初三数学一模考试2015.5.6

合集下载

2015年中考模拟试题(一)数学试卷附答案

2015年中考模拟试题(一)数学试卷附答案

2015年中考模拟试题(一)数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第一部分(客观题)一、选择题(本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只 有一个选项正确)1. 2015的相反数是 A . 2015B . ﹣2015C .20151D .-201512.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3.下列计算正确的是A .=±2B . 3﹣1=﹣C . (﹣1)2015= -1D . |﹣2|=﹣24.如图,∠1与∠2是A.对顶角B.同位角C.内错角D.同旁内角5.不等式组⎩⎪⎨⎪⎧3x +2>5,5-2x≥1的解在数轴上表示为6.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和平均数分别是A .18,19B .19,19C .18,19.5D .19,19.5 7.三角形在正方形方格纸中的位置如图所示,则cos α的值是A. 34B. 43C. 35D. 458.一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688 9.△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点 A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD , 若AE =4 cm ,则△ABD 的周长是A .22 cmB .20 cmC .18 cmD .15 cm10.已知二次函数y =ax 2+bx +c(a≠0)的图象如图,则下列结论:①a ,b 同号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =-2时,x 的值只能为0, 其中正确的个数是A .1个B .2个C .3个D .4个第二部分(主观题)二、填空题(每小题3分,共24分)11.空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径 小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示 0.000 002 5为 .12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 .13.函数12-+=x x y 中自变量x 的取值范围是 . 14.分解因式:x 3-xy 2=________.15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮” 各两个,将所有棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是__________.16.在半径为2的圆中,弦AB 的长为2, 则弧的长等于17.如图,过y 轴上任意一点p ,作x 轴的平行线, 分别与反比例函数y =-4x 和y =2x 的图象交于A 点和B 点.若C 为x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 . 18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,… 都是边长为2的等边三角形,边AO 在y 轴上, 点B 1,B 2,B 3,…都在直线y=x 上,则A 2015的坐标是 . 三、解答题(共96分)19.(10分)先化简,再求值:(1+)•,其中x=+1.20.(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了 名同学,其中C 类女生有 名, D 类男生有 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一 帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同 学和一位女同学的概率.20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件, 求该企业捐给甲、乙两所学校的矿泉水各多少件?22.(12分)一艘观光游船从港口A 处以北偏东60°的方向出港观光,航行80海里至 C 处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B 处的 海警船接到求救信号,测得事故船在它的北偏东37°方向。

2015年中考第一次模拟考试数学试卷附答案

2015年中考第一次模拟考试数学试卷附答案

九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。

2015年中考第一次模拟考试数学试卷

2015年中考第一次模拟考试数学试卷

2015年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。

其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。

2015年初中一模数学试卷

2015年初中一模数学试卷

2015年初中一模数学试卷注意:1. 本试卷共6页,满分为150分,考试时间为120分钟.2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.-3的相反数是(▲)1A.-3 B.3 C.-31D.32.刻画一组数据波动大小的统计量是( ▲ ).A.平均数 B.方差 C.众数 D.中位数3.下列图形中,既是轴对称图形,又是中心对称图形的是(▲ )A. B. C. D. 4.如图是由两块长方体叠成的几何体,其主视图是(▲)(第4题图)A .B .C .D .5.下列运算正确的是( ▲ )A .236x x x ⋅=B .3223()()1a a -÷-=C .1122-=D .552332=+ 6.设P 是函数2y x=在第一象限的图像上的任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积( ▲ )A .随P 点的变化而变化B .等于1C .等于2D .等于4二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7. 9的算术平方根是 ▲ .8. H 7N 9型流感病毒变异后的直径为0.00000013米,将这个数写成科学记数法是 ▲ 米.9. 因式分解:4a 2-16= ▲ .10.若一个多边形的内角和是900,则这个多边形的边数为 ▲ .11.把一块矩形直尺与一块直角三角板如图放置,若140∠=°, 则2∠的度数为 ▲ .12.五位女生的体重(单位:kg )分别为38、42、35、45、40,则这五位女生体重的方差为 ▲ kg 2.13. 阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度为 ▲ m . 14.已知圆锥的侧面积为π8cm 2,侧面展开图的圆心角为60°. 则AOPP 'xy(第6题图)(第12题图)B O Axy该圆锥的母线长为 ▲ cm.15.按一定规律排列的一列数依次为:111,,315351,63,…,按此规律排列下去,这列数中的第7个数是 ▲ .16.如图,在平面直角坐标系中,O 为坐标原点,⊙O 的半径为5,点B 的坐标为(3,0),点A 为⊙O 上一动点,当∠OAB 取最大 值时,点A 的坐标为 ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(121()2-+(-1)0-2sin45°;(2)解方程:2220x x --=.18.(本题满分8分)先化简532)224m m m m -+-÷--(,然后在0<2m-1<6的范围内选取一个合适的整数作为m 的值代入求值.19.(本题满分8分)在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数. (1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(本题满分8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的 统计图(统计图中每组含最小值..., 不含最大值...). 请依据图中信息解答下列问题: (1)求随机抽取的学生人数.捐款人数扇形统计图捐款人数分布统计图(2)填空:(直接填答案)①“20元~25元”部分对应的 圆心角度数为__▲____.②捐款的中位数落在__▲____(填金额范围) .(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.21.(本题满分10分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD 、CE ,两线交于点F .(1)求证:△ABD ≌△ACE ; (2)求证:四边形ABFE 是菱形.22. (本题满分10分)如图,学校打算用材料围建一个面积为18平方米的矩形ABCD 的生物园,用来饲养小兔,其中矩形ABCD 的一边AB 靠墙,墙长为8米,设AD 的长为y 米, CD 的长为x 米.(1)求y 与x 之间的函数表达式;(2)若围成矩形ABCD 的生物园的三边材料总长不超过18米,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.(第22题图)生物园FEABD40°100° (第21题图)23.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12米的建筑物CD 上的C 处观察,测得某建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1米).(可供选用的数据:2≈1.4,3≈1.7).24. (本题满分10分) 如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D. (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)45°30°BDCA(第23题图)(第24题图)25. (本题满分12分)如图, 在四边形ABCD 中,AD ∥BC ,∠D=90°,BC=50,AD=36,CD=27. 点E 从C 出发以每秒5个单位长度的速度向B 运动,点F 从A 出发,以每秒4个单位长度的速度向D 运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F 作FG ⊥BC,垂足为G ,连结AC 交FG 于P ,连结EP . (1)点E 、F 中,哪个点最先到达终点?(2)求△PEC 的面积S 与运动时间t 的函数表达式,并写出自变量t 的取值范围. 当t 为何值时,S 的值最大;(3)当△CEP 为锐角三角形时,求运动时间t 的取值范围.26.(本题满分14分)如图,抛物线与y 轴相交于点A (0,2),与x 轴相交于B(4,0)、C (12,0)两点.直线l 经过A 、B 两点. (1)分别求出直线l 和抛物线相应的函数表达式;(2)平行于y 轴的直线x =2交抛物线于点P ,交直线l 于点D.① 直线x =t (0≤t ≤4)与直线l 相交于点E ,与抛物线相交于点F.若EF :DP=3:4, 求t 的值;② 将抛物线沿y 轴上下平移,所得的抛物线与y 轴交于点A ′,与直线x =2交于点P ′.当P ′O 平分∠A ′P ′P 时,求平移后的抛物线相应的函数表达式.(第25题图)GPF BDAC E。

2015中考数学模拟考试试卷+答案

2015中考数学模拟考试试卷+答案

山西省2015年高中阶段教育学校招生统一考试数学模拟考试试题1.2-的绝对值是(▲)A.2±B.2 C.12D.12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320、万人次.数据1320万用科学计数法表示正确的是(▲)A.113210⨯万B.213.210⨯万C.31.3210⨯万D.41.3210⨯万3.某几何体的三视图如图所示,这个几何体是(▲)A.圆柱B.三棱柱C.长方体D.圆锥4.下列等式一定成立的是(▲)A.22a a a⋅=B.22=÷aa C.22423a a a+=D.()33aa-=-5.如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A的度数为(▲)A.140°B.60°C.50°D.40°6.一个多边形的每一个内角均为108°,那么这个多边形是(▲)A.七边形B.六边形C.五边形D.四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是(▲)A.85,90 B.85, 87.5 C.90,85 D.95,908.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1 ,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时..发光的概率为(▲)A.31B.32C.21D.619.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,那么sin∠ABD的值是(▲)A.43B.34C.35D.4510.如图,一个半径为r的圆形纸片在边长为a(a≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是(▲)A.23rπB.23rπC.2)rπD.2rπ二、填空题(每题3分,共18分)11.实数4的算术平方根是▲。

2015年初三一模数学试卷及 答 案

2015年初三一模数学试卷及 答 案
2
2
21.已知关于 x 的一元二次方程 x 2 x 3 m 0 有两个实数根.
2
(1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 22.列方程或方程组解应用题: 小辰和小丁从学校出发,到离学校 2 千米的“首钢篮球馆”看篮球比赛.小丁 步行 16 分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是 小丁速度的 3 倍,求两人的速度. 四、解答题(本题共 20 分,每小题 5 分) 23.如图,菱形 ABCD 中, E , F 分别为 AD ,
2014—2015 学年初三统一练习暨毕业考试
数 学 试 卷
学校
考 生 须 知
班级
姓名
1.本试卷共 7 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的绝对值是 A. 3 B.
10.在平面直角坐标系 xOy 中,四边形 OABC 是矩形,且 A , C 在坐标轴上,满 足 OA 3 ,OC 1 . 将矩形 OABC 绕原点 O 以每秒 15 的速度逆时针旋 转.设运动时间为 t 秒 0 t 6 ,旋 转过程中矩形在第二象限内的面积为
S 3 3 2
E
A F G B
D
AB 上的点,且 AE AF ,连接 EF 并延
水费为
元.

2015年初三第一次模拟考试数学试卷附答案

2015年初中毕业生升学模拟考试(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-3的绝对值是 A .3B .-3C .13D .13-2.一个等腰三角形的两边长分别是3和7,则它的周长为 A .17 B .15 C .13D .13或173.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000吨.将300 000用科学记数法表示应为A .60.310⨯B .5310⨯C .6310⨯D .43010⨯4.如图1,AB ∥CD ,EF ⊥AB 于点E ,EF 交CD 于点F ,已 知∠1=60°,则∠2的度数为 A .20° B .60° C .30°D .45°CDBAE F1 2 图151的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图2是某几何体的三视图,该几何体是A .圆锥B .三棱柱C .圆柱D .三棱锥7.下列计算中,正确的是A .x 2+x 4=x 6B .2x +3y =5xyC .(x 3)2=x 6D .x 6÷x 3=x 29.如图3,△ABC 的顶点都在正方形网格的格点上, 则cos C 的值为 A .12B .C .D .10. 方程23+x =11+x 的解为 A .x =54B .x = -21 C .x =-2D .无解图3ABC图211.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和中位数分别是 A .18,19 B .18,19.5C .5,4D .5, 4.512.二次函数()20y ax bx c a =++≠的大致图象如图4所示,关于该二次函数,下列说法错误的是 A .函数有最小值B .对称轴是直线x =21 C .当x <21时,y 随x 的增大而减小 D .当 -1 < x < 2时,y >013.如图5,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半 径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠B =250,则∠ACB 的度数为 A .90° B . 95° C . 100°D . 105°14.如图6是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于 A . 210 B .20 C . 18D . 220图5AB图615.如图7,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =31CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F . 若AB =6,则BF 的长为 A .6B . 7C . 8D . 1016. 已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是图72015年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.分解因式:2x 2-4x +2= .18.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xk y的 图象上.若点A 的坐标为(-2,-2),则k 的值 为________.19.如下图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π).图9坐标是.6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)已知代数式:A=23+x,B=25624322+-+-÷+-xxxxx.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x-3)<6-2x的正整数解,求A-B的值.22.(本小题满分10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布直方图请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B名同学能分在同一组的概率.23.(本小题满分11分)在图11-1——图11-4中,菱形ABCD 的边长为3,∠A =60°,点M 是AD 边上一点,且DM =31AD ,点N 是折线AB -BC 上的一个动点. (1)如图11-1,当N 在BC 边上,且MN 过对角线AC 与BD 的交点时,则线段AN 的长度为________.(2)当点N 在AB 边上时,将△AMN 沿MN 翻折得到△A′MN ,如图11-2,①若点A′ 落在AB 边上,则线段AN 的长度为________;②当点A′ 落在对角线AC 上时,如图11-3,求证:四边形AM A′N 是菱形;③当点A′ 落在对角线BD 上时,如图11-4,求NA BA ''的值.图11-1图1224.(本小题满分11分)如图12,在平面直角坐标系中,矩形ABCD 的顶点A 、B 、C 的坐标分别为(0,5)、(0,2)、(4,2),直线l 的解析式为y = kx +5-4k (k > 0).(1)当直线l 经过点B 时,求一次函数的解析式;(2)通过计算说明:不论k 为何值,直线l 总经过点D ; (3)直线l 与y 轴交于点M ,点N 是线段DM 上的一点, 且△NBD 为等腰三角形,试探究:①当函数y = kx +5-4k 为正比例函数时,点N 的个数有 个;②点M 在不同位置时,k 的取值会相应变化,点N 的个数情况可能会改变,请直接写出点N 所有不同的个数情况以及相应的k 的取值范围.25.(本小题满分11分)如图13-1,在△ABC 中,∠ACB =90°,AC =BC =2,以点B 为圆心,以1为半径作圆. 设点P 为⊙B 上一点,线段CP 绕着点C 顺时针旋转90°,得到线段CD ,连接DA ,PD ,PB ,(1)求证:AD =BP ;(2)若DP 与⊙B 相切,则∠CPB 的度数为_________°; (3)如图13-2,当B ,P ,D 三点在同一直线上时,求BD 的长; (4)BD 的最小值为________,此时tan ∠CBP =_________;BD 的最大值为 ,此时tan ∠CPB =_________.备用图BCABCD P图13-2ABC D P图13-126.(本小题满分13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y = -m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为_________万元;乙方式购买和加工其余农产品所需资金为_________万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.①其中甲方式经销农产品x吨,则总经销量p为__________吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.参考答案及评分标准一、选择题1.A2.A3.B4.C5.D6.B7.C8.B9. D 10.B 11.A 12.D 13.D 14.B 15.C 16.A 二、填空题17. 2(x-1)2 18.4 19.3π 20.(8,-8) 三、解答题21.(1)证明:B =25)2)(2()3(232+--++⨯+-x x x x x x =2522+-+x x ………………………………………… 2分 =23+-x =A - ………………………………………… 4分 ∴A 、B 互为相反数………………………………………… 5分(证明A+B=0均可得分) (2)解:解不等式得x<3, x 为正整数,且x ≠2,∴x=1 ………………………………………………………… 7分则A-B=2x 32+⨯=2132+⨯=2 …………………………………………… 10分22.解:(1)a=12 …………………………………………………… 2分 (2)如图………………………………… 4分(3)估计该校八年级汉字书写优秀的人数为⨯+501212800=352人 ……… 6分 (4)根据题意画树形图如下:B C DB C D A C D A B D A B C ……… 9分 共有12种情况,A 与B 两名同学分在同一组的情况有4种,∴A 与B 两名同学能分在同一组的概率为P (同组)=124=10分 23. (1)13…………………………………………………………………… 2分 (2)① 1 ……………………………………………………………………4分②在菱形ABCD 中AC 平分∠DAB ,∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN 沿MN 翻折得到△A′MN , ∴AC ⊥MN ,AM= A′M ,AN= A′N ,∴∠AMN=∠ANM=60°∴AM=AN∴AM= A′M=AN= A′N∴四边形AM A′N 是菱形 …………………………………… 7分③在菱形ABCD 中,∠A=60°,AB=AD , ∴∠ADB=∠ABD=60°∵ △AMN 沿MN 翻折得到△A′MN , ∴∠NA′M=∠A=60°∵∠BA′M=∠DMA′+∠ADB ∴∠NA′B=∠DMA′ ∴△DMA′∽△BA′N ∴'DM A BA M A N'=' ∵DM=31AD=1,AM=2, ∴A′M=AM =2∴12A B A N '=' ………………………………………………11分 24.解:(1)将点B (0,2)代入y=kx+5-4k 得34k =………………………… 2分(2)由题意可得:点D 坐标为(4,5) 把x=4代入y=kx+5-4k 得y=5∴不论k 为何值,直线l 总经点D ; ……………………………………… 5分 (3)①2…………………………………………………………… 7分②当k≥2时,有3个点当34<k <2时,有2个点, 当k=34时,有0个当0<k <34时,有1个。

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015年九年级数学模拟试卷一

2015年九年级数学模拟试卷一一、选择题(本大题共有8个小题,每小题3分,共24分.).1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B . 2个C . 3个D . 4个2.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x 2作如下平移( )A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位3.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的概率为( ) A.31B.52 C.21 D.53 4.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( ) A.168(1+x)2=108B.168(1-x)2=108C.168(1-2x)=108D.168(1-x 2)=1085.若方程0132=--x x 的两根为1x 、2x ,则2121x x x x +的值为( )A .-3B . 3C .31D . 31-6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是( )A.4πB.3πC.22πD.2π7.如图☉O 中,半径OD ⊥弦AB 于点C,连接AO 并延长交☉O 于点E,连接EC,若AB=8,CD=2, 则EC 的长度为( ) A.25B.8C.210D.2138.在同一平面直角坐标系中,函数y=mx+m 和函数y=-mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )二、填空题(每小题3分,共24分) 9.若方程032)1(12=-+-+mx xm m 是关于x 的一元二次方程,则m= .10.函数c bx x y -+=2的图象经过点(1,2),则b-c 的值为 .11.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 。

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三一模考试数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20°B .40°C .60°D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 75.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a -,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2初三一模考试数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分① ②21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分12436--=k244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分(2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ………………………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分图129. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分 ∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。

相关文档
最新文档