《信号检测与估计》总复习

合集下载

信号检测与估计知识点

信号检测与估计知识点

信号检测与估计知识点一、知识概述《信号检测与估计知识点》①基本定义:信号检测与估计呢,简单说就是从一堆有干扰的数据里找到真正的信号,还得把这个信号的一些特征估摸出来。

就好比在很嘈杂的菜市场找朋友的声音(信号),还得判断朋友声音的大小之类的特征(估计)。

②重要程度:在通信、雷达、图像处理这些学科里超级重要。

就拿雷达来说,如果不能准确检测和估计信号,那根本就不知道飞机在哪呢,整个防空系统都得乱套。

③前置知识:得先知道概率论、随机过程这些基础知识。

不然,信号检测与估计里那些关于概率、随机变量啥的根本理解不了。

④应用价值:在通信领域,可以提升信号传输准确性;在医学上,检测病人的生理信号,像心电图啥的,估计其参数有助于诊断病情;在工业自动化里,对检测到的信号进行估计,能更好控制生产流程。

二、知识体系①知识图谱:信号检测与估计在信号处理这个大的学科里面是很核心的部分,就像心脏在人体里的位置一样重要。

②关联知识:和信号处理里的滤波、调制解调关系密切。

比如说滤波后的信号可能才更有利于检测和估计,而检测估计的结果可以反馈给调制解调改变参数。

③重难点分析:- 掌握难度:这个知识点有点难,难点在于要同时考虑到噪声和信号的混合情况,还得建立合适的模型。

按我的经验,很多时候分不清哪些是噪声干扰带来的变化,哪些是信号本身的特征。

- 关键点:把握好概率统计的方法,准确地建立信号模型是关键。

④考点分析:- 在考试中很重要,如果是在电子通信等相关专业的考试里,经常考。

- 考查方式可能是给一些含噪声的信号数据,让你进行检测和估计参数,也可能是叫你设计一个简单的信号检测方案。

三、详细讲解【理论概念类】①概念辨析:- 信号检测就是判断信号是否存在。

咱们看谍战片里的电台接收情报,接收员得判断接收到的微弱声音(可能包含信号和噪声)里是不是有真正要接收的情报信号,这就是信号检测。

- 信号估计是对信号的各种参数,像幅度、相位等进行估计。

好比知道有信号了,还得估摸这个信号是多强、频率是多少之类的。

信号检测估计复习资料

信号检测估计复习资料

信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。

()2.严格的平稳随机过程不一定是宽平稳随机过程。

()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。

()4.白噪声是一种理想化模型,在实际中是不存在的。

()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。

()6.加性噪声按功率谱密度分为()噪声和()噪声。

7.有色噪声的功率谱密度在频率范围内是均匀分布的。

()8.对于白噪声下面哪个量是均匀分布的()。

A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。

()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。

2.二元检测中有两类错误的判决概率,两类正确判决概率。

( )3.下面哪种概率是虚警概率()。

A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。

5.下面哪个为后验概率密度函数()。

A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。

7.最大后验概率准则和最小错误概率准则判决公式是不同的。

()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。

()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。

11.最大后验估计和最大似然估计的使用条件。

12.下面哪种判决准则是时平均风险最小的准则()。

A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。

信号检测与估计理论(复习题解)-精选文档

信号检测与估计理论(复习题解)-精选文档


a ba 0 图 2. 1 (b)
ab y

2 b y x
2 2 y 4 x
第2章 信号检测与估计理论的基础知识 例题解答
例 2 . 3 设连续随机信号 x ( t ) a cos( t ), 其振幅 a 和频率 已知 相位 在 [ , ) 范围内均匀分布。分析 该信号的广义平稳 并求其自 差函数 。 解 : 分析该信号是否满足广 义平稳的条件。 信号的均值 ( t ) E a cos( t ) a cos( t ) p ( ) d x
2 1 ( y b ) / 2 1 x p ( y ) exp 2 2 2 2 2 x x 1 2
2 1 y ( 2 b ) x exp 2 2 8 8 x x 1 2
二. 离散随机信号矢量
1. 概率密度函数描述 。 2. 统计平均量:均值矢量 , 协方差, 协方差矩阵。 3. 各分量之间的互不相关 性和相互统计独立性及 关系。 4. 高斯离散随机信号矢量 的概率密度函数及特 点: x ~ N ( μ , C ), 互不相关等价于相互统 计独立 , 独立同分布 x x

E ( x b ) b
y
2 y
2 2 22 E ( y b ) E ( x b b ) E ( x 0 ) a / 6
第2章 信号检测与估计理论的基础知识 例题解答
当 a b 2 a 时, p ( y ) 的函数曲线如图 2 . 1 (b)所示 。 p ( x) p( y ) 1/ a 1/ a
第 1章
信号检测与估计概论

《信号检测与估计》复习纲要与复习题参考答案

《信号检测与估计》复习纲要与复习题参考答案
求 A 的 LSE 以及最小 LS 误差。假定观测为 x[n] s[n] w[n], n 0,1,, N 1 ,如 果 w[n] 是方差为 2 的 WGN,求 LSE 的 PDF。
解: 令 S [s[0], s[1],..., s[ N 1]]T , A ,那么信号模型可以写成如下
1 N 1 x ( n) N n 0 ˆ2 A/ 2 N 1 N 1 1 1 x ( n ) x ( n ) N n 0 N n0
2
8.对于信号模型
A 0 n M 1 s[n] A M n N 1
S T C 1 X 1 S T C 1S N
BLUE 为
x[n]
n 0
N 1
在拉普拉斯分布时,BLUE 并不是最小方差估计量。 b)从题目可以知道, x ~ N ( ,1) 。那么该高斯分布的方差为 var( x ) 1。因此
S I,C I
S T C 1 X 1 BLUE 为 T 1 S C S N
p( x[n] | ) 1 exp 2 ( x[n] ) 2 2 2 1
2
2 在 给定的条件下, x[n] 是相互独立的。均值 具有先验 PDF N ( 0 , 0 ), 2 2 求 的 MMSE 和 MAP 估计量。另外,当 0 0 和 0 时将发生什么情况。
先验已知 P(Hi),i=0,1,„,M-1 是 代价已知 Cij 是 Cij=dij 否 数据PDF已知 是 否 指定先验PDF 是 尝试广义 ML准则(15) 否 否 否 否

贝叶斯风险 (5) 否 数据PDF已知 是 否 指定先验PDF 是

《信号检测与估计》总复习

《信号检测与估计》总复习

《信号检测与估计》总复习2005.4第一章 绪 论本章提要本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。

第二章 随机信号及其统计描述 本章提要本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。

本章小结(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。

一维概率分布函数具有如下性质1),(0≤≤t x F X[]0)(),(=-∞<=-∞t X P t F X ;[]1)(),(=+∞<=+∞t X P t F X ;),(),())((1221t x F t x F x t X x P X X -=<≤;若21x x <,则),(),(12t x F t x F X X ≥概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。

一维概率密度具有如下性质:0),(≥t x f X ;1),(=⎰+∞∞-dx t x f X ;x d t x f t x F x X X ''=⎰∞-),(),(;[]⎰=-=<≤21),(),(),()(1221x x X X X dxt x f t x F t x F x t X x P(2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。

分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。

定义公式分别为:[]dxt x xf t X E t m X X ⎰+∞∞-==),()()([]{}[]dx t x f t m x t m t X E t X X X X ⎰+∞∞--=-=),()()()()(222σ[]212121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ⎰⎰+∞∞-+∞∞-==[][]{}[][]2121212211221121),,,()()()()()()(),(dx dx t t x x f t m x t m xt m t X t m t X E t t C X X X X X X ⎰⎰∞+∞-∞+∞---=--=。

[信息与通信]检测与估计理论-总复习2

[信息与通信]检测与估计理论-总复习2

10
复合假设检验: Bayes检验

代价似然比判决准则:
(v )

H
p1 (v / ) z1 ( )d p0 (v / ) z0 ( )d
¤ 0
H0
H1
H
式中:
0 (C10 C00 ) 0 (1 0 )(C01 C11 )

称这样的检验为平均似然比检验ALRT(Average likelih ood ratio rest)。
1 z (i ) , i [0, 2 ] 2

T
0
Fi (t ) dt 1
2
1与2独立与否无关重要;
高斯噪声。
n t 是均值为零、协方差函数为 t , s 的低通型复
26
二元正交随机相位信号的检测


为了能直接引用上节中的结果,引入一个虚假设: H0 : V (t ) n(t ) 则假设 Hi i 1,2 对 H 0 的条件似然比为:
25
二元正交随机相位信号的检测

其被检验两个假设的复包络表示式分别为:
其中:Fi (t ) i 1,2是归一化接收信号波形,即:
Hi : V (t ) AFi (t )e ji n(t )
i 1, 2; t [0, T ]

i i 1, 2 是随机相位,其概率密度为:

由于 i (v )与 i (v ) 均是非负函数,应用完全同于第三 章的方法,可知Bayes判决规则应为:
j (v ) i (v) i j ; i, j 1, 2,..., M
Hj
9
复合假设检验: Bayes检验

对于二元检验,Bayes判决规则为:

信号检测与估计知识点总结(3)

第二章 检测理论1.二元检测:① 感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。

② 感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。

2.二元检测的数学模型:感兴趣的信号s ,有两种可能状态:s0、s1。

在接收信号的观测样本y 中受到噪声n 的污染,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。

即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。

检测:根据y 及某些先验知识,判断哪个假设成立。

3. 基本概念与术语✧ 先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或 成立的概率。

p(H 0),p(H 1)。

✧ 后验概率:在已掌握观测样本或测量值y 的前提下,某事件(假设)发生或成立的概率。

p(H 0/y),p(H 1/y) 。

✧ 似然函数:在某假设H 0或H 1成立的条件下,观测样本y 出现的概率。

✧ 似然比:✧ 虚警概率 :无判定为有;✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。

✧ 平均风险: 4.1 最大后验概率准则(MAP )在二元检测的情况下,有两种可能状态:s0、s1,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。

即: y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。

)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果 成立,判定为H 0成立;否则 成立,判定为H 1成立。

利用贝叶斯定理: 可以得到: 如果 成立,判定为H 0成立; 如果 成立,判定为H 1成立;定义似然比为: 得到判决准则: 如果 成立,判定为H 0成立; 如果 成立,判定为H 1成立;这就是最大后验准则。

信号检测与估计知识点总结

第二章 检测理论1.二元检测:① 感兴趣的信号‎在观测样本中‎受噪声干扰,根据接收到的‎测量值样本判‎决信号的有无‎。

② 感兴趣的信号‎只有两种可能‎的取值,根据观测样本‎判决是哪一个‎。

2.二元检测的数‎学模型:感兴趣的信号‎s ,有两种可能状‎态:s0、s1。

在接收信号的‎观测样本y 中‎受到噪声n 的‎污染,根据测量值y ‎作出判决:是否存在信号‎s ,或者处于哪个‎状态。

即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态‎或无信号,H 1:对应s1状态‎或有信号。

检测:根据y 及某些‎先验知识,判断哪个假设‎成立。

3. 基本概念与术‎语✧ 先验概率:不依赖于测量‎值或观测样本‎的条件下,某事件(假设)发生或 成立的概率。

p(H 0),p(H 1)。

✧ 后验概率:在已掌握观测‎样本或测量值‎y 的前提下,某事件(假设)发生或成立的‎概率。

p(H 0/y),p(H 1/y) 。

✧ 似然函数:在某假设H0‎或H1成立的‎条件下,观测样本y 出‎现的概率。

✧ 似然比:✧ 虚警概率 :无判定为有;✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。

✧ 平均风险: 4.1 最大后验概率‎准则(MAP )在二元检测的‎情况下,有两种可能状‎态:s0、s1,根据测量值y ‎作出判决:是否存在信号‎s ,或者处于哪个‎状态。

即: y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态‎或无信号,H 1:对应s1状态‎或有信号。

)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果 成立,判定为H0成‎立;否则 成立,判定为H1成‎立。

利用贝叶斯定‎理: 可以得到: 如果 成立,判定为H0成‎立; 如果 成立,判定为H1成‎立;定义似然比为‎:得到判决准则‎: 如果 成立,判定为H0成‎立; 如果 成立,判定为H1成‎立;这就是最大后‎验准则。

信号检测与估计理论(复习题解)

优缺点
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法

第二章信号检测与估计理论总结

a 样本空间表示随机试验所有出现的可能结果,其中试验的某一个结 果称为样本点,样本空间中的某个子集称为事件。
b 设是样本空间,F是由的一些子集构成的集合,如果满足以下三条
(i) F ; (ii) 若事件A F,则A F (iii) 若事件A n F,n=1,2...,则 A n F或者 A n F
[1 2 ... M ]
T
是随机信号,但是其统计特性都非常有规律,因此
选择用概率论,数理统计、随机过程等工具来描述 .
2019/1/22 13
2.1 随机变量、随机矢量及其统计描述
2.2.1 随机变量的基本概念
1 概率空间:在科尔莫戈罗夫的概率公理化结构中,称 (,F,P) 为概率空间, 为样本空间,F为事件域,P为概率。
统计意义上的最佳处理——满足指标要求的处理;
统计评价——处理结果由概率,平均代价,平均错误概率,均方误差等统计 量来评价。
2019/1/22
4
2.
基本概率公式 ① 乘法公式 ,设A,B是随机事件
P( AB) P( A | B) P( B) P( B | A) P( A)
事件相乘同 时发生
P( ABC ) P( A) P( B | A) P(C | AB)

全概率公式,设Bi是完备不相容事件,Bi 是样本空间的一个分割
完备: Bi 为必然事件(一定发生)
i
2019/1/22
不相容:Bi Bj ,不可能同时发生
5
A Bi A
i
P( A) P( A | Bi ) P(Bi )
而并不能直接看到袋子里面实际的情况。
2019/1/22
7
③ 贝叶斯公式(Bayes)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号检测与估计》总复习
2005.4
第一章 绪 论
本章提要
本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。

第二章 随机信号及其统计描述 本章提要
本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。

本章小结
(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。

一维概率分布函数具有如下性质
1),(0≤≤t x F X
[]0)(),(=-∞<=-∞t X P t F X ;
[]1)(),(=+∞<=+∞t X P t F X ;
),(),())((1221t x F t x F x t X x P X X -=<≤;

21x x <,则),(),(12t x F t x F X X ≥
概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。

一维概率密度具有如下性质:
0),(≥t x f X ;
1
),(=⎰
+∞

-dx t x f X ;
x d t x f t x F x X X '
'=⎰

-),(),(;
[]⎰=-=<≤2
1
),(),(),()(1221x x X X X dx
t x f t x F t x F x t X x P
(2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。

分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。

定义公式分别为:
[]dx
t x xf t X E t m X X ⎰+∞

-==),()()(
[]{}
[]dx t x f t m x t m t X E t X X X X ⎰
+∞

--=-=),()()()()(2
22
σ
[]2
12121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ⎰

+∞∞-+∞

-==
[][]{}
[][]2
121212211
221121),,,()()()()()()(),(dx dx t t x x f t m x t m x
t m t X t m t X E t t C X X X X X X ⎰
⎰∞+∞-∞+∞
---=--=。

相关文档
最新文档