号里的,能约分的先约分. 2.分式乘方时,要把分式加上括号,把分子、分母分别乘方, 注意分子、分母的系数和分式本身的符号也要同时乘方. 3.分式的乘除、乘方混合运算,应先算乘方,再算乘除.

人教版数学八年级上册15.分式的乘方及乘方与乘除的混合运算课件

人教版数学八年级上册15.分式的乘方及乘方与乘除的混合运算课件

9 x2
要注意判断乘方的结果 的符号
(2)(
y 2x
)3
(3)(
2a2b -3c
)2
原式= y3 (2x)3
(2a2b)2 原式= (-3c)2
y3
8x3
= 4a4b2 9c2
随堂演练
D 1.下列计算中,正确的是(
)
A. x 2 x2
3y
6y2
C.
x 3
3y
x3 27 y
B.
2x 3
拓展训练
1、计算:
(1) ( b )2n (n为正整数) a
(2) ( b )2n1 (n为正整数) a
解:原式=
b2n a2n
b 2 n 1
解:原式=
a 2 n 1
(3)
(
x
2
x2
4 6x
9
)2
解:原式=
(x 2)(x 2) (x 3)2
2
(x 2)2 (x 2)2
(x 3)4
y
2x3 y3
D.
2x 3
y
8x3 y3
2.计算:
(1)(- m )2 m2
n
n2
(2)(-
m )3 n
m3 n3
(3)(- ac )5 =- a5c5
b
b5
(4)( 2a )3 b
(2a)3
(b)3
8a3 b3
(5)(
a3c 3b2
)3
(a3c)3 (3b2 )3
(6)(
2xy2 3
分式的乘方法则:
一般地,当n 是正整数时,
n个a
( a )n= a a a = a a a = an , b b b b b b b bn

清丰县X中学八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除第1课时分式的乘除课件

清丰县X中学八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除第1课时分式的乘除课件

考点三 : 勾股定理的应用 14.(2019·南京)无盖圆柱形杯子的展开图如下图.将一根长为20 cm的细 木筷斜放在该杯子内 , 木筷露在杯子外面的部分至少有___5__ cm.
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
C.在△ABC 中,若 a=35 c,b=45 c,则△ABC 为直角三角形 D.在△ABC 中,若 a∶b∶c=3∶2∶4,则△ABC 为直角三角形
8.在△ABC中 , AB=n2+1 , AC=2n , BC=n2-1(n>1) , 那么这个三角形
是( C)
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
15.如下图 , 铁路MN和公路PQ在点O处交汇 , 公路PQ上有一点A距离O点 240 m , 点A到MN的距离是120 m.如果火车行驶时 , 周围200 m以内会受到 噪音的影响.那么火车在铁路MN上沿ON方向以72 km/h的速度行驶时 , A 处受噪音影响的时间是多少 ?
解 : 作AD⊥MN于点D , 并作AB=AC=200 m交MN于点B , C.因为AD=120 m , 所以BD=160(m) , BC=160×2=320(m)=0.32(km) , t=0.32÷72×3600 =16(s).答 : A处受噪音影响的时间是16 s
解 : 〔2〕 500 500 (a-1)2 a2-1
=
500
a2-1
(a-1)2 500
= a+1 . a -1
所以,“丰收2号”小麦的单位面积产量是
“丰收1号”小麦的单位面积产量的
a a
+ -

八年级数学 15.2.2分式的混合运算


b d b c bc
同分母加减:b c b c
加减法
aa a
异分母加减:b d bc ad bc ad
a c ac ac ac
一 新课讲解
2
问题:如何计算
2m

n


1 m-n
-
m n

n 4

请先思考这道题包含的运算,再确定运算顺 序,并独立完成.
b



a
1
b

a
1
b



a
1
b

a
1
b



a
1
b

a
1
b

2a
a2 b2
巧用公式
一 能力提升
例4.若
2 x2 1

A x 1
B ,求A、B的值. x 1
解析:先将等式两边化成同分母分式,然后对 照两边的分子,可得到关于A、B的方程组.
2.课本p146 习题15.2 第6题
一 课堂练习
1.
计算
1
3x 2y

3x 2y

2y 3x
的结果是( C

2 y 6xy
A. 9x2
2y 3x
B. 2y
3x 2y
C. 3x
3x
D. 2 y
2.
化简(
x y

y) x

x
x
y
的结果是
x y y.3.化简来自1x y x 3y
解:∵ A B x 1 x 1

八年级数学人教版上册课件:15.2.2 分式的乘除——分式的乘方运算


(m n)2
B. 6a2 C. 9a4
m2 n2
D. 9a4
5 计算:( 2 x2 )2 =________. y
6 计算:( 2a2b )3 =________. 3c
(来自《典中点》)
知识点 2 分式乘方与分式乘除混合运算
知2-讲
【例2】 计算:
(1)(
a2b cd 3
)3

2a d3
(来自《点拨》)
1 计算 ( n2 ) ( m )2 的结果是( 2m n
A. mn
2
B. mn
2
C. m
2
) D. m
2
2
若 (a2 b
)2

a ( b2
)2

3
,则a4b4的值是(
A. 6
B. 9
C.12
3
计算:
(
2ab3 c2d
)2

6a4 b3

(
3c b2
)3
) D.81
)2
的结果是(
)
A. 4b 9a 2
B. 4b2 6a6
C. 4b2 9a5
3
计算 ( x2 )2 y
的结果是(
A. x4 y2
B.
x4 y2
C. x4 y
D. 4b2 9a6
) D. x4
y
知1-练
知1-练
4

(
mn 3a 2
)2
相等的式子是(
)
A.
(
m 6a
n)2
2
(m n)2
=
4a 4b 2 9c 2
;
(2)原式=( 3x4 y

八年级数学上册第十五章分式课件PPT


15.3 分式方程(2课时)
第1课时 分式方程的解法
重点 解分式方程的基本思路和解法. 难点 理解解分式方程时可能无解的原因.
解分式方程的步骤: 在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.
一、复习引入 1.分式的乘除法法则. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: an=a·a·a·…·a(n为正整数).
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.
重点 理解并掌握分式的基本性质. 难点 灵活运用分式的基本性质进行分式变形.
在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化. 三、课堂小结 1.分式的基本性质是什么? 2.分式的变号法则是什么? 3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业 教材第133页习题15.1第4,5题.
三、课堂小结 1.列分式方程解应用题的一般步骤: (1)审:审清题意; (2)设:设未知数(要有单位); (3)列:根据题目中的数量关系找出相等关系,列出方程; (4)解:解方程,并验根,还要看方程的解是否符合题意; (5)答:写出答案(要有单位).

分式运算ppt课件


)
A.x=-1
B.x=1
C.x=2
D.x=3
【解析】 去分母,得 3x+3=4x,解得 x=3, 经检验,x=3 是原方程的解.
【答案】 D
【类题演练 4】 (2016·攀枝花)已知关于 x 的分式方程
x+k 1+xx+ -k1=1 的解为负数,则 k 的取值范围是
.
【解析】 去分母,得 k(x-1)+(x+k)(x+1)=x2-1. 整理,得(2k+1)x=-1. ∵原方程的解为负数,且 x+1≠0,x-1≠0, ∴2k+1>0 且 2k+1≠1, 解得 k>-12且 k≠0,即 k 的取值范围是 k>-12且 k≠0.
1.分式的基本概念:
(1)形如AB(A,B 是整式,且 B 中含有字母,B≠0)的式 子叫做分式.
(2)当 B≠0 时,分式AB有意义;当 B=0 时,分式AB无意 义;当 A=0 且 B≠0 时,分式AB的值为零.
(3)最简分式需满足的条件:分子、分母没有公因式.
2.分式的基本性质: 分式的分子与分母都乘(或除以)同一个不等于零的整 式,分式的值不变,用式子可表示为AB=BA××MM,AB= AB÷÷MM(其中 M 是不等于零的整式).
(2)分式的加减法: 同分母相加减:a±b=a±b; cc c 异分母相加减:b±d=bc±ad. a c ac
(3)分式的乘除法: ab·dc=badc; ab÷dc=abdc.
(4)分式的乘方: abn=abnn(n 为正整数).
5.分式的混合运算: 在分式的混合运算中,应先算乘方,再将除法化为乘 法,进行约分化简,最后进行加减运算.若有括号, 先算括号里面的.灵活运用运算律,运算结果必须是 最简分式或整式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a b
n个b
这就是说,分式乘方要把分子、分母分别乘方.
运用分式的乘方法则计算
y 3 -2a 2 2a 2b 2 ()( 1 ) ;(2)( 2 ) ;(3)( ) . 2x -3c c y 3 y3 y3 1 )= = 3; 解: ()( 3 2 x (2 x) 8 x
2 -2a 2 (- 2a) 4a 2 (2)( 2 )= = 4 ; 2 2 c (c ) c
一般地,当n 是正整数时, n 个a 64444 47 4444 4 8 a n a a a a a L a an ( )= = = n , b b b 44443 b b b42 L 4 b 144442 14444 4444 3 b
n个
a n an 即 ( )= n . b b
例2
计算:
2a b 2 (2a b) 4a b (3)( )= = . 2 2 -3c (-3c) 9c
2
2
2
4 2
运用分式的乘方法则计算
ab 3 2a c 2 ( ) 3 ( ). 例3 计算: 3 2a -cd d a 2b 3 2a c 2 解: ( ) 3 ( ) 3 2a -cd d a 6b 3 2a c 2 = 3 9 3 2 -c d d 4a a 6b 3 d3 c2 = 3 9 2 a 4a 2 -c d a 3b3 =. 6 8cd
探究分式的乘除混合运算
例1
2x 3 x . 计算: 2 5 x-3 25 x -9 5 x+3
2x 3 x 解: 2 5 x-3 25 x -9 5 x+3
2x 25 x 2 -9 x = 5 x -3 3 5 x+3 2 x2 = . 3
课堂练习
练习1 计算:
2m 2 n 5 p 2 q 5mnp ( 1) ; 2 2 3q 3 pq 4mn m -n (n-m) m+n (2) ; 2 2 2 m (m-n) mn 16-a 2 a- 4 a- 2 (3) 2 . 2a+8 a+ 2 a +8a+16
八年级Βιβλιοθήκη 上册15.2 分式的运算 (第3课时)
课件说明
• 本课是在学生已经能够进行分式乘除运算的基础上, 进一步学习如何进行分式的乘方运算,研究如何进
行分式的乘、除、乘方的混合运算.
课件说明
• 学习目标: 1.理解分式乘方的运算法则,能根据法则进行乘方 运算,体会数式通性. 2.能根据混合运算法则进行分式乘除、乘方混合运 算. • 学习重点: 分式的乘方及分式乘除、乘方混合运算.
布置作业
教科书习题15.2第3(3)(4)题.
2
运用分式的乘方法则计算
分式的乘除、乘方混合运算与分数的乘除、乘方混 合运算有什么联系和区别吗?
课堂练习
练习2 计算:
-2 x 4 y 2 3 ( 1)( ) ; 3z 2ab3 2 6a 4 -3c 3 (2)( 2 ) 3 ( 2 ) . -c d b b
课堂小结
(1)本节课学习了哪些主要内容? (2)运用分式乘方法则计算的步骤是什么?它与整 式的乘方运算有什么区别和联系? (3)分式的乘方与乘除混合运算的运算顺序是什么?
2 2 2
探究分式的乘方法则
思考 你能结合有理数乘方的概念和分式乘法的法 则写出结果吗? a 2 a 3 a 10 ( )=? ( )=? ( ) =? b b b
a n 猜想:n 为正整数时 ( )=? b
你能写出推导过程吗?试试看. 你能用文字语言叙述得到的结论吗?
探究分式的乘方法则
分式的乘方法则:
相关文档
最新文档