10.2017初3数学1模题答案 石景山
北京市石景山区2017届高考数学一模试卷理科 含解析 精品

2017年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}2.已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.123.直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.44.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+46.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.57.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.28.如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为.10.在数列{a n}中,a1=1,a n•a n=﹣2(n=1,2,3,…),那么a8等于.+111.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)14.已知.①当a=1时,f(x)=3,则x=;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.19.(14分)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.2017年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|2x﹣1<0}={x|x<),B={x|0≤x≤1}∴A∩B={x|0≤x<}故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.12【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y 轴上的截距最大,z有最大值为10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.4【考点】简单曲线的极坐标方程.【分析】首先把极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离求出弦心距,最后利用勾股定理求出弦长.【解答】解:圆ρ=1的极坐标方程转化成直角坐标方程为:x2+y2=1.直线转化成直角坐标方程为:x=.所以:圆心到直线x=的距离为.则:弦长l=2=.故选:B.【点评】本题考查的知识要点:极坐标方程与直角坐标方程的互化,点到直线的距离及勾股定理的应用.4.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数的性质判断即可.【解答】解:若sinθ=cosθ,则θ=kπ+,(k∈z),故2θ=2kπ+,故cos2θ=0,是充分条件,若cos2θ=0,则2θ=kπ+,θ=+,(k∈z),不是必要条件,故选:A.【点评】本题考查了充分必要条件,考查三角函数的性质,是一道基础题.5.我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+4【考点】程序框图.【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的k,S的值,即可得解.【解答】解:模拟程序的运行,可得k=0,S=1,k=1,S=x+1,满足条件k<4,执行循环体,k=2,S=(x+1)x+2=x2+x+2满足条件k<4,执行循环体,k=3,S=(x2+x+2)x+3=x3+x2+2x+3满足条件k<4,执行循环体,k=4,S=(x3+x2+2x+3)x+4=x4+x3+2x2+3x+4不满足条件k<4,退出循环,输出能求得多项式x4+x3+2x2+3x+4的值.故选:A.【点评】本题主要考查了循环结构的程序框图应用问题,是基础题目.6.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.5【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是侧棱垂直于底面的三棱锥,画出图形,结合图形求出它的表面积.【解答】解:根据几何体的三视图,得该几何体是如图所示的三棱锥,且侧棱PC⊥底面ABC;=×2×2=2,所以,S△ABCS△PAC=S△PBC=×1=,S△PAB=×2=;所以,该三棱锥的表面积为S=2+2×+=2+2.故选B.【点评】本题考查了空间几何体三视图的应用问题,解题时应根据三视图画出几何图形,求出各个面的面积和,是基础题7.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.2【考点】平面向量数量积的运算.【分析】根据题意,可分别以边AB,AD所在直线为x轴,y轴,建立平面直角坐标系,然后可得出点A,B,E的坐标,并设F(x,2),根据即可求出x值,从而得出F点的坐标,从而求出的值.【解答】解:据题意,分别以AB、AD所在直线为x,y轴,建立如图所示平面直角坐标系,则:A(0,0),B(,0),E(,1),设F(x,2);∴;∴x=1;∴F(1,2),;∴.故选C.【点评】考查通过建立平面直角坐标系,利用坐标解决向量问题的方法,向量数量积的坐标运算.8.如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13【考点】三角形中的几何计算.【分析】设正△ABC的边长为x,根据等边三角形的高为边长的倍,求出正△ABC的面积,再根据菱形的性质结合图形表示出菱形的两对角线,然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积,然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x,则高为x,S△ABC=x•x=x2,∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为x﹣,较短的对角线为(x﹣)×=﹣1;∴黑色菱形的面积S′=(x﹣)(﹣1)=(x﹣2)2,若m:n=47:25,则=,解可得x=12或x=(舍),所以,△ABC的边长是12;故选:C.【点评】本题考查菱形的性质,等边三角形的性质,熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键,本题难点在于根据三角形的面积与菱形的面积列出方程.二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为1.【考点】复数代数形式的乘除运算.【分析】利用两个复数代数形式的乘除法法则求得z的值,再根据它是纯虚数,求得实数a的值.【解答】解:∵复数==为纯虚数,故有a﹣1=0,且a+1≠0,解得a=1,故答案为:1.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.10.在数列{a n}中,a1=1,a n•a n=﹣2(n=1,2,3,…),那么a8等于﹣2.+1【考点】数列递推式.•a n=﹣2(n≥2),与原递推式两边作比可【分析】由已知求得a2,且得到a n﹣1得(n≥2),即数列{a n}中的所有偶数项相等,由此求得a8的值.【解答】解:由a1=1,a n•a n+1=﹣2,得a2=﹣2,•a n=﹣2(n≥2),又a n﹣1∴(n≥2),∴数列{a n}中的所有偶数项相等,则a8=﹣2.故答案为:﹣2.【点评】本题考查数列递推式,考查等比关系的确定,是中档题.11.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=4.【考点】抛物线的标准方程.【分析】确定双曲线﹣y2=1的右顶点坐标,从而可得抛物线y2=2px的焦点坐标,由此可得结论.【解答】解:双曲线﹣y2=1的右顶点坐标为(2,0),∵抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,∴=2,∴p=4.故答案为:4.【点评】本题考查双曲线、抛物线的几何性质,确定双曲线的右焦点坐标是关键.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.【解答】解:将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位,所得到y=sin[3(x+)+φ]=sin(3x++φ)的图象,若所得图象关于原点对称,则+φ=kπ,k∈Z,又﹣π<φ<0,∴φ=﹣,故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)【考点】排列、组合的实际应用.【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.14.已知.①当a=1时,f(x)=3,则x=4;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.【考点】分段函数的应用.【分析】①当a=1时,f(x)=3,利用分段函数建立方程,即可求出x的值;②由f(x)=3,求得x=﹣1,或x=4,根据x1<x2<x3,且它们依次成等差数列,可得a≤﹣1,f(﹣6)=3,由此求得a的值.【解答】解:①x≥1,x﹣=3,可得x=4;x<1,2﹣(x+)=3,即x2+x+4=0无解,故x=4;②由于当x>a时,解方程f(x)=3,可得x﹣=3,求得x=﹣1,或x=4.∵x1<x2<x3,且它们依次成等差数列,∴x2=﹣1,x3=4,x1 =﹣6,∴a≤﹣1.∴x<a时,方程f(x)=3只能有一个实数根为﹣6,再根据f(﹣6)=2a+6+=3,求得a=,满足a≤﹣1.故答案为4,.【点评】本题主要考查分段函数,利用函数的单调性求函数的最值,等差数列的性质,体现了分类讨论以及转化的数学思想,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)(2017•石景山区一模)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据余弦定理直接求解角C的大小.(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.【解答】解:(Ⅰ)c2=a2+b2﹣ab.即ab=a2+b2﹣c2由余弦定理:cosC==,∵0<C<π,∴C=.(Ⅱ)∵A+B+C=π,C=.∴B=,且A∈(0,).那么:cosA+cosB=cosA+cos()=sin(),∵A∈(0,).∴,故得当=时,cosA+cosB取得最大值为1.【点评】本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.16.(12分)(2017•石景山区一模)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.【考点】离散型随机变量及其分布列;频率分布直方图.【分析】(Ⅰ)由频率和为1,列方程求出a的值,根据图甲的频率分布比图乙分散些,它的方差较大,得出;(Ⅱ)根据X的所有可能取值,计算对应的概率,写出分布列;(Ⅲ)由甲种和乙种酸奶的日销售量数据在区间(0,10]内的频率和频数,计算在1200个数据中应抽取的数据个数.【解答】解:(Ⅰ)由图(乙)知,10(a+0.02+0.03+0.025+0.015)=1,解得a=0.01,根据图甲的频率分布比图乙分散些,它的方差较大,∴;(Ⅱ)X的所有可能取值1,2,3;则,,,其分布列如下:(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2+3+4+5+6=20个,其中有4个数据在区间(0,10]内,又因为分层抽样共抽取了1200×5%=60个数据,乙种酸奶的数据共抽取60﹣20=40个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1,故乙种酸奶的日销售量数据在区间(0,10]内有40×0.1=4个.故抽取的60个数据,共有4+4=8个数据在区间(0,10]内.所以,在1200个数据中,在区间(0,10]内的数据有160个.【点评】本题考查了频率分布直方图与离散型随机变量的分布列问题,是综合题.17.(14分)(2017•石景山区一模)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑,,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.【解答】证明:(Ⅰ)因为PD⊥面ABCD,BC⊂面ABCD,所以BC⊥PD.因为四边形ABCD为矩形,所以BC⊥DC.PD∩DC=D,所以BC⊥面PDC.DE⊂面PDC,DE⊥BC,在△PDC中,PD=DC,E为PC中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥面PBC.解:(Ⅱ)四面体DBEF是鳖臑,其中,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.则D(0,0,0),A(2,0,0),,,.设,则.DF⊥PB得,解得.所以.设平面FDA的法向量,则,令z=1得x=0,y=﹣3.平面FDA的法向量,平面BDA的法向量,,.二面角F﹣AD﹣B的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(14分)(2017•石景山区一模)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出导函数,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简=.求出,令,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.【解答】解:(Ⅰ),f'(1)=1,又f(1)=0,所以切线方程为y=x﹣1;(Ⅱ)证明:由题意知x>0,令=.令,解得x=1.易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.即g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以g(x)min=g(1)=0,g(x)≥g(1)=0即,即x>0时,;(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,当x>1时,h(x)>h(1)=0,满足题意.a>1时,随x变化,h'(x),h(x)的变化情况如下表:h(x)在(1,a)上单调递减,所以g(a)<g(1)=0即当a>1时,总存在g(a)<0,不合题意.综上所述,实数a的最大值为1.【点评】本题考查函数的导数的应用,切线方程,函数的极值以及函数的最值的求法,考查转化思想以及计算能力.19.(14分)(2017•石景山区一模)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意可知b=1,e===,即可求得a的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨AC丨及丨MN丨,丨BN丨2=丨AC丨2+丨MN丨2=,即可求得B,N两点间距离是否为定值.【解答】解:(Ⅰ)由题意可知:椭圆的焦点在x轴上,过点(0,1),则b=1,由椭圆的离心率e===,则a=2,∴椭圆的标准方程为:;(Ⅱ)设A(x1,y1),B(x2,y2),线段中点M(x0,y0),则,整理得:x2+2mx+2m2﹣2=0,由△=(2m)2﹣4(2m2﹣2)=8﹣4m2>0,解得:﹣<m<,则x1+x2=﹣2m,x1x2=2m2﹣2,则M(﹣m,m),丨AC丨=•=•=由l与x轴的交点N(﹣2m,0),则丨MN丨==,∴丨BN丨2=丨BM丨2+丨MN丨2=丨AC丨2+丨MN丨2=,∴B,N两点间距离是否为定值.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及中点坐标公式,考查计算能力,属于中档题.20.(14分)(2017•石景山区一模)已知集合R n={X|X=(x1,x2,…,x n),x i ∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.【考点】函数的最值及其几何意义;集合的包含关系判断及应用.【分析】(Ⅰ)根据集合的定义,写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,即可求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ),其中表示P中所有两个元素间距离的总和,根据,即可证明结论.【解答】解:(Ⅰ)R2={(0,0),(0,1),(1,0),(1,1)},A,B∈R2,d(A,B)max=2.(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以M={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}或M={(0,0,1),(0,1,0),(1,0,0),(1,1,1)},集合M中元素个数最大值为4.(Ⅲ),其中表示P中所有两个元素间距离的总和.设P中所有元素的第i个位置的数字中共有t i个1,m﹣t i个0,则由于(i=1,2,…,n)所以从而【点评】本题考查新定义,考查函数的最值,考查集合知识,难度大.。
2017年北京市石景山区高考数学一模试卷(理科)

2017年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}2.(5分)已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.123.(5分)直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.44.(5分)设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+46.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.57.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.28.(5分)如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13二、填空题共6小题,每小题5分,共30分.9.(5分)若复数是纯虚数,则实数a的值为.10.(5分)在数列{a n}中,a1=1,a n•a n+1=﹣2(n=1,2,3,…),那么a8等于.11.(5分)若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=.12.(5分)如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=.13.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)14.(5分)已知.①当a=1时,f(x)=3,则x=;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.19.(14分)已知椭圆E:+=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A 与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.2017年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|2x﹣1<0}={x|x<),B={x|0≤x≤1}∴A∩B={x|0≤x<}故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.12【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y 轴上的截距最大,z有最大值为10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.(5分)直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.4【分析】首先把极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离求出弦心距,最后利用勾股定理求出弦长.【解答】解:圆ρ=1的极坐标方程转化成直角坐标方程为:x2+y2=1.直线转化成直角坐标方程为:x=.所以:圆心到直线x=的距离为.则:弦长l=2=.故选:B.【点评】本题考查的知识要点:极坐标方程与直角坐标方程的互化,点到直线的距离及勾股定理的应用.4.(5分)设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分必要条件的定义以及三角函数的性质判断即可.【解答】解:若sinθ=cosθ,则θ=kπ+,(k∈z),故2θ=2kπ+,故cos2θ=0,是充分条件,若cos2θ=0,则2θ=kπ+,θ=+,(k∈z),不是必要条件,故选:A.【点评】本题考查了充分必要条件,考查三角函数的性质,是一道基础题.5.(5分)我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+4【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的k,S的值,即可得解.【解答】解:模拟程序的运行,可得k=0,S=1,k=1,S=x+1,满足条件k<4,执行循环体,k=2,S=(x+1)x+2=x2+x+2满足条件k<4,执行循环体,k=3,S=(x2+x+2)x+3=x3+x2+2x+3满足条件k<4,执行循环体,k=4,S=(x3+x2+2x+3)x+4=x4+x3+2x2+3x+4不满足条件k<4,退出循环,输出能求得多项式x4+x3+2x2+3x+4的值.故选:A.【点评】本题主要考查了循环结构的程序框图应用问题,是基础题目.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.5【分析】根据几何体的三视图,得出该几何体是侧棱垂直于底面的三棱锥,画出图形,结合图形求出它的表面积.【解答】解:根据几何体的三视图,得该几何体是如图所示的三棱锥,且侧棱PC⊥底面ABC;所以,S=×2×2=2,△ABCS△PAC=S△PBC=×1=,S△PAB=×2=;所以,该三棱锥的表面积为S=2+2×+=2+2.故选B.【点评】本题考查了空间几何体三视图的应用问题,解题时应根据三视图画出几何图形,求出各个面的面积和,是基础题7.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.2【分析】根据题意,可分别以边AB,AD所在直线为x轴,y轴,建立平面直角坐标系,然后可得出点A,B,E的坐标,并设F(x,2),根据即可求出x值,从而得出F点的坐标,从而求出的值.【解答】解:据题意,分别以AB、AD所在直线为x,y轴,建立如图所示平面直角坐标系,则:A(0,0),B(,0),E(,1),设F(x,2);∴;∴x=1;∴F(1,2),;∴.故选C.【点评】考查通过建立平面直角坐标系,利用坐标解决向量问题的方法,向量数量积的坐标运算.8.(5分)如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13【分析】设正△ABC的边长为x,根据等边三角形的高为边长的倍,求出正△ABC的面积,再根据菱形的性质结合图形表示出菱形的两对角线,然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积,然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x,则高为x,S△ABC=x•x=x2,∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为x﹣,较短的对角线为(x ﹣)×=﹣1;∴黑色菱形的面积S′=(x﹣)(﹣1)=(x﹣2)2,若m:n=47:25,则=,解可得x=12或x=(舍),所以,△ABC的边长是12;故选:C.【点评】本题考查菱形的性质,等边三角形的性质,熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键,本题难点在于根据三角形的面积与菱形的面积列出方程.二、填空题共6小题,每小题5分,共30分.9.(5分)若复数是纯虚数,则实数a的值为1.【分析】利用两个复数代数形式的乘除法法则求得z的值,再根据它是纯虚数,求得实数a的值.【解答】解:∵复数==为纯虚数,故有a﹣1=0,且a+1≠0,解得a=1,故答案为:1.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.10.(5分)在数列{a n}中,a1=1,a n•a n+1=﹣2(n=1,2,3,…),那么a8等于﹣2.【分析】由已知求得a2,且得到a n﹣1•a n=﹣2(n≥2),与原递推式两边作比可得(n≥2),即数列{a n}中的所有偶数项相等,由此求得a8的值.【解答】解:由a1=1,a n•a n+1=﹣2,得a2=﹣2,•a n=﹣2(n≥2),又a n﹣1∴(n≥2),∴数列{a n}中的所有偶数项相等,则a8=﹣2.故答案为:﹣2.【点评】本题考查数列递推式,考查等比关系的确定,是中档题.11.(5分)若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=4.【分析】确定双曲线﹣y2=1的右顶点坐标,从而可得抛物线y2=2px的焦点坐标,由此可得结论.【解答】解:双曲线﹣y2=1的右顶点坐标为(2,0),∵抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,∴=2,∴p=4.故答案为:4.【点评】本题考查双曲线、抛物线的几何性质,确定双曲线的右焦点坐标是关键.12.(5分)如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=﹣.【分析】利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.【解答】解:将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位,所得到y=sin[3(x+)+φ]=sin(3x++φ)的图象,若所得图象关于原点对称,则+φ=kπ,k∈Z,又﹣π<φ<0,∴φ=﹣,故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.13.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.14.(5分)已知.①当a=1时,f(x)=3,则x=4;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.【分析】①当a=1时,f(x)=3,利用分段函数建立方程,即可求出x的值;②由f(x)=3,求得x=﹣1,或x=4,根据x1<x2<x3,且它们依次成等差数列,可得a≤﹣1,f(﹣6)=3,由此求得a的值.【解答】解:①x≥1,x﹣=3,可得x=4;x<1,2﹣(x+)=3,即x2+x+4=0无解,故x=4;②由于当x>a时,解方程f(x)=3,可得x﹣=3,求得x=﹣1,或x=4.∵x1<x2<x3,且它们依次成等差数列,∴x2=﹣1,x3=4,x1 =﹣6,∴a≤﹣1.∴x<a时,方程f(x)=3只能有一个实数根为﹣6,再根据f(﹣6)=2a+6+=3,求得a=,满足a≤﹣1.故答案为4,.【点评】本题主要考查分段函数,利用函数的单调性求函数的最值,等差数列的性质,体现了分类讨论以及转化的数学思想,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.【分析】(Ⅰ)根据余弦定理直接求解角C的大小.(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.【解答】解:(Ⅰ)c2=a2+b2﹣ab.即ab=a2+b2﹣c2由余弦定理:cosC==,∵0<C<π,∴C=.(Ⅱ)∵A+B+C=π,C=.∴B=,且A∈(0,).那么:cosA+cosB=cosA+cos()=sin(),∵A∈(0,).∴,故得当=时,cosA+cosB取得最大值为1.【点评】本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.【分析】(Ⅰ)由频率和为1,列方程求出a的值,根据图甲的频率分布比图乙分散些,它的方差较大,得出;(Ⅱ)根据X的所有可能取值,计算对应的概率,写出分布列;(Ⅲ)由甲种和乙种酸奶的日销售量数据在区间(0,10]内的频率和频数,计算在1200个数据中应抽取的数据个数.【解答】解:(Ⅰ)由图(乙)知,10(a+0.02+0.03+0.025+0.015)=1,解得a=0.01,根据图甲的频率分布比图乙分散些,它的方差较大,∴;(Ⅱ)X的所有可能取值1,2,3;则,,,其分布列如下:X123P(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2+3+4+5+6=20个,其中有4个数据在区间(0,10]内,又因为分层抽样共抽取了1200×5%=60个数据,乙种酸奶的数据共抽取60﹣20=40个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1,故乙种酸奶的日销售量数据在区间(0,10]内有40×0.1=4个.故抽取的60个数据,共有4+4=8个数据在区间(0,10]内.所以,在1200个数据中,在区间(0,10]内的数据有160个.【点评】本题考查了频率分布直方图与离散型随机变量的分布列问题,是综合题.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.【分析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑,,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.【解答】证明:(Ⅰ)因为PD⊥面ABCD,BC⊂面ABCD,所以BC⊥PD.因为四边形ABCD为矩形,所以BC⊥DC.PD∩DC=D,所以BC⊥面PDC.DE⊂面PDC,DE⊥BC,在△PDC中,PD=DC,E为PC中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥面PBC.解:(Ⅱ)四面体DBEF是鳖臑,其中,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.则D(0,0,0),A(2,0,0),,,.设,则.DF⊥PB得,解得.所以.设平面FDA的法向量,则,令z=1得x=0,y=﹣3.平面FDA的法向量,平面BDA的法向量,,.二面角F﹣AD﹣B的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.【分析】(Ⅰ)求出导函数,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简=.求出,令,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.【解答】解:(Ⅰ),f'(1)=1,又f(1)=0,所以切线方程为y=x﹣1;(Ⅱ)证明:由题意知x>0,令=.令,解得x=1.易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.即g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以g(x)min=g(1)=0,g(x)≥g(1)=0即,即x>0时,;(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,当x>1时,h(x)>h(1)=0,满足题意.a>1时,随x变化,h'(x),h(x)的变化情况如下表:x(1,a)a(a,+∞)h'(x)﹣0+h(x)↘极小值↗h(x)在(1,a)上单调递减,所以g(a)<g(1)=0即当a>1时,总存在g(a)<0,不合题意.综上所述,实数a的最大值为1.【点评】本题考查函数的导数的应用,切线方程,函数的极值以及函数的最值的求法,考查转化思想以及计算能力.19.(14分)已知椭圆E:+=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.【分析】(Ⅰ)由题意可知b=1,e===,即可求得a的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨AC丨及丨MN丨,丨BN丨2=丨AC丨2+丨MN丨2=,即可求得B,N两点间距离是否为定值.【解答】解:(Ⅰ)由题意可知:椭圆的焦点在x轴上,过点(0,1),则b=1,由椭圆的离心率e===,则a=2,∴椭圆的标准方程为:;(Ⅱ)设A(x1,y1),B(x2,y2),线段中点M(x0,y0),则,整理得:x2+2mx+2m2﹣2=0,由△=(2m)2﹣4(2m2﹣2)=8﹣4m2>0,解得:﹣<m<,则x1+x2=﹣2m,x1x2=2m2﹣2,则M(﹣m,m),丨AC丨=•=•=由l与x轴的交点N(﹣2m,0),则丨MN丨==,∴丨BN丨2=丨BM丨2+丨MN丨2=丨AC丨2+丨MN丨2=,∴B,N两点间距离是否为定值.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及中点坐标公式,考查计算能力,属于中档题.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A 与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.【分析】(Ⅰ)根据集合的定义,写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,即可求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ),其中表示P中所有两个元素间距离的总和,根据,即可证明结论.【解答】解:(Ⅰ)R2={(0,0),(0,1),(1,0),(1,1)},A,B∈R2,d(A,B)max=2.(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以M={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}或M={(0,0,1),(0,1,0),(1,0,0),(1,1,1)},集合M中元素个数最大值为4.(Ⅲ),其中表示P中所有两个元素间距离的总和.设P中所有元素的第i个位置的数字中共有t i个1,m﹣t i个0,则由于(i=1,2,…,n)所以从而【点评】本题考查新定义,考查函数的最值,考查集合知识,难度大.。
2017北京市石景山区初三上学期期末考试数学试卷.和答案

CAO BDABDEC 第2题图第3题图第4题图yxA OPyx1A O石景山区2016-2017学年度第一学期初三期末试卷数学考生须知1.本试卷共8页,共三道大题,页,共三道大题,2929道小题.满分120分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意地选项只有..一个.1.在Rt △ACB 中,90C Ð=°,1AC =,2BC =,则sin B 地值为A .255B .55C .33D .122.如图,AB 是⊙O 地直径,CD 是弦,=65ABC а,则D Ð地度数为A .130°B .65°C .35°D .25°3.如图,为估算某河地宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得30BE =m ,15EC =m ,30CD =m ,则河地宽度AB 长为A .90mB .60mC .45mD .30m4.如图,在平面直角坐标系x O y 中,点P 为函数40y x x=(<)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 地面积是A .8B .4C .2D .2-5.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(平均数(cm cm cm))183 183 183 183 方差3.6 5.4 7.28.5 要从中选择一名发挥稳定地运动员去参加比赛,应该选择!!.. C AByx83384Oyx2382Oyx2382Oyx2382OA .甲.甲B .乙.乙C .丙.丙D .丁.丁6.如图,⊙A 地半径为3,圆心A 地坐标为(1,0), 点点(,0)B m 在⊙A 内,则m 地取值范围是地取值范围是7.如图,⊙O 地半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧则劣弧AC 地长为地长为A .6π C .2πB .3πD .π 8.若将抛物线25y x =先向右平移2个单位,再向上平移1个单位,个单位, 得到地新抛物线地表达式为得到地新抛物线地表达式为得到地新抛物线地表达式为A .2521y x =-+()B .25+21y x =+()C .2521y x =--()D .25+21y x =-() 9.若抛物线22y x x m =-+与x 轴有交点,则m 地取值范围是地取值范围是A .1m >B .1m ≥C .1m <D .1m ≤1010..如右图,在Rt △ACB 中,90C Ð=°,60A Ð=°,8AB =.点P 是AB 边上地一个动点,过点P 作PD ⊥AB 交直角边于点D ,设AP 为x ,△APD 地面积为y ,则下列图象中,,则下列图象中, 能表示y 与x 地函数关系地图象大致是地函数关系地图象大致是A .B .C .D .二、填空题(本题共18分,每小题3分)1111.请写出一个反比例函数地表达式,满足条件:在各自象限内,.请写出一个反比例函数地表达式,满足条件:在各自象限内,y 地值随x 值地增大而增大此反比例函数地表达式可以是(写出一个即可):达式可以是(写出一个即可): .. 1212.某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取.某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验粒稻种进行实验..实验地结果如下表所示:实验地稻种数n ∕粒∕粒 800 800 800 800 800 发芽地稻种数m ∕粒∕粒 763 757 761 760 758 发芽地频率m n0.9540.9460.9510.9500.948在与实验条件相同地情况下,估计种一粒这样地稻种发芽地概率为在与实验条件相同地情况下,估计种一粒这样地稻种发芽地概率为 (精确到(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽地大约有万粒,那么能发芽地大约有 万粒万粒万粒. . 1313.如图,.如图,PA切⊙O于点A,PO交⊙O于点B,点C是优弧AB上一点,若上一点,若A .4m < C .24m -<<B .2m >-D . 2m <-或4m >GF ADEBC第13题图题图 第第14题图题图 第第15题图题图 yx11O BDEA CPB OACy xA 3B 3A 2B 2A 1B 1O=35ACB а,则P Ð地度数是地度数是°1414.如图,正方形.如图,正方形ABCD 地边长为4,以BC 为直径作半圆E ,过点D 作DF 切半圆E 于点G ,交AB 于点F ,则BF 地长为地长为 . .1515.如图,抛物线.如图,抛物线1C :212y x =经过平移得到抛物线2C :2122y x x =+,抛物线2C 地对称轴与两段抛物线所围成地阴影部分地面积是成地阴影部分地面积是 . .1616.如图,在平面直角坐标系.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…,n A在y 轴地正半轴上,点1B ,2B ,3B ,…,n B 在二次函数在二次函数2y x =位于第一象限地图象上,若△11OB A ,△122A B A ,△233A B A ,…,△1n n n A B A -都是等腰直角三角形,其中都是等腰直角三角形,其中123B B B Ð=Ð=Ð=…90n B =Ð=°,则:,则: 点1B 地坐标为地坐标为 ;; 线段12A A 地长为地长为 ;; △1n n n A B A -地面积为地面积为 . .三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.1717.计算:.计算:0tan 452724cos30°+---°(20162016)).1818.如图,在△.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上,且AED B Ð=Ð,若3AE =,1EC =,2AD =. 求AB 地长.地长.1919.如图,在⊙.如图,在⊙O 中,AB 是直径,CD 是弦,且AB ⊥CD 于点E ,8CD =,2BE =.求⊙O 地半径.地半径.2020.二次函数.二次函数2y ax bx c =++(0a ≠)图象上部分点地横坐标x ,纵坐标y 地对应值地对应值A DCBE ODEC MA B Fyx–1–2–3–4–5123–1–2–3–4123OyxA B C OA CB如下表:如下表:x…4-3-2-1-12…y…52-3223252-…((1)求这个二次函数地表达式;)求这个二次函数地表达式;(2)在右图中画出此二次函数地图象)在右图中画出此二次函数地图象地示意图;地示意图;((3)结合图象,直接写出当0y >时,时,自变量x 地取值范围.地取值范围.2121.如图,在△.如图,在△ABC中,30A Ð=°,4cos 5B =,63AC =.求AB 地长地长. .2222.如图,在平面直角坐标系.如图,在平面直角坐标系xOy 中,直线22y x =+与x 轴交于点A ,与y 轴交于轴交于点B ,与双曲线 (0)k y k x=≠地一个交点为点(1,)C m . (1)求双曲线地表达式;)求双曲线地表达式;(2)过点B 作直线BD ∥x 轴,交双曲线于轴,交双曲线于点D ,在x 轴上存在点P ,使得以点,使得以点A ,B ,D ,P 为顶点地四边形为平为顶点地四边形为平 行四边形,请直接写出点D 和点P 地 坐标.坐标.2323..数学综合与实践活动中,某小组测量公园里广场附近古塔地高度.如图,他们先在点D 用高1.5米地测角仪DA 测得塔顶M 地仰角为30°,然后沿DF 方向前行40m 到达点E 处,在E 处测得塔顶M 地仰角为60°.请根据他们地测量数据求古塔MF 地高(结果精确到0.1m ).(参考数据:2 1.414»,3 1.732»)BOAD CEyx–1–2–3–41234–1–21234Oyx–1–2–3–41234–1–21234Oyx–1–2–3–4–512345–1–2–3–4–5–6123456O2424.某超市按每件.某超市按每件30元地价格购进某种商品在销售地过程中发现,该种商品每天地销售量w (件)与销售单价x(元)之间满足关系3150w x =-+(30≤x ≤50).如果销售这种商品每天地利润为y (元),那么销售单价定为多少元时,每天地利润最大?最大利润是多少元?价定为多少元时,每天地利润最大?最大利润是多少元?2525.如图,以△.如图,以△ABC 地AB 边为直径作⊙O ,交BC 于点D ,过点D 作⊙O 地切线地切线 DE ,交AC 于点E ,且DE ⊥AC ,连接EO . (1)求证:AB AC =;(2)若5AB =,1AE =,求tan AEO Ð地值.地值.2626.有这样一个问题:探究函数.有这样一个问题:探究函数2y x x =-地图象和性质地图象和性质. .小石根据学习函数地经验,对此函数地图象和性质进行了探究小石根据学习函数地经验,对此函数地图象和性质进行了探究. . 下面是小石地探究过程,请补充完整:下面是小石地探究过程,请补充完整:(1)函数地自变量x 地取值范围是地取值范围是 ;; (2)下表是y 与x 地几组对应值地几组对应值. .…3- 2- 1-12-13-1312……73-1-172173173-72-73…求m 地值;地值;(3)如右图,在平面直角坐标系xOy 中,描出了以中,描出了以上表中各对对应值为坐标地点上表中各对对应值为坐标地点..根据描出地点,根据描出地点,画出此函数地图象;画出此函数地图象;((4)进一步探究,结合函数地图象,写出此函数地)进一步探究,结合函数地图象,写出此函数地 性质(一条即可):性质(一条即可):性质(一条即可): . .2727.在平面直角坐标系.在平面直角坐标系xOy 中,抛物线C :2(3)y x m x =+-经过点(1,0)A -. (1)求抛物线C 地表达式;地表达式;(2)将抛物线C 沿直线1=y 翻折,得到地新抛物线记为1C ,求抛物线1C 地顶点地顶点坐标;坐标;(3)将抛物线C 沿直线y n =翻折,得到地图象记为2C ,设C 与2C 围成地封闭图围成地封闭图形为M ,在图形M 上内接一个面积..为4地正方形(四个顶点均在M 上),且这个正方形地边分别与坐标轴平行标轴平行..求n 地值地值. .yx 66BAOyx66AO P'CP(M )NEDF ABC2828.已知△.已知△ABC 是等边三角形,点D ,E ,F 分别是边AB ,BC ,AC 地中点,点地中点,点M 是射线EC 上地一个动点,作等边△DMN ,使△DMN 与△ABC 在BC 边同边同侧,连接NF .(1)如图1,当点M 与点C 重合时,直接写出线段FN 与线段EM 地数量关系;地数量关系;(2)当点M 在线段EC 上(点M 与点E ,C 不重合)时,在图2中依题意补全图形,并判断(中依题意补全图形,并判断(11)中地结论是否成立?若成立,请证明;若不成立,请说明理由;否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF ,直线DM 与直线AC 相交于点G ,若△DNF 地面积是△GMC 面积地9倍,8AB =,请直接写出线段CM 地长地长. .2929.已知⊙.已知⊙C 地半径为r ,点P 是与圆心C 不重不重合地点,点P 关于⊙C 地反演点地定义如下:地反演点地定义如下: 若点P ¢在射线CP 上,满足2CP CP r ¢×=, 则称点P ¢是点P 关于⊙C 地反演点地反演点..图1为 点P 及其关于⊙C 地反演点P ¢地示意图地示意图. .(1)在平面直角坐标系xOy 中,⊙O 地半径为6,⊙O 与x 轴地正半轴交于点A .① 如图2,135AOB Ð=°,18OB =,若点A ¢,B ¢分别是点A ,B 关于⊙O地反演点,则点A ¢地坐标是地坐标是 ,, 点B ¢地坐标是地坐标是 ;; ② 如图3,点P 关于⊙O 地反演点为点P ¢,点P ¢在正比例函数3y x =位于位于 第一象限内地图象上,△P OA ¢地面积为63,求点P 地坐标;图1备用图1 1 备用图备用图2图图1 1 图图2 2 备用图备用图备用图E DF A B C E D FAB Cy x–1–212345–1–2–3–4–5123456OBDEA C(2)点P 是二次函数223 14y x x x =---(≤≤)地图象上地动点,以O 为圆心,12OP 为半径作圆,若点P 关于⊙O地反演点P ¢地坐标是(,)m n ,请直接,请直接 写出n 地取值范围地取值范围. .数学试题答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 B D B C A C C A D B 二、填空题(本题共18分,每小题3分) 1111..1y x =-(答案不唯一,满足k y x=且0k <即可).即可). 1212..0.950.95;;1.91.9(第(第1空2分;第2空1分).分).1313..2020°.°.°. 14 14 14..1. 15 15..4. 1616..(1,1);4;2n (每空1分).分).三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分) 1717.解:原式.解:原式3133142=+--´…………………………………………… 4…………………………………………… 4分 3=. ………………………………………………………………………………………… 5分1818.解:∵.解:∵A E D B Ð=Ð,A A Ð=Ð,∴△ADE ∽△ACB . ………………… ………………… 22分 ∴AEADAB AC =. ………………… ………………… ………………… 33分∴323+1AB =. ………………… ………………… ………………… 44分 ∴6AB =. ………………… 5………………… 5分备用图备用图图2 2 图图34x -2xADC BEOAC DBy xy =-12x 2-x +32–1–2–3–4–5123–1–2–3–4123O1919.解:连接.解:连接OC ,如图.,如图. …………………… …………………… …………………… 11分设⊙设⊙O 地半径为x .∵直径AB ⊥弦CD ,∴142CE CD ==. …………………… 2…………………… 2分在在Rt △OEC 中,由勾股定理可得中,由勾股定理可得22224x x =-+(). (4)…………………… 4分 解得解得解得 5x =.∴⊙∴⊙O 地半径为5. 5. …………………… 5…………………… 5分2020.(.(.(11)解法一:由题意,设二次函数地表达式为2(1)2y a x =++. . ………… 1………… 1分 ∵二次函数经过点∵二次函数经过点(1,0),∴42=0a +. ∴12a =-. . ………………… 2………………… 2分 ∴二次函数地表达式为21(1)22y x =-++. . ………………… 3………………… 3分即21322y x x =--+. 解法二:由题意,设二次函数地表达式为解法二:由题意,设二次函数地表达式为(3)(1)y a x x =+-. . ………… 1………… 1分 ∵二次函数经过点∵二次函数经过点(1,2)-,∴42a -=.∴12a =-. . ………………… 2………………… 2分 ∴二次函数地表达式为1(3)(1)2y x x =-+-. . ………………… 3………………… 3分 即21322y x x =--+.((2)如右图)如右图. . . …………… …………… …………… 44分((3)31x -<< …………… …………… …………… 55分2121.解:过点.解:过点C 作CD ⊥AB 于点D ,如图,如图. . . …………………………………… 1…………………………………… 1分∵在Rt △CDA 中,30A Ð=°, ∴sin 3033CD AC =´°=,cos309AD AC =´°=. .......................................... (2)2分 ∵在Rt △CDB 中,4cos 5DB B CB ==, ∴设∴设4DB x =,5CB x =.21DECMA B F321DEC MA B F∴3CD x =. . …………… …………… …………… 33分 ∴3x =.∴443DB x ==. …………………………………… …………………………………… 44分 ∴943AB =+. …………………………………… …………………………………… 55分2222.解:(.解:(.解:(11)∵点(1,)C m 在直线22y x =+上,上,∴4m =. …………………………………… …………………………………… …………………………………… 11分又∵点又∵点(1,4)C 在双曲线ky x=上,上, ∴4k =.∴双曲线地表达式为4y x=. . …………………………………… …………………………………… …………………………………… 22分((2)点D 地坐标是(2,2). . …………………………………… …………………………………… …………………………………… 33分点P 地坐标为(1,0)或(3,0)-. . …………………………………… …………………………………… …………………………………… 55分2323.解法一:根据题意,得.解法一:根据题意,得 1.5CF BE AD ===,40AB DE ==. 设设MC 为x m .在在Rt △MCB 中,tan 1=MCBCÐ, ∴3=tan 603xBC x =°. ……… 1分同理可得3AC x =.……… 2分∴33=403x x +. . ………………… ………………… ………………… 33分解得20334.64x =». . ………………… ………………… ………………… 44分∴34.64 1.536.1436.1m MF MC CF =+»+=»(). . …………… 5…………… 5分 答:古塔地高约为36.1米.解法二:根据题意,得 1.5CF BE AD ===,40AB DE ==. ∵123Ð=Ð+Ð,160Ð=°,230Ð=°,∴3=2=30Ðа. . ………… 2………… 2分∴==40MB AB . . ………… 3………… 3分在Rt △MCB 中,sin 1=MCMB Ð,∴40sin 6020334.64MC =´°=». . ………… 4………… 4分∴34.64 1.536.1436.1m MF MC CF =+»+=»(). . …………… 5…………… 5分答:古塔地高约为36.1米.2424.解:.解:(30)y w x =- …………………………………………… 1…………………………………………… 1分(3150)(30)x x =-+-232404500x x =-+- ………………………………………………………………………………………… …………………………………………… 22分21BO AD CE 1FBOA D CE1BOADCE 23(40)300x =--+ (4)…………………………………………… 4分 ∵30≤x ≤50,且30a =-<,∴当=40x 时,=300y 最大值. . …………………………………………… 5…………………………………………… 5分答:当该商品销售单价定为每件40元时,每天地利润最大,最大利润为300元.2525.(.(.(11)证明:连接OD ,如图1.∵OD 是⊙O 半径,DE 为⊙O 地切线,地切线, ∴OD ⊥DE . ∵DE ⊥AC ,∴OD ∥AC . ………………… 1分 ∴1C Ð=Ð. ∵OD OB =, ∴1B Ð=Ð. ∴C B Ð=Ð.∴AB AC = …………………… 2分(2) 解法一:解法一:连接AD ,如图2. ∵5AB =,1AE =,∴52OD =,5AC AB ==,4EC =. ∵AB 是⊙O 地直径地直径, ,∴AD ⊥BC . 又∵DE ⊥AC ,∴△CDE ∽△DAE . …………… 3分 ∴2DE CE AE =×.∴2DE =. . …………… 4…………… 4分 在Rt △EDO 中,4tan 25DE OD Ð==. ∵OD ∥AC , ∴2AEO Ð=Ð. ∴4tan 5AEO Ð=. . …………………………………………… 5…………………………………………… 5分 解法二:解法二:过点O 作OF ⊥CA ,交CA地延长线于点F ,如图3. ∴四边形ODEF 是矩形是矩形. .∴1522EF OD AB ===. . ………… 3………… 3分∴32AF EF AE =-=.图1图2图3y xy =1–1–2–312–11234HP'POyx–1–2–3–4–512345–1–2–3–4–5–6123456Oy xy =n–1–2–312–11234EFDBO在Rt △AFO 中,由勾股定理得2OF =. . …………………… …………………… …………………… 44分在Rt △EFO 中,4tan 5OF AEO EF Ð==.…………………… …………………… 55分2626.(.(.(11)0x ¹. . ……………… 1……………… 1分 (2)1m =-. . ……………… ……………… ……………… 22分 (3)此函数地图象如右图所示)此函数地图象如右图所示. . . ……………… ……………… ……………… 44分 (4)此函数地性质:)此函数地性质:① 当① 当0x <时,y 随x 地增大而增大;地增大而增大; 当当0x >时,y 随x 地增大而增大地增大而增大. . ② 关于原点成中心对称② 关于原点成中心对称② 关于原点成中心对称. .③ 函数地图象与③ 函数地图象与y 轴无交点轴无交点. . ………………(写出一条即可)(写出一条即可) …………… 5…………… 5分2727.解:(.解:(.解:(11)∵抛物线C :2(3)y x m x =+-经过点(10)A -,,∴1(3)0m --=. ………………… ………………… 11分∴2m =.∴抛物线∴抛物线C 地表达式为2y x x =+. . ………………… ………………… ………………… 22分(2)抛物线C :2y x x =+地顶点为11(,)24P --,如图1. ………… 3分点11(,)24P --关于直线1=y 地对称点为P ¢19(,)24-. ∴抛物线1C 地顶点坐标为19(,)24-. . ………………… ………………… ………………… 44分(3)解法一:)解法一:∵正方形地边长为∵正方形地边长为2,抛物线地对称轴为12x =-,∴正方形地顶点B 地坐标为13(,)24,如图2. 2. ………………… ………………… ………………… 66分 ∴3=14n -.图1 1 图图2NEDFABCM NEDF AB CM yx66F P'EP A O ∴74n =. . ………………… ………………… ………………… 77分解法二:解法二:解法二:∵正方形地边长为∵正方形地边长为2,抛物线地对称轴为12x =-, ∴设正方形地顶点B 地坐标为1(,1)2n -,如图2. 2. ………………… ………………… ………………… 66分∵点B 1(,1)2n -在抛物线2y x x =+上,上,∴74n =. . ………………… ………………… ………………… 77分 2828.(.(.(11)FN EM=. …………… 1分 ((2)补全图形,如图1所示所示. . . …………… 2…………… 2分结论成立结论成立. .证明:连接证明:连接ED ,EF ,DF ,如图2.∵△ABC 是等边三角形,是等边三角形,∴∴AB BC AC a ===.∵D ,E ,F 分别是边AB ,BC ,AC 地中点,地中点,∴12DF DE EF a ===.∴∴60FDE Ð=°.又∵△又∵△DMN 是等边三角形,是等边三角形,∴DN DM =,60MDN Ð=°. ∴FDN EDM Ð=Ð.∴△DFN ≌△DEM . ……………………………… ……………………………… 44分 ∴FN EM =. ……………………………… 5分((3)CM 地长为1或2. 2. ……………………………… ……………………………… ……………………………… 77分 29.29.((1)①)① (60)A ¢,,(22)B ¢-,. . ……………………………………………………………… ……………………………… 22分 ② 解法一:解法一:过点P ¢作P E ¢⊥x 轴于点E ,如图1.∵∵1632P OA S OA P E ¢¢=´=△, ∴∴23P E ¢=. . …………… …………… …………… 33分∵点P ¢在正比例函数3y x =位于位于 第一象限内地图象上,第一象限内地图象上,∴'=23P y .∴∴'=2P x .∴∴4OP ¢=,'60P OE Ð=°. . …………… …………… …………… 44分 ∵点∵点P 关于⊙O 地反演点是P ¢点,点,图1图1 图2 yx66P'EHFP AO∴∴26OP OP ¢×=. ∴∴9OP =. . ……………………………… ……………………………… ……………………………… 55分 过点过点P 作PF ⊥x 轴于点F . ∴∴92OF =,932PF =.∴点∴点P 地坐标为99322P (,). . ……………………………… ……………………………… ……………………………… 66分 解法二:解法二:过点A 作AH ⊥PP ¢于点H ,如图2.∵点P ¢在正比例函数3y x =位于第一象限内地图象上,位于第一象限内地图象上, ∴设点P 地坐标为3t t (,),其中0t >. ∴3tan 3t POA tÐ==.∴60POA Ð=° . . ……………………………… ……………………………… ……………………………… 44分 在Rt △OHA 中,sin 33AH OA AOH =´Ð=. ∵∵1632P OA S OP AH ¢¢=´=△, ∴∴4OP ¢=.∵点P 关于⊙O 地反演点是P ¢点,点,∴∴26OP OP ¢×=.∴9OP =. . ………… ………… ………… 55分 过点P 作PF ⊥x 轴于点F . 在在Rt △OFP 中,2223t t +()=9. 解得192t =,292t -=(舍去)(舍去). . ∴点∴点P 地坐标为99322P (,). . ……………………………………………………………… ……………………………… 66分 (2)1-≤n ≤54. . ……………………………………………………………… ……………………………… 88分赠送—初中英语总复习知识点归纳并列句and 和,并且, work hard, and you can pass the exam.but 但是 he is rich but he is not happy.Or 否则,要不然,或者(在否定句中表和) Hurry up, or you’ll be late. so 因此,所以 Kate was il l so she didn’t go to school.图2用that。
【全国市级联考】北京市石景山区2017届高三3月统一练习理数(原卷版)

北京市石景山区2017届高三3月统一练习理数试题第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,那么等于()A. B.C. D.2. 已知实数满足,则的最大值是()A. 4B. 6C. 10D. 123. 直线被圆所截得的弦长为()A. 1B.C. 2D. 44. 设,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 我国南宋数学家秦九韶(约公元1202—1261年)给出了求次多项式当时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:之后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.B.C.D.6. 某三棱锥的三视图如图所示,则该三棱锥的表面积是()A. B. C. D. 57. 如图,在矩形中,,,点为的中点,点在边上,若,则的值是()A. B. 1 C. D. 28. 如图,将正三角形分割成个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成个边长为1的小正三角形.若,则三角形的边长是()A. 10B. 11C. 12D. 13第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 若复数是纯虚数,则实数__________.10. 在数列中,,,那么等于__________.11. 若抛物线的焦点与双曲线的右顶点重合,则__________.12. 如果将函数的图象向左平移个单位所得到的图象关于原点对称,那么__________.13. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是__________.(用数字做答)14. 已知.①当时,,则___________;②当时,若有三个不等实数根,且它们成等差数列,则__________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15. 已知分别是的三个内角的三条对边,且.(Ⅰ)求角的大小;(Ⅱ)求的最大值.16. 某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按,,,,分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.17. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,为中点,点在上,且平面,连接,.(Ⅰ)证明:平面;(Ⅱ)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知,,求二面角的余弦值.18. 已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)若对任意恒成立,求实数的最大值.19. 已知椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于、两点,以为对角线作正方形,记直线与轴的交点为,问、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20. 已知集合.对于,,定义与之间的距离为.(Ⅰ)写出中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合满足:,且任意两元素间的距离均为2,求集合中元素个数的最大值并写出此时的集合;(Ⅲ)设集合,中有个元素,记中所有两元素间的距离的平均值为,证明.。
北京市石景山2017届高三一模数学(理)试题【含答案】

北京石景山区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B =I ( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.已知实数x y ,满足0620x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值是( )A .4B .6C .10D .123.直线1cos 2ρθ=被圆1ρ=所截得的弦长为( )A .1BC .2D .44.设R θ∈,“sin cos θθ=”是“cos 20θ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.我国南宋数学家秦九韶(约公元1202-1261年)给出了求()n n N *∈次多项式11n n n n a x a x --++10a x a ++,当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:()()323210321a x a x a x a a x a x a x a +++=+++之后进行求值.运行如图所示的程序框图,能求得多项式( )的值. A .432234x x x x ++++ B .4322345x x x x ++++ C .3223x x x +++D .32234x x x +++6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+B.2+C.4+D .57.如图,在矩形ABCD中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=uu u r uu u r AE BF ⋅uu u r uu u r的值是( )A.2B .1CD .28.如图,将正ABC ∆分割成m 个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n 个边长为1的小正三角形.若:47:25m n =,则ABC ∆的边长是( ) A .10B .11C .12D .13二、填空题共6小题,每小题5分,共30分. 9.若复数1a ii+-是纯虚数,则实数a = . 10.在数列{}n a 中,11a =,()12123n n a a n +⋅=-=,,,,那么8a = . 11.若抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则p = . 12.如果将函数()()()sin 30f x x ϕπϕ=+-<<的图象向左平移12π个单位所得到的图象关于原点对称,那么ϕ= .13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 .(用数字做答)14.已知()424a x x a x f x x x a x ⎧⎛⎫-+< ⎪⎪⎪⎝⎭=⎨⎪-≥⎪⎩,,. ①当1a =时,()3f x =,则x = ;②当1a ≤-时,若()3f x =有三个不等实数根,且它们成等差数列,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知a b c 、、分别是ABC ∆的三个内角A B C 、、的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos +的最大值.某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(]010, ,(]1020, ,(]2030, ,(]3040, ,(]4050, 分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a 的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为21s ,22s ,试比较21s 与22s 的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(]020, 的数据样本中抽取3个,记在(]010, 内的数据个数为X ,求X 的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(]010, 中的个数.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑(bi ē n ào ).如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD C D =,E 为PC 中点,点F 在PB 上,且PB ⊥平面DEF ,连接BD ,BE .(Ⅰ)证明:DE ⊥平面PBC ;(Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知2AD CD ==,F AD B --的余弦值.已知函数()ln f x x =.(Ⅰ)求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)求证:当0x >时,()11f x x≥-;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值.已知椭圆()2222:10x y E a b a b +=>>过点()01, ,且离心率为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1:2l y x m =+与椭圆E 交于A C 、两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,问B N 、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.已知集合(){}{}()1201122nn i R X X x x x x i n n ==∈=≥,,,,,,,,,.对于 ()12n n A a a a R =∈,,,,()12n n B b b b R =∈,,,定义A 与B 之间的距离为()11221nn n i i i d A B a b a b a b a b ==-+-+-=-∑,.(Ⅰ)写出2R 中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M 满足:3M R ⊆,且任意两元素间的距离均为M ,求集合M 中元素个数的最大值并写出此时的集合M ;(Ⅲ)设集合n P R ⊆,P 中有()2m m ≥个元素,记P 中所有两元素间的距离的平均值为()dP ,证明()()21mnd P m ≤-.石景山区2017年高三统一练习数学(理)试卷答案及评分参考三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)因为222c a b ab =+-,所以2221cos 22a b c C ab +-==. ……3分 又因为(0,π)C ∈, 所以π3C =. …………6分 (Ⅱ)由(Ⅰ)知π3C =, 又πA B C++=, 所以2π3B A =-且2π(0,)3A ∈, 故2πcos cos cos cos()3A B A A +=+-2π2πcos cos cos sin sin 33A A A =++ 1πcos sin()26A A A =+=+. 又2π(0,)3A ∈,5π(,)666A ππ+∈, 所以当ππ62A +=即π3A =时,cos cos AB +的最大值为1. …13分16.(本小题共13分)解:(Ⅰ)由图(乙)知,10(0.020.030.0250.015)1a ++++=解得0.01a =,22s s >.………………… 3分(Ⅱ)X 的所有可能取值1,2,3.则()124236115C C P X C ===,()214236325C C P X C ===,()304236135C C P X C ===, 其分布列如下:…………………8分 (Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2345620++++=个,其中有4个数据在区间(0,10]内.又因为分层抽样共抽取了12005%60⨯=个数据, 乙种酸奶的数据共抽取602040-=个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1, 故乙种酸奶的日销售量数据在区间(0,10]内有400.14⨯=个. 故抽取的60个数据,共有448+=个数据在区间(0,10]内. 所以,在1200个数据中,在区间(0,10]内的数据有160个.……………13分17.(本小题共14分)(Ⅰ)因为PD ⊥ 面ABCD ,BC ⊂面ABCD ,所以BC PD ⊥.因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D =, 所以BC ⊥面PDC .DE ⊂面PDC , DE BC ⊥, 在PDC ∆中,PD DC =,E 为PC 中点 所以DE PC ⊥. PC BC C =,所以DE ⊥面PBC . ……………………………………4分(Ⅱ)四面体DBEF 是鳖臑,其中π2BED FED ∠=∠=,π2BFE BFD ∠=∠=. ……………………………………9分(Ⅲ)以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.(0,0,0),(2,0,0),D A C P B .设PF PB λ=,则(2)F λ.DF PB ⊥得0DF PB =解得14λ=.所以1(,244F . ………11分 设平面FDA 的法向量(,,)n x y z =,1024420n DF x y z n DA x ⎧⎧⊥++=⎪⎪⇒⎨⎨⊥⎪⎪⎩=⎩令1z = 得0,3x y ==-. 平面FDA 的法向量(0,3,1)n =-,平面BDA的法向量DP =,cos ,10n DPn DP n DP -<>===. 二面角F AD B -- . …………………14分 18.(本小题共13分)解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x x x =--=-+. 22111'()x g x x x x-=-= ………5分 令21'()0x g x x-==,解得1x =. ………6分 易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分(Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x a h x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增,当1>x 时,()(1)0h x h >=,满足题意. ………11分 1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意. ………12分综上所述,实数a 的最大值为1. ………13分19.(本小题共14分)解:(Ⅰ)设椭圆的半焦距为c .因为点(0,1)在椭圆C 上,所以1b =.故221a c -=.又因为2c e a ==,所以c =2a =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分 (Ⅱ) 设1122(,),(,)A x y C x y ,线段AC 中点为00(,)M x y .联立 2214402y x m x y =++-=和,得:222220x mx m ++-=.由222(2)4(22)840m m m ∆=--=->,可得m < 所以122x x m +=-,21222x x m =-. ……………8分 所以AC 中点为1(,)2M m m -. …………9分弦长||AC === ………10分又直线l 与x 轴的交点(2,0)N m -, ………11分所以||MN ==. ………12分 所以2222215||||||||||42BN BM MN AC MN =+=+=. 所以B 、N………14分20.(本小题共13分)解:(Ⅰ)2{(0,0),(0,1),(1,0),(1,1)}R =,2,A B R ∈ ,max (,)2d A B =. …………………3分 (Ⅱ)3R 中含有8个元素,可将其看成正方体的8个顶点,已知集合M 中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}M = 或{(0,0,1),(0,1,0),(1,0,0),(1,1,1)}M =,集合M 中元素个数最大值为4. ………………8分 (Ⅲ)2,1()(,)A B P m d P d A B C ∈=∑ ,其中,(,)A B Pd A B ∈∑表示P 中所有两个元素间距离的总和. 设P 中所有元素的第i 个位置的数字中共有i t 个1,i m t -个0,则,1(,)()ni i A B P i d A B t m t ∈==-∑∑ 由于2()(1,2,,)4i i m t m t i n -≤= 所以2,1(,)()4n i i A B P i nm d A B t m t ∈==-≤∑∑ 从而222,1()(,)42(1)A B P mm nm nm d P d A B C C m ∈=≤=-∑ …………………13分。
2017年北京市石景山区中考数学一模试卷含答案解析

2016年北京市石景山区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.据北京市商务委表示,除夕至初五,21家节能减排补贴商品定点销售企业销售额超过28000000元.将28000000用科学记数法表示应为( ) A .0.28×108B .2.8×108C .2.8×107D .28×1062.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值小于2的数对应的点是( )A .点AB .点BC .点CD .点D3.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是( )A .B .C .D .4.某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如下:则本组数据的众数与中位数分别为( ) A .5,4B .6,5C .7,6D .5,55.脸谱是中国戏曲演员脸上的绘画,用于舞台演出时的化妆造型,助增所扮演人物的性格和特征.在下列八张脸谱图片中,随机抽取一张为的概率是( )A .B .C .D .6.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120° D.110°7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C. D.8.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()A.45°B.90°C.100° D.135°9.王先生清明节期间驾车游玩,每次加油都把油箱加满.如表记录了该车相邻两次加油时的相关数据:注:“累计里程”指汽车从出厂开始累计行驶的路程.根据数据,王先生计算出这段时间内该车行驶一百公里的平均耗油量大约是()A.7升 B.8升 C.9升 D.10升10.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B 出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D二、填空题(本题共18分,每小题3分)11.分解因式:am2﹣4an2=.12.在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.13.反比例函数y=的图象上有两个点A(﹣2,y1),B(1,y2),则y1y2(用“>”,“<”或“=”连接).14.如图,AD=AE,请你添加一个条件,使得△ADC≌△AEB.15.某市2012~2016年春节期间烟花爆竹销售量统计如图所示,根据统计图中提供的信息,预估2017年该市春节期间烟花爆竹销售量约为万箱,你的预估理由是.16.阅读下面材料:在数学课上,老师请同学思考如下问题:小轩的主要作法如下:老师说:“小轩的作法正确.”请回答:⊙P与BC相切的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:|1﹣|+(π﹣3.14)0﹣2sin60°+()﹣2.18.已知m﹣n=,求()÷的值.19.求不等式组的整数解.20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.求证:∠AED=∠DCB.21.已知关于x的一元二次方程x2﹣3x+1﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为负整数,求此时方程的根.22.某校组织“衫衫来了,爱心义卖”活动,购进了黑白两种纯色的文化衫共200件,进行DIY手绘设计后出售,所获利润全部捐给“太阳村”.每种文化衫的成本和售价如下表:假设文化衫全部售出,共获利3040元,求购进两种文化衫各多少件?23.如图,在△ABC中,∠ABC=90°,过点B作AC的平行线交∠CAB的平分线于点D,过点D作AB的平行线交AC于点E,交BC于点F,连接BE,交AD于点G.(1)求证:四边形ABDE是菱形;(2)若BD=14,cos∠GBH=,求GH的长.24.阅读下面材料:春节是中国最重要的传统佳节,而为期40天的春运被称为“人类规模最大的周期性迁徙”.2016年春运40天,全国铁路客运量3.25亿人次,同比增长10.2%;全国公路客运量24.95亿人次,同比增长3%;水路客运量4260万人次,同比下降0.6%;民航客运量5140万人次,同比增长4.7%.今年春运在正月初七达到最高峰,铁路春运再创单日旅客发送人数新高,达到1034.4万人次.2015年春运40天,全国铁路客运量2.95亿人次,同比增幅10.4%.全国公路客运量24.22亿人次,水路客运量4284万人次,民航客运量4914万人次.2014年春运40天,全国公路客运量32.6亿人次;民航客运量4407万人次;全国铁路客运量2.66亿人次,增长约12%.其中,2月6日全国铁路客运量达到835.7万人次,比去年春运最高峰日多发送93.1万人次.根据以上材料解答下列问题:(1)2016年春运40天全国民航客运量比2014年多万人次;(2)请你选择统计表或统计图,将2014~2016年春运40天全国铁路、公路客运量表示出来.25.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:EF⊥AB;(2)若∠C=30°,EF=,求EB的长.26.阅读下面材料:上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.请结合小捷的思路回答:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是.参考小捷思考问题的方法,解决问题:关于x的方程x﹣4=在0<a<4范围内有两个解,求a的取值范围.27.在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围.28.在正方形ABCD中,E为边CD上一点,连接BE.(1)请你在图1画出△BEM,使得△BEM与△BEC关于直线BE对称;(2)若边AD上存在一点F,使得AF+CE=EF,请你在图2中探究∠ABF与∠CBE 的数量关系并证明;(3)在(2)的条件下,若点E为边CD的三等分点,且CE<DE,请写出求cos ∠FED的思路.(可以不写出计算结果).29.在平面直角坐标系xOy中,图形W在坐标轴上的投影长度定义如下:设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.若|x1﹣x2|的最大值为m,则图形W在x轴上的投影长度l1=M;若|y1﹣y2|的最大值为n,则图形W在y轴上的投影长度l y=n.如图1,图形W在x轴上的投影长度l x=|3﹣1|=2;在y轴上的投影长度l y=|4﹣0|=4.(1)已知点A(3,3),B(4,1).如图2所示,若图形W为△OAB,则l x,l y.(2)已知点C(4,0),点D在直线y=2x+6上,若图形W为△OCD.当l x=l y时,求点D的坐标.(3)若图形W为函数y=x2(a≤x≤b)的图象,其中0≤a<b.当该图形满足l x=l y ≤1时,请直接写出a的取值范围.2016年北京市石景山区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.据北京市商务委表示,除夕至初五,21家节能减排补贴商品定点销售企业销售额超过28000000元.将28000000用科学记数法表示应为()A.0.28×108B.2.8×108C.2.8×107D.28×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将28000000用科学记数法表示为2.8×107.故选C2.如图,数轴上有A,B,C,D四个点,其中绝对值小于2的数对应的点是()A.点A B.点B C.点C D.点D【考点】绝对值;数轴.【分析】根据数轴可得,点A,B,C,D表示的数分别是﹣2,﹣0.5,2,3,求出绝对值,即可解答.【解答】解:点A,B,C,D表示的数分别是﹣2,﹣0.5,2,3,其绝对值分别为2,0.5,2,3,故选B.3.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A .B .C .D .【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A 、不是中心对称图形,故此选项正确; B 、是中心对称图形,故此选项错误; C 、是中心对称图形,故此选项错误; D 、是中心对称图形,故此选项错误; 故选:A .4.某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如下:则本组数据的众数与中位数分别为( ) A .5,4B .6,5C .7,6D .5,5【考点】众数;中位数.【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可. 【解答】解:∵5出现了3次,出现的次数最多, ∴这组数据的众数是5;把这组数据从小到大排列为:4,5,5,5,6,6,7, 最中间的数是5; 故中位数为5, 故选D .5.脸谱是中国戏曲演员脸上的绘画,用于舞台演出时的化妆造型,助增所扮演人物的性格和特征.在下列八张脸谱图片中,随机抽取一张为的概率是()A.B.C.D.【考点】概率公式.【分析】由八张脸谱图片中,为的有3个,直接利用概率公式求解即可求得答案.【解答】解:∵八张脸谱图片中,为的有3个,∴在下列八张脸谱图片中,随机抽取一张为的概率是:.故选D.6.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120° D.110°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由∠ACB=90°得出∠4的度数,根据补角的定义即可得出结论.【解答】解:∵m∥n,∠1=40°,∴∠3=∠1=40°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣40°=50°,∴∠2=180°﹣∠4=180°﹣50°=130°.故选B.7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C. D.【考点】简单几何体的三视图.【分析】看哪个几何体的三视图中有圆,三角形即可.【解答】解:A、三视图都为正方形,故A选项不符合题意;B、三视图分别为长方形,长方形,圆,故B选项不符合题意;C、三视图分别为三角形,三角形,圆,故C选项符合题意;D、三视图都为圆,故D选项不符合题意;故选C.8.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()A.45°B.90°C.100° D.135°【考点】圆内接四边形的性质;圆周角定理.【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°.∴∠D=180°﹣135°=45°.∴∠AOC=90°.故选;B.9.王先生清明节期间驾车游玩,每次加油都把油箱加满.如表记录了该车相邻两次加油时的相关数据:注:“累计里程”指汽车从出厂开始累计行驶的路程.根据数据,王先生计算出这段时间内该车行驶一百公里的平均耗油量大约是()A.7升 B.8升 C.9升 D.10升【考点】一元一次方程的应用.【分析】设这段时间内该车行驶一百公里的平均耗油量大约是x升,根据总耗油量=路程×每百公里耗油量即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设这段时间内该车行驶一百公里的平均耗油量大约是x升,根据题意得:x=48,解得:x=8.故选B.10.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B 出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【考点】动点问题的函数图象.【分析】根据题意,可以得到各个监测点监测P时,y随t的变化而如何变化,从而可以根据函数图象可以得到选择哪个选项.【解答】解:由题意和图象,可得由监测点A监测P时,函数值y随t的增大先减小再增大;由监测点B监测P时,函数值y随t的增大而增大;由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小;由监测点D监测P时,函数值y随t的增大而减小;故选C.二、填空题(本题共18分,每小题3分)11.分解因式:am2﹣4an2=a(m+2n)(m﹣2n).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用平方差公式进行二次分解即可.【解答】解:am2﹣4an2=a(m2﹣4n2)=a(m+2n)(m﹣2n),故答案为:a(m+2n)(m﹣2n).12.在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为12.【考点】菱形的性质.【分析】如图,根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.【解答】解:读图可知,AC=4,BD=6,则该菱形的面积为4×6×=12.故答案为12.13.反比例函数y=的图象上有两个点A(﹣2,y1),B(1,y2),则y1<y2(用“>”,“<”或“=”连接).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=的图象上有两个点A(﹣2,y1),B(1,y2),可以求得y1,y2的值,从而可以比较它们的大小,本题得以解决.【解答】解:∵反比例函数y=的图象上有两个点A(﹣2,y1),B(1,y2),∴,,解得y1=﹣3,y2=6,∵﹣3<﹣6,∴y1<y2.故答案为:<.14.如图,AD=AE,请你添加一个条件AB=AC或∠ADC=∠AEB或∠ABE=∠ACD,使得△ADC≌△AEB.【考点】全等三角形的判定.【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;15.某市2012~2016年春节期间烟花爆竹销售量统计如图所示,根据统计图中提供的信息,预估2017年该市春节期间烟花爆竹销售量约为8万箱,你的预估理由是2012到2015年销售量下降明显,但2015到2015年下降趋势变缓.【考点】用样本估计总体;折线统计图.【分析】根据折线统计图可以得到得到各年相对去年的减少量,从而可以预估2017年烟花爆竹销售量,并说明理由.【解答】解:∵由折线统计图可知,2012﹣2013年销售量减少41﹣26=15(万箱),2013﹣2014年销售量减少26﹣12.6=13.4(万箱),2014﹣2015年销售量减少12.6﹣8.3=4.3(万箱),2015﹣2016年销售量减少8.3﹣8.1=0.2(万箱),由以上预估2017年该市春节期间烟花爆竹销售量约为8万箱,理由:2012到2015年销售量下降明显,但2015到2016年下降趋势明显变缓;故答案为:8,2012到2015年销售量下降明显,但2015到2016年下降趋势变缓.16.阅读下面材料:在数学课上,老师请同学思考如下问题:小轩的主要作法如下:老师说:“小轩的作法正确.”请回答:⊙P与BC相切的依据是经过半径的外端点并且垂直于这条半径的直线是圆的切线..【考点】切线的判定.【分析】作PD⊥BC,根据角平分线上的点到角两边的距离相等,易得PD=PA,根据切线的判定定理可证得BC是⊙P的切线.【解答】证明:作PD⊥BC,∵BF平分∠ABC,∠A=90°∴PA=PD,∴PD是⊙P的半径,∴D在⊙P上,∴BC是⊙P的切线.故答案为:经过半径的外端点并且垂直于这条半径的直线是圆的切线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:|1﹣|+(π﹣3.14)0﹣2sin60°+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=﹣1+1﹣2×+4=4.18.已知m﹣n=,求()÷的值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把m﹣n的值代入进行计算即可.【解答】解:原式=•mn=n﹣m,∵m﹣n=,∴原式=﹣.19.求不等式组的整数解.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求其整数解即可.【解答】解:解不等式①得:x>﹣2;解不等式②得:x≤;所以不等式组的解集为﹣2<x≤.整数解为:﹣1,0,1.20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.求证:∠AED=∠DCB.【考点】直角三角形斜边上的中线.【分析】首先根据直角三角形斜边上的中线等于斜边的一半得出CD=AB=DB,由等边对等角得到∠B=∠DCB.再根据直角三角形两锐角互余得出∠A+∠AED=90°,∠A+∠B=90°,那么根据同角的余角相等得出∠B=∠AED,等量代换即可得出∠AED=∠DCB.【解答】证明:∵在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,∴CD=AB=DB,∴∠B=∠DCB.∵DE⊥AB于点D,∴∠A+∠AED=90°,∵∠A+∠B=90°,∴∠B=∠AED,∴∠AED=∠DCB.21.已知关于x的一元二次方程x2﹣3x+1﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为负整数,求此时方程的根.【考点】根的判别式.【分析】(1)要使方程有两个不相等的实数根,只需根的判别式大于0即可;(2)由k为负整数可得到k的值,代入原方程,然后解这个方程即可.【解答】解:(1)由题可得:(﹣3)2﹣4(1﹣k)>0,解得k>﹣;(2)若k为负整数,则k=﹣1,此时原方程为x2﹣3x+2=0,解得x1=1,x2=2.22.某校组织“衫衫来了,爱心义卖”活动,购进了黑白两种纯色的文化衫共200件,进行DIY手绘设计后出售,所获利润全部捐给“太阳村”.每种文化衫的成本和售价如下表:假设文化衫全部售出,共获利3040元,求购进两种文化衫各多少件?【考点】二元一次方程组的应用.【分析】设购进白色文化衫x件,购进黑色文化衫y件,根据购进两种文化衫共200件,共获利3040元,列方程组求解.【解答】解:设购进白色文化衫x件,购进黑色文化衫y件,根据题意可得:,解得:,答:购进白色文化衫120件,购进黑色文化衫80件.23.如图,在△ABC中,∠ABC=90°,过点B作AC的平行线交∠CAB的平分线于点D,过点D作AB的平行线交AC于点E,交BC于点F,连接BE,交AD于点G.(1)求证:四边形ABDE是菱形;(2)若BD=14,cos∠GBH=,求GH的长.【考点】菱形的判定与性质.【分析】(1)首先证明四边形ABDE是平行四边形,再根据角平分线和平行线的性质证明∠BAD=∠ADB,然后可得AB=BD,从而可得结论;(2)首先证明∠GAB=∠GBH,根据cos∠GBH=可得cos∠GAB=,根据余弦定义可得==,再由菱形的性质可得AB=BD=14,从而可得AH、AG的长,进而可得GH的长.【解答】(1)证明:∵AC∥BD,AB∥ED,∴四边形ABDE是平行四边形,∵AD平分∠CAB,∴∠CAD=∠BAD,∵AC∥BD,∴∠CAD=∠ADB,∴∠BAD=∠ADB,∴AB=BD,∴四边形ABDE是菱形;(2)解:∵∠ABC=90°,∴∠GBH+∠ABG=90°,∵AD⊥BE,∴∠GAB+∠ABG=90°,∴∠GAB=∠GBH,∵cos∠GBH=,∴cos∠GAB=,∴==,∵四边形ABDE是菱形,BD=14,∴AB=BD=14,∴AH=16,AG=,∴GH=AH﹣AG=.24.阅读下面材料:春节是中国最重要的传统佳节,而为期40天的春运被称为“人类规模最大的周期性迁徙”.2016年春运40天,全国铁路客运量3.25亿人次,同比增长10.2%;全国公路客运量24.95亿人次,同比增长3%;水路客运量4260万人次,同比下降0.6%;民航客运量5140万人次,同比增长4.7%.今年春运在正月初七达到最高峰,铁路春运再创单日旅客发送人数新高,达到1034.4万人次.2015年春运40天,全国铁路客运量2.95亿人次,同比增幅10.4%.全国公路客运量24.22亿人次,水路客运量4284万人次,民航客运量4914万人次.2014年春运40天,全国公路客运量32.6亿人次;民航客运量4407万人次;全国铁路客运量2.66亿人次,增长约12%.其中,2月6日全国铁路客运量达到835.7万人次,比去年春运最高峰日多发送93.1万人次.根据以上材料解答下列问题:(1)2016年春运40天全国民航客运量比2014年多733万人次;(2)请你选择统计表或统计图,将2014~2016年春运40天全国铁路、公路客运量表示出来.【考点】统计图的选择;用样本估计总体.【分析】(1)根据有理数的减法,可得答案;(2)根据运客量,可得统计表.【解答】解:(1)5140﹣4407=733万人,故答案为:733;(2)2014~2016年春运40天全国铁路、公路客运量统计表(单位:亿人次)25.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:EF⊥AB;(2)若∠C=30°,EF=,求EB的长.【考点】切线的性质.【分析】(1)连接AD、OD,根据直径所对的圆周角是直角求出∠ADC=90°,根据等腰三角形的性质证明D是BC的中点,得到OD是△ABC的中位线,根据切线的性质证明结论;(2)根据三角形的内角和得到∠AOD=60°,∠F=30°,根据直角三角形的性质得到OA=OD=OF,求得AE=根据平行线等分线段定理得到OD=2AE=2,AB=2OD=4,由线段的和差即可得到结论.【解答】(1)证明:连接AD、OD,∵AC为⊙O的直径,∴∠ADC=90°,又∵AB=AC,∴CD=DB,又CO=AO,∴OD∥AB,∵FD是⊙O的切线,∴OD⊥EF,∴FE⊥AB;(2)∵∠C=30°,∴∠AOD=60°,∴∠F=30°,∴OA=OD=OF,∵∠AEF=90°EF=,∴AE=,∵OD∥AB,OA=OC=AF,∴OD=2AE=2,AB=2OD=4,∴EB=3.26.阅读下面材料:上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.请结合小捷的思路回答:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是a<﹣2.参考小捷思考问题的方法,解决问题:关于x的方程x﹣4=在0<a<4范围内有两个解,求a的取值范围.【考点】二次函数与不等式(组).【分析】请结合小捷的思路回答:直接根据函数的顶点坐标可得出a的取值范围;设y1=x2﹣4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可得出结论.【解答】解:请结合小捷的思路回答:由函数图象可知,a<﹣2时,关于x的不等式x2﹣2x﹣1﹣a>0恒成立.故答案为:a<﹣2.解决问题:将原方程转化为x2﹣4x+3=a,设y1=x2﹣4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可知,a的取值范围是:﹣1<a <3.27.在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围.【考点】抛物线与x轴的交点.【分析】(1)把点A(﹣5,6)代入抛物线y=mx2+4x+1求出m的值,即可得出抛物线的表达式与顶点坐标;(2)先求出直线y=﹣x+1与直线y=x+3的交点,即可得出其对称轴,根据抛物线的对称轴方程求出m的值即可;(3)根据抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间可知当x=﹣1时,y>0,且△≥0,求出m的取值范围即可.【解答】解:(1)∵抛物线C:y=mx2+4x+1经过点A(﹣5,6),∴6=25m﹣20+1,解得m=1,∴抛物线的表达式为y=x2+4x+1=(x+2)2﹣3,∴抛物线的顶点坐标为(﹣2,﹣3);(2)∵直线y=﹣x+1与直线y=x+3的交点为(﹣1,2),∴两直线的对称轴为直线x=﹣1.∵直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称,∴﹣=﹣1,解得m=2;(3)∵抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间,∴当x=﹣1时,y>0,且△≥0,即,解得3<m≤4.28.在正方形ABCD中,E为边CD上一点,连接BE.(1)请你在图1画出△BEM,使得△BEM与△BEC关于直线BE对称;(2)若边AD上存在一点F,使得AF+CE=EF,请你在图2中探究∠ABF与∠CBE 的数量关系并证明;(3)在(2)的条件下,若点E为边CD的三等分点,且CE<DE,请写出求cos ∠FED的思路.(可以不写出计算结果).【考点】四边形综合题.【分析】(1)由题意画出图形即可;(2)根据正方形的性质,判断出△BAF≌△BCG,再判断出△BEF≌△BEG即可;(3)由题意表示出线段,再用EF2=DF2+DE2,列出方程,解出即可.【解答】(1)补全图形,如图1所示,∠ABF与∠CBE的数量关系为:∠ABF+CBE=45°,证明:如图2,连接BF,EF,延长DC到G,使CG=AF,连接BG,∵四边形ABCD是正方形,∴AB=BC,∠A=∠BCD=∠ABC=90°,∴△BAF≌△BCG,∴BF=BG,∠ABF=∠CBG,∵AF+CE=EF,∴EF=GE,∴△BEF≌△BEG,∴∠FBE=∠GBE=∠ABF+∠CBE,∴∠ABF+∠CBE=45°.(3)解:设正方形的边长为3a,AF=x,∵点E是CD三等分点∴EF=CG+CE=x+a,DE=2a,DF=3a﹣x,在Rt△DEF中,EF2=DF2+DE2,∴(x+a)2=(3a﹣x)2+(2a)2,∴x=a,∴EF=x+a=a+a=,∴cos∠FED===.29.在平面直角坐标系xOy中,图形W在坐标轴上的投影长度定义如下:设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.若|x1﹣x2|的最大值为m,则图形W在x轴上的投影长度l1=M;若|y1﹣y2|的最大值为n,则图形W在y轴上的投影长度l y=n.如图1,图形W在x轴上的投影长度l x=|3﹣1|=2;在y轴上的投影长度l y=|4﹣0|=4.(1)已知点A(3,3),B(4,1).如图2所示,若图形W为△OAB,则l x4,l y3.(2)已知点C(4,0),点D在直线y=2x+6上,若图形W为△OCD.当l x=l y时,求点D的坐标.(3)若图形W为函数y=x2(a≤x≤b)的图象,其中0≤a<b.当该图形满足l x=l y ≤1时,请直接写出a的取值范围.【考点】二次函数综合题.【分析】(1)确定出点A在y轴的投影的坐标、点B在x轴上投影的坐标,于是可求得问题的答案;(2)过点P作PD⊥x轴,垂足为P.设D(x,2x+6),则PD=|2x+6|.PC=|3﹣x|,然后依据l x=l y,列方程求解即可;(3)设A(a,a2)、B(b,b2).分别求得图形在y轴和x轴上的投影,由l x=l y 可得到b+a=1,然后根据0≤a<b可求得a的取值范围.【解答】解:(1)∵A(3,3),∴点A在y轴上的正投影的坐标为(0,3).∴△OAB在y轴上的投影长度l y=3.∵B(4,1),∴点B在x轴上的正投影的坐标为(4,0).∴△OAB在x轴上的投影长度l x=4.故答案为:4;3.(2)如图1所示;过点P作PD⊥x轴,垂足为P.设D(x,2x+6),则PD=2x+6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴2x+6=3﹣x,解得;x=﹣1.∴D(﹣1,4).如图2所示:过点D作DP⊥x轴,垂足为P.设D(x,2x+6),则PD=﹣2x﹣6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴﹣2x﹣6=3﹣x,解得;x=﹣9.∴D(﹣9,﹣12).综上所述,点D的坐标为(﹣1,4)或(﹣9,﹣12).(3)如图3所示:。
北京2017年中考数学石景山一模答案
石景山区2017年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共18分,每小题3分) 11.2(3)(3)x x +-.12.答案不唯一,如22y x x =-+.13.4.8. 14.5. 15.(5,120)°. 16.预估理由需包含统计表提供的信息,且支撑预估的数据.如约9900万人次,预估理由是增长趋势平稳. 三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分) 17.解:原式6922=-…………………………………4分 7=-. (5)分18.解:原不等式组为3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,, 解不等式①,得2x -≥.解不等式②,得<1x . ………………………………… 3分∴原不等式组的解集为2<1x -≤. ………………………………… 4分∴原不等式组的整数解为2-,1-,0. (5)① ②分19.证明:∵AB ∥DC ,∴1=F ∠∠,=2B ∠∠. ………………………………… 1分∵E 是CB 的中点, ∴BE CE =.在AEB △和FEC △中,1,=2,,F B BE CE ∠=∠∠∠=⎧⎪⎨⎪⎩∴AEB △≌FEC △. ………………………………… 4分∴=AB FC . ………………………………… 5分20.解:设良马x 天能够追上驽马. ………………………………… 1分由题意,得 24015012x x =⨯+(). ………………………………… 3分解得 20x =. ………………………………… 4分答:良马20天能够追上驽马. ………………………………… 5分21.解:(1)∵2=[(23)]4(1)m m m ∆----=89m -+. ………………………………… 1分依题意,得0,890,m m ≠∆=-+⎧⎨⎩≥解得98m ≤且0m ≠. (3)分(2)∵m 为正整数,∴1m =. (4)分∴原方程为20x x +=.解得10x =,21x =-. ………………………………… 5分22.解:(1)∵双曲线 (0)m y m x=≠经过点(2,3)A -,∴6m =-.∴双曲线的表达式为6y x=-.……… 1分 ∵点(,2)B n 在双曲线6y x =-上,∴点B 的坐标为(3,2)B -.∵直线y kx b =+经过点(2,3)A -和点(B ∴23,32,k b k b +=--+=⎧⎨⎩解得1,1,k b =-=-⎧⎨⎩∴直线的表达式为1y x =--. ………………………………… 3分(2)(6,1)-或(1,6)-. ………………………………… 5分23.(1)证法一:连接AC ,如图1.∵AE ⊥BC ,AF ⊥DC ,AE AF =, ∴21∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC ∥. ∴1DAC ∠=∠. ∴2DAC ∠=∠. ∴DA DC =. (1)分图1∴□ABCD 是菱形. ………………………………… 2分证法二:∵四边形ABCD 是平行四边形,如图2. ∴B D ∠=∠.∵AE ⊥BC ,AF ⊥DC , ∴90AEB AFD ∠=∠=°. 又∵AE AF =, ∴AEB △≌AFD △. ∴AB AD =. (1)分∴□ABCD 是菱形. ………………………………… 2分(2)解法一:连接AC ,如图3.∵AE ⊥BC ,AF ⊥DC ,60EAF ∠=°, ∴120ECF ∠=°. ………… 3分∵四边形ABCD 是菱形,∴12602ECF ∠=∠=°. ………… 4分在Rt CFA △中,tan 2AF CF =⋅∠=5分 解法二:∵四边形ABCD 是菱形,如图4. ∴AD DC =,AD BC ∥. ∵AE ⊥BC ,∴9030DAF EAF ∠=-∠=°°. ………………………………… 3分 在Rt AFD △中,1sin 2DF DAF AD∠==.设DF x =,2AD x =, ∴AF =. ∴2DC AD x ==.∴22x x =+. (4)EEE C 图2图4图3分∴2x=.∴AF== (5)分24.(1)50. (1)分(2) (5)分25.(1)证明:连接OC,如图.∵AC平分DAB∠,∴12∠=∠.∵OA OC=,∴32∠=∠.∴31∠=∠.∴AD OC∥.……………………………… 1分∴90∠=∠=°.OCD D又∵OC是⊙O的半径,∴CD是⊙O的切线.……………………………… 2分(2)求解思路如下:过点B 作BF ⊥CE 于点F ,如图.① 由21E ∠=∠=∠,可知2∠,E ∠的三角函数值; ② 由AB 是⊙O 的直径,可得ACB △是直角三角 形,由2∠的三角函数值及AC m =,可求CB 的长; ③ 在Rt CFB △中,由42BCE ∠=°及CB 的长, 可求CF ,BF 的长;④ 在Rt EFB △中,由E ∠的三角函数值及BF 的长,可求EF 的长;⑤ 由CE CF EF =+,可求CE 的长. ………………… 5分26.(2)证法一:连接AC 并延长到点E ,如图1.∵13B ∠=∠+∠,24D ∠=∠+∠,…………… 1分 ∴1+234B D ∠∠=∠+∠+∠+∠.即BCD B BAD D ∠=∠+∠+∠. …………… 2分 证法二:延长DC 交AB 于点E ,如图2.∵1BCD B ∠=∠+∠,1A D ∠=∠+∠,………… 1分 ∴BCD D A B ∠=∠+∠+∠. ………… 2 (3)64°. ………… (4)C . 27.解:(1)解法一:∵2443y ax ax a =-+-2(2)3a x =--, ……………………… 1分 ∴顶点A 的坐标为(2,3)-. …………………… 2分 解法二: ∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ……………………… 2分 (2)①当2a =时,抛物线为2285y x x =-+令5y =,得22855x x -+=, ……………… 3分解得,1204x x ==,.……………… 4分 ∴线段BC 的长为4. ……………… 5分 ② 80<9a ≤. ……………… 7分28.(1)①依题意补全图形,如图1.…………………… 1分②线段AE ,FC ,EF 的数量关系为:222AE FC EF +=. … 2分证法一:过点B 作M B BF ^于点B 且BM BF =, 连接ME ,MA ,如图2.∵四边形ABCD 是正方形, ∴901245ABC AB BC °,°,???=.∵345°?,∴345MBE°??.又∵BE BE =,∴MBE FBE △≌△. …………………………… 3分 ∴EM EF =.∵490ABF °?-?,590ABF °?-?, ∴45??.又∵,BM BF AB CB ==,∴AMB CFB △≌△. ………………………………… 4分 ∴AM CF =,6245°??.∴6190MAE°???.在Rt MAE △中,222AE MA EM +=.M∴222AE FC EF+=.…………………………… 5分证法二:作2=1行,且BN BA=,连接EN,FN,如图3.又∵BE BE=,∴BNE BAE△≌△.∴,NE AE=6=5行.∵四边形ABCD是正方形,∴905845ABC AB BC°,°,???=.∴BN BC=.∵32452EBF°-????,4190451451ABC EBF°°°????--?-?,∴34??.又∵BF BF=,∴BNF BCF△≌△.…………………… 4分∴FN FC=,7845°??.∴67454590ENF°°°???+=.∴在Rt ENF△中,222NE FN EF+=.∴222AE FC EF+=.……………………………… 5分(2)用等式表示这三条线段的数量关系:222A F E C E F+=. (7)分29.(1)12y x=-;………………………………… 1分3y x=-(答案不唯一).………………………… 2分(2)连接OD,过点D作DG x⊥轴于点G,如图.在Rt DGO△中,2OD==,1sin12DGOD∠==.∴130∠=°.…………… 3分∴260∠=°.∵⊙O的半径为2,∴点D在⊙O上.过点D 作DH OD ⊥交y 轴于点H ,∴直线DH 是⊙O 的切线,也是△EDF 与⊙O 的“隔离直线”. …… 4分在Rt ODH △中,4cos 2OD OH ==∠,∴点H 的坐标是(0,4). ……………………… 5分∴直线DH 的表达式为4y =+.即所求“隔离直线”的表达式为4y =+. ………………………… 6分(3)2t ≥或8t -≤. ………………………… 8分。
2017初3数学1模题 石景山
石景山区2017年初三统一练习暨毕业考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题.满分120分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有..一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是A.a B.b C.b-D.c2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为A.70.39310⨯B.53.9310⨯C.63.9310⨯D.339310⨯3.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若1=65∠°,则2∠的度数为A.25°C.65°B.35°D.115°4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是..轴对称图形的为A B C D21ClaAB b–1–2–3–41234a cb5.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数是A .4B .5C .6D .86.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是A .13B .29C .49D .3107.若某几何体的三视图如右图所示,则该几何体是A B C D8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共 汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路 程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石骑 行摩拜单车的平均速度为 A .30千米/小时 B .18千米/小时 C .15千米/小时 D .9千米/小时9.用尺规作图法作已知角AOB ∠的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠的内部相交于点C ; ③作射线OC .则射线OC 为AOB ∠的平分线.由上述作法可得OCD △≌OCE △的依据是 A .SAS C .AAS B .ASA D .SSSs t /千米/小时10410.60.5OCD E A OB俯视图左视图主视图10.汽车的“燃油效率”是指汽车每消耗1升汽 油行驶的最大公里数(单位:km /L ),如 图描述了甲、乙、丙三辆汽车在不同速度下 的燃油效率情况,下列叙述正确的是A . 当行驶速度为40km/h 时,每消耗1升汽油,甲车能行驶20kmB .消耗1升汽油,丙车最多可行驶5kmC .当行驶速度为80km /h 时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D .当行驶速度为60km/h 时,若行驶相同的路程,丙车消耗的汽油最少 二、填空题(本题共18分,每小题3分) 11.分解因式:2218x -= .12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y = . 13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m 的小明在阳光下的影长是1.2m ,在同一时刻测得这棵大树的影长是3.6m ,则此树的高度是 m .14.如果250x x +-=,那么代数式3222(1)x xx x++÷+的值是 .15.某雷达探测目标得到的结果如图所示, 若记图中目标A 的位置为(3,30)°,目 标B 的位置为(2,180)°,目标C 的位 置为(4,240)°,则图中目标D 的位置 可记为 .16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场20122016-年客流量统 计结果如下表:根据统计表中提供的信息,预估首都国际机场2017年客流量约 万人次,km/h )0°你的预估理由是 . 三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:216sin 60()23--°.18.解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,,并写出它的所有整数解.19.如图,在四边形ABCD 中,AB ∥DC ,E 是CB 的中点,AE 的延长线与DC 的延长线相交于点F . 求证:AB FC =.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良 马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?21.关于x 的一元二次方程2(23)(1)0mx m x m --+-=有两个实数根. (1)求m 的取值范围;(2)若m 为正整数,求此方程的根.22.如图,在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线 (0)m y m x=≠交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P 是双曲线 (0)my m x =≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q , 当点P 位于点Q 下方时,请直接写出整点P 的坐标.23.如图,在□ABCD 中,过点A 作AE ⊥BC于点E ,AF ⊥DC 于点F ,AE AF =. (1)求证:四边形ABCD 是菱形;(2)若60EAF ∠=°,2CF =,求AF 的长.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个 2.5PM 年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、10PM 、 2.5PM 年均浓度值超标,其中 2.5PM 年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、10PM 、2.5PM 的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、10PM 年均浓度值分别下降28.6%、4.0%、9.8%;2.5PM 年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮....年均浓度值为 微克/立方米; (2)请你用折线统计图将20132016-年北京市 2.5PM 的年均浓度值表示出来,并 在图上标明相应的数据.25.如图,在四边形ABCD 中,90D ∠=°,AC 平 分DAB ∠,且点C 在以AB 为直径的⊙O 上. (1)求证:CD 是⊙O 的切线;(2)点E 是⊙O 上一点,连接BE ,CE .若42BCE ∠=°,9cos 10DAC ∠=,AC m =,写出求线段CE 长的思路.图1 图2 图3 图426.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁, 这样的四边形叫做凹四边形.如图1,四边形ABCD 为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD 是凹四边形. 求证:BCD B A D ∠=∠+∠+∠. (3)性质应用:如图3,在凹四边形ABCD 中,BAD ∠的角平分线与BCD ∠的角平分线交于 点E ,若140ADC ∠=°,102AEC ∠=°,则B ∠= °. (4)类比学习:如图4,在凹四边形ABCD 中,点E ,F ,G ,H 分别是边AD ,AB ,BC ,CD 的中点,顺次连接各边中点得到四边形EFGH .若AB AD =,CB CD =, 则四边形EFGH 是 .(填写序号即可) A .梯形B .菱形C .矩形D .正方形27.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C ①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的 取值范围.AB D备用图28.在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE . (1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系: AE 与FC 的平方和等于EF 的平方.小研把这个猜想与同学们进行交流,通 过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM , 要证AE , FC , EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,只需证EN ,FN ,EF 的关系.……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明; (一种方法即可)(2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作 图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平 方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.29.在平面直角坐标系xOy 中,对“隔离直线”给出如下定义:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足m kx b +≤且n kx b +≥,则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x =<的图象与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中,是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为 ; 请你再写出一条符合题意的不同的“隔离直线” 的表达式: ;(2)如图2,第一象限的等腰直角三角形EDF 的两腰分别与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是否存在EDF △与⊙O 的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右侧,点(1,)M t 是此正方形的中心.若存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.-4图1石景山区2017年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共18分,每小题3分) 11.2(3)(3)x x +-.12.答案不唯一,如22y x x =-+.13.4.8. 14.5. 15.(5,120)°. 16.预估理由需包含统计表提供的信息,且支撑预估的数据.如约9900万人次,预估理由是增长趋势平稳. 三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分) 17.解:原式6922=⨯-- ………………………………… 4分7=-. ………………………………… 5分18.解:原不等式组为3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,, 解不等式①,得2x -≥.解不等式②,得<1x . ………………………………… 3分 ∴原不等式组的解集为2<1x -≤. ………………………………… 4分 ∴原不等式组的整数解为2-,1-,0. ………………………………… 5分① ②19.证明:∵AB ∥DC ,∴1=F ∠∠,=2B ∠∠. ………………………………… 1分 ∵E 是CB 的中点, ∴BE CE =.在AEB △和FEC △中,1,=2,,F B BE CE ∠=∠∠∠=⎧⎪⎨⎪⎩∴AEB △≌FEC △. ………………………………… 4分 ∴=AB FC . ………………………………… 5分 20.解:设良马x 天能够追上驽马. ………………………………… 1分 由题意,得 24015012x x =⨯+(). ………………………………… 3分 解得 20x =. ………………………………… 4分 答:良马20天能够追上驽马. ………………………………… 5分 21.解:(1)∵2=[(23)]4(1)m m m ∆----=89m -+. ………………………………… 1分 依题意,得0,890,m m ≠∆=-+⎧⎨⎩≥解得98m ≤且0m ≠. ………………………………… 3分(2)∵m 为正整数,∴1m =. ………………………………… 4分∴原方程为20x x +=.解得10x =,21x =-. ………………………………… 5分 22.解:(1)∵双曲线 (0)m y m x=≠经过点(2,3)A -,∴6m =-.∴双曲线的表达式为6y x =-.……… 1分∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)B -.∵直线y kx b =+经过点(2,3)A -和点(3,2)B -∴23,32,k b k b +=--+=⎧⎨⎩解得1,1,k b =-=-⎧⎨⎩∴直线的表达式为1y x =--. ………………………………… 3分 (2)(6,1)-或(1,6)-. ………………………………… 5分 23.(1)证法一:连接AC ,如图1.∵AE ⊥BC ,AF ⊥DC ,AE AF =, ∴21∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC ∥. ∴1DAC ∠=∠. ∴2DAC ∠=∠.∴DA DC =. ………………………………… 1分 ∴□ABCD 是菱形. ………………………………… 2分 证法二:∵四边形ABCD 是平行四边形,如图2. ∴B D ∠=∠.∵AE ⊥BC ,AF ⊥DC , ∴90AEB AFD ∠=∠=°. 又∵AE AF =, ∴AEB △≌AFD △.∴AB AD =. ………………………………… 1分 ∴□ABCD 是菱形. ………………………………… 2分 (2)解法一:连接AC ,如图3.∵AE ⊥BC ,AF ⊥DC ,60EAF ∠=°,E图1图2∴120ECF ∠=°. ………… 3分 ∵四边形ABCD 是菱形,∴12602ECF ∠=∠=°. ………… 4分在Rt CFA △中,tan 223AF CF =⋅∠=.…… 5分 解法二:∵四边形ABCD 是菱形,如图4. ∴AD DC =,AD BC ∥. ∵AE ⊥BC ,∴9030DAF EAF ∠=-∠=°°. ………………………………… 3分在Rt AFD △中,1sin 2DF DAF AD ∠==. 设DF x =,2AD x =, ∴3AF x =.∴2DC AD x ==. ∴22x x =+. ………………………………… 4分∴2x =.∴323AF x ==. ………………………………… 5分24.(1)50. ………………………………… 1分 (2) ………………………………… 5分21FEABCFEA BC 图4图3图125.(1)证明:连接OC ,如图. ∵AC 平分DAB ∠, ∴12∠=∠. ∵OA OC =, ∴32∠=∠. ∴31∠=∠.∴AD OC ∥. ………………………………… 1分∴90OCD D ∠=∠=°. 又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线. ………………………………… 2分 (2)求解思路如下:过点B 作BF ⊥CE 于点F ,如图.① 由21E ∠=∠=∠,可知2∠,E ∠的三角函数值;② 由AB 是⊙O 的直径,可得ACB △是直角三角形,由2∠的三角函数值及 AC m =,可求CB 的长;③ 在Rt CFB △中,由42BCE ∠=°及CB 的长,可求CF ,BF 的长; ④ 在Rt EFB △中,由E ∠的三角函数值及BF 的长,可求EF 的长; ⑤ 由CE CF EF =+,可求CE 的长. ………………………………… 5分26.(2)证法一:连接AC 并延长到点E ,如图1.∵13B ∠=∠+∠,24D ∠=∠+∠,…………… 1分 ∴1+234B D ∠∠=∠+∠+∠+∠.即BCD B BAD D ∠=∠+∠+∠. …………… 2分 证法二:延长DC 交AB 于点E ,如图2.∵1BCD B ∠=∠+∠,1A D ∠=∠+∠,………… 1分 ∴BCD D A B ∠=∠+∠+∠. ………… 2分 (3)64°. ………… 4分(4)C . ………… 5分27.解:(1)解法一:∵2443y ax ax a =-+-2(2)3a x =--, ………………………………… 1分∴顶点A 的坐标为(2,3)-. ………………………………… 2分 解法二: ∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ………………………………… 2分(2)①当2a =时,抛物线为2285y x x =-+令5y =,得22855x x -+=, ……………… 3分 解得,1204x x ==,.……………… 4分∴线段BC 的长为4. ……………… 5分② 80<9a ≤. ……………… 7分28.(1)①依题意补全图形,如图1.…………………… 1 ②线段AE ,FC ,EF 的数量关系为:222AE FC EF +=. ……… 2分证法一:过点B 作MB BF ^于点B 且BM BF =, 连接ME ,MA ,如图2.∵四边形ABCD 是正方形, ∴901245ABC AB BC °,°,???=.∵345°?,M∴345MBE °??.又∵BE BE =,∴MBE FBE △≌△. ………………………………… 3分 ∴EM EF =. ∵490ABF °?-?,590ABF °?-?,∴45??.又∵,BM BF AB CB ==,∴AMB CFB △≌△. ………………………………… 4分 ∴AM CF =,6245°??.∴6190MAE°???.在Rt MAE △中,222AE MA EM +=.∴222AE FC EF +=. ………………………………… 5分 证法二:作2=1行,且BN BA =,连接EN ,FN ,如图3. 又∵BE BE =,∴BNE BAE △≌△.分 ∴,NE AE =6=5行.∵四边形ABCD 是正方形, ∴905845ABCAB BC °,°,???=.∴BN BC =. ∵32452EBF °-????,4190451451ABC EBF °°°????--?-?,∴34??.又∵BF BF =,∴BNF BCF △≌△. ………………………………… 4分 ∴FN FC =,7845°??.∴67454590ENF°°°???+=.∴在Rt ENF △中,222NE FN EF +=.∴222AE FC EF +=. ………………………………… 5分 (2)用等式表示这三条线段的数量关系:222AF EC EF +=. …………… 7分29.(1)12y x =-; ………………………………… 1分 3y x =-(答案不唯一). ………………………………… 2分 (2)连接OD ,过点D 作DG x ⊥轴于点G ,如图. 在Rt DGO △中,2OD ==,1sin 12DG OD ∠==.∴130∠=°. …………………… 3分∴260∠=°. ∵⊙O 的半径为2, ∴点D 在⊙O 上.过点D 作DH OD ⊥交y 轴于点H ,∴直线DH 是⊙O 的切线,也是△EDF 与⊙O 的“隔离直线”. …… 4分在Rt ODH △中,4cos 2ODOH ==∠,∴点H 的坐标是(0,4). ………………………… 5分∴直线DH的表达式为4y =+.即所求“隔离直线”的表达式为4y =+. ………………………… 6分 (3)2t ≥或8t -≤. ………………………… 8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2
92 3 2 3
………………………………… 4 分 ………………………………… 5 分
7 .
3( x 1) ≤ 5 x 1, ① 18.解:原不等式组为 9 x 2x , ② 4
解不等式①,得 x ≥ 2 . 解不等式②,得 x < 1 . ∴原不等式组的解集为 2 ≤ x < 1 . ∴原不等式组的整数解为 2 , 1 , 0 . ………………………………… 3 分 ………………………………… 4 分 ………………………………… 5 分
x 20 .
答:良马 20 天能够追上驽马. 21.解: (1)∵ =[ (2m 3)] 4m(m 1)
2
= 8m 9 .
依题意,得 解得 m ≤
………………………………… 1 分
m 0, 8m 9 ≥ 0,
………………………………… 3 分
………………………………… 3 分
A F
D
C E 图4 ………………………………… 4 分
B
………………………………… 5 分
24. (1) 50 . (2)
………………………………… 1 分 ………………………………… 5 值统计图
微克/立方米
110 100 90 80 70 60 50 40 30 20 10 0
且m 0. 8 (2)∵ m 为正整数, ∴ m 1. ∴原方程为 x x 0 . 解得 x1 0 , x2 1 . 22.解: (1)∵双曲线 y ∴ m 6 . ∴双曲线的表达式为 y
2
9
………………………………… 4 分
………………………………… 5 分
A
1
D C
3 2
F
O
B
E ………………………………… 1 分
………………………………… 2 分
② 由 AB 是⊙ O 的直径,可得 △ ACB 是直角三角形,由 2 的三角函数值及
AC m ,可求 CB 的长;
③ 在 Rt△CFB 中,由 BCE 42° 及 CB 的长,可求 CF , BF 的长; ④ 在 Rt△EFB 中,由 E 的三角函数值及 BF 的长,可求 EF 的长; ⑤ 由 CE CF EF ,可求 CE 的长. ………………………………… 5 分
(2)连接 OD ,过点 D 作 DG x 轴于点 G ,如图. 在 Rt△DGO 中,
BA ,连接 EN , FN ,如图 3.
BE ,
………………………………… 3 分
A
5 E
∴ △BNE≌△BAE . ∴ NE
AE , 6= 5 .
∵四边形 ABCD 是正方形, ∴ ABC ∴ BN ∵ 3
N
6 7
D
90°, 5
BC .
8
45°,AB
BC .
B
12 3 4
F
8
EBF
ABC
4.
2
EBF
EF .
90°
5.
ABF , 5
90°
ABF ,
BF , AB
CB ,
………………………………… 4 分
∴ △ AMB≌△CFB . ∴ AM ∴ MAE
2 2
CF , 6
2
45° .
6
1 90° .
2
在 Rt△MAE 中, AE 2 MA2 EM 2 . ∴ AE FC EF . 证法二: 作 2= 1 ,且 BN 又∵ BE ………………………………… 5 分
………………………………… 1 分 ………………………………… 2 分
4a 2a
2,
4a (4a 3) ( 4a) 2 4a
3 ,
………………………………… 2 分 y 2 7 (2)①当 a 2 时,抛物线为 y 2 x 8 x 5 ,如图. 令 y 5 ,得
m x
( m 0) 经过点 A(2, 3) ,
.……… 1 分 x 6 ∵点 B(n, 2) 在双曲线 y 上, x
初三数学试卷答案及评分参考 第2 页 共 8 页
6
∴点 B 的坐标为 B(3, 2) . ∵直线 y kx b 经过点 A(2, 3) 和点 B(3, 2) , ∴
石景山区 2017 年初三统一练习暨毕业考试
数学试卷答案及评分参考
阅卷须知: 1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要 考生将主要过程正确写出即可. 2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共 30 分,每小题 3 分) 题号 答案 1 D 2 B 3 A 4 B 5 C 6 B 7 A 8 C 9 D 10 C
B P1
y
7 6 5 4 3 2 1 1 2 3 4 5 6 7
2k b 3, 3k b 2,
–7 –6 –5 –4 –3 –2 –1O –1 –2 –3 –4 –5 –6 –7
x
A P2
k 1, 解得 b 1,
∴直线的表达式为 y x 1 . (2) (6,1) 或 (1, 6) . 23. (1)证法一: 连接 AC ,如图 1. ∵ AE ⊥ BC , AF ⊥ DC , AE AF , ∴ 2 1 . ∵四边形 ABCD 是平行四边形, ∴ AD ∥ BC . ∴ DAC 1 . ∴ DAC 2 . ∴ DA DC . ∴□ ABCD 是菱形. 证法二: ∵四边形 ABCD 是平行四边形,如图 2. ∴ B D . ∵ AE ⊥ BC , AF ⊥ DC , ∴ AEB AFD 90° . 又∵ AE AF , ∴ △ AEB ≌ △ AFD . ∴ AB AD . ∴□ ABCD 是菱形. (2)解法一: 连接 AC ,如图 3. ∵ AE ⊥ BC , AF ⊥ DC , EAF 60° ,
6
∴顶点 A 的坐标为 (2, 3) .
2x2 8x 5 5 ,
……………… 3 分
B 4
3 2 1 –5 –4 –3 –2 –1 O –1 –2 –3 –4 1 2 3
5
C
解得, x1 0,x2 4 .……………… 4 分 ∴线段 BC 的长为 4 . ……………… 5 分 8 ② 0 < a≤ . ……………… 7 分 9
连接 ME , MA ,如图 2. ∵四边形 ABCD 是正方形, ∴ ABC ∵ 3
90°, 1
2
45°,AB
BC .
45° ,
初三数学试卷答案及评分参考 第6 页 共 8 页
∴ MBE 又∵ BE
3
45° .
BE ,
………………………………… 3 分
∴ △MBE≌△FBE . ∴ EM ∵ 4 ∴ 4 又∵ BM
26. (2)证法一: 连接 AC 并延长到点 E ,如图 1. ∵ 1 B 3 , 2 D 4 ,…………… 1 分 ∴ 1+2 B 3 D 4 . 即 BCD B BAD D . …………… 2 分 证法二: 延长 DC 交 AB 于点 E ,如图 2. ∵ BCD B 1 , 1 A D ,………… 1 分 ∴ BCD D A B . (3) 64° . (4) C .
89.5
85.9
80.6
73
2013
2014
2015
2016
年份
初三数学试卷答案及评分参考
第4 页 共 8 页
25. (1)证明:连接 OC ,如图. ∵ AC 平分 DAB , ∴ 1 2 . ∵ OA OC , ∴ 3 2 . ∴ 3 1 . ∴ AD ∥ OC . ∴ OCD D 90° . 又∵ OC 是⊙ O 的半径, ∴ CD 是⊙ O 的切线. (2)求解思路如下: 过点 B 作 BF ⊥ CE 于点 F ,如图. ① 由 E 2 1 ,可知 2 , E 的三角函数值;
初三数学试卷答案及评分参考 第3 页 共 8 页
………………………………… 3 分 ………………………………… 5 分
A F
D
B
E
图1
1
2
C
………………………………… 1 分 ………………………………… 2 分
A F B E
图2
D
C
………………………………… 1 分 ………………………………… 2 分
45°- 2 ,
1 90° 45° 1 45°
C
4
∴ 3 又∵ BF
1,
图3
BF ,
………………………………… 4 分
∴ △BNF≌△BCF . ∴ FN ∴ ENF
2 2
FC , 7
8
45° .
6
7
2
45° 45°
2 2
90° .
2
∴在 Rt△ENF 中, NE FN EF . ∴ AE FC EF .
二、填空题(本题共 18 分,每小题 3 分) 11. 2( x 3)( x 3) . 12.答案不唯一,如 y x 2 x . 13. 4.8 . 14. 5 . 15. (5,120°) .
2
16.预估理由需包含统计表提供的信息,且支撑预估的数据. 如约 9900 万人次,预估理由是增长趋势平稳. 三、解答题(本题共 72 分,第 17-26 题,每小题 5 分;第 27 题 7 分;第 28 题 7 分;第 29 题 8 分) 17.解:原式 6
2
4