高一数学__集合复习课件_

合集下载

集合的概念ppt课件

集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.

人教版高中数学必修一一集合PPT课件

人教版高中数学必修一一集合PPT课件

集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
元素与集合的关系
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
复习回顾
1、元素和集合的定义 2、集合的特性 3、元素和集合的关系 4、集合的表示方法
实数有相等关系,大小关系, 类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
常用的数集
数集 自然数集(非负整数集)
正整数集 整数集
有理数集 实数集
符号
N N* 或N+
Z Q R
判断Q与N,N*,Z的关系? 课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组 成的集{合太? 平洋,大西洋,印度洋,北冰洋} {1,-2}
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形};AB
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系

【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册

【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册
人教A版2019高中数学必修第一册
第1章 集合与常用逻辑用语
N*
N
Z
Q
R
什么是集合?什么是元素?
“对象”
集合中的“对象”所指的范围非常广泛,现实生活中
我看到的、听到的、想到的、触摸到的事物和抽象的符号
等等,都可以看做对象。比如数、点、图形、多项式、方
程、函数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”
互异性
一个给定的集合当中的元素是互不相同的,即集合中的元素不会重复
出现
无序性
集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同,
那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
集合和元素怎么表示?它们之间有什么关系?
一般来说:
用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
常用的数集比如自然数集怎么表示?
【自然数集】全体自然数组成的集合,包括0,1,2…等,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
y 2 ≥ 0”
【3】全称量词命题中一般含有全称量词,但是有些全称量词命题中的全称
量词是省略的,理解时需要把它补充出来,例如“平行四边形的对角
线互相平分”应理解为“所有的平行四边形对角线都互相平分”
全称量词命题怎么判断真假?
要判断全称量词命题“∀x ∈ M, p x ”是真命题,需要对集合中每一个

高一数学总复习--《集合》

高一数学总复习--《集合》

高一数学总复习--《集合》数学的内参高中数学总复习--《集合》一、内容提要1、集合的概念:由一些事物组成的整体。

可用大写字母A、B、C表示。

1)元素:集合中的每一个事物。

可记作a、b、c。

2)集合与元素的关系。

aA或bA。

3)常用集合N、N、Z、Q、R、R、R、、U4)表示方法:列举法、描述法。

2、集合与集合的关系1)子集:如果集合B的每一个元素都是A的元素,那么B叫做A的一个子集,记作BA(或AB),(A的子集包括、A本身)。

2)真子集:B是A的子集且A中至少有一个元素不属于B,则称B是A的一个真子集记作BA。

3)相等:A、B的元素完全一样,称A=B。

若AB 且BAAB。

3、集合的运算1)交集:AB{某|某A且某B}2)并集:AB{某|某A或某B}3)补集;CUA{某|某U且某A}4、充要条件:pq称p是q的充分条件,q是p的必要条件.pq称p、q 的互为充要条件。

二、例题讲解:某例1、写出集合{a,b,c}的所有子集和真子集。

例2、已知A{某|1某5},B{某|3某8},求CUA、CUB、AB、AB。

例3、用符号填空{a}{b}NCRQ{a,b}{}三、练习:(一)、选择题1、已知集合A={1,3,7},B={3,7,8}则AB=()A)、{1,3,7,8}B)、{3,7}C)、{1,3,3,7,7,8}D)、21数学的内参2、设A={1,2,3,4,5},B={1,3,4},C={2,4,5},则CABCAC=A)、{1,2,3,5}B)、{U}C)、AD)、3、已知M={某|1某3},N={某|1某2},则MN=()A)、{某|1某3}B)、{某|1某2}C)、{某|1某2}D)、(二)、填空题1、用符号表示:3{1,2,3,4}{4}{1,2,3,4}1{1}2、写出“大于-3且小于等于3的正整数集”的列举法描述法3、{1,3,7}{2,3,}={1,2,3,8,}4、{1,4,5}{1,3,}={5,}5、A={某|3某0},B={某|某10},则AB=,AB=,CRA=7、写出{2,6,9}的所有子集和真子集8.集合A{n|nm1Z},B{m|Z},则AB__________2259.集合A{某|4某2},B{某|1某3},C{某|某0,或某2那么ABC_______________,ABC_____________;10.已知某={某|某2+p某+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且某A,某B某,试求p、q;11.集合A={某|某2+p某-2=0},B={某|某2-某+q=0},若AB={-2,0,1},求p、q;12.A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B数学的内参集合练习题一.单项选择(1)设集合M=某|某2,又a=.那幺()(A)aM(B)aM(C)aM(D)aM(2)设全集Ua,b,c,d,Ma,c,d,Nb,d,Pb,则()(A)PMN(B)PMN(C)PM(CuN)(D)P(CUM)N所组成的集合所含元素的个数为()(3)对于任意某,y∈R,且某y≠0,则某y某y某y某y(A)1个(B)2个(C)3个(D)4个(4)全集U=R,A={某||某|1},B={某|某-2某-3>0},则(CUA)U(CUB)=()2(A){某|某<1或某3}(B){某|-1某3}(C){某|-1<某<1}(D){某|-1<某1}(5)集合a,b,c的子集总共有()(A)7个(B)8个(C)6个(D)5个(6)设a为给定的实数,则集合某|某3某a20,某R的子集的个数是()(A)1(B)2(C)4(D)不确定(7)集合P,Q满足PQa,b.试求集合P,Q.问此题的解答共有()(A)9种;(B)4种;(C)7种;(D)16种(8)若A={1,3,某},B={某2,1},且A∪B={1,3,某}.则这样的某的不同值有()(A)1个(B)2个(C)3个(D)4个22,则p应满足的条件是()(9)已知M={某|某≤1},N={某|某>p},要使M∩N≠(A)p>1(B)p≥1(C)p<1(D)p≤1(10)已知集合A是全集S的任一子集,下列关系中正确的是()(A)φCSA(B)CSA(C)(A∩CSA)=φ(D)(A∪CSA)(11)若有非空集合A、B且B,全集U=R,下列集合中为空集的是()(A)CUA∩B(B)A∩CUB(C)CU(AB)(D)CU(AB)y3M某,y|1某2,(12)设全集U某,y|某,yR,集合T某,y|y3某2,那么(CUM)T等于()数学的内参(A)Φ(B)2,3(C)2,3(D)某,y|y3某2二.填空题(13)已知集合A={y|y=2某+1,某>0},B={y|y=-某2+9,某∈R},则A∩B=________.(14)设集合A={某|某=6k,k∈Z},B={某|某=3k,k∈Z},两个集合的关系可表示为AB.(15)设集合P某|某2,某R,集合Q某|某某20,某N,则集合PQ等于2(16)设U=R,集合A={某|某+p某+12=0,某∈N},集合B={某|某-5某+q=0,某∈N},且22CUAB={2},CUBA={4},则p+q的值等于.(17)设A={(某,y)|y=1-3某},B={(某,y)|y=(1-2k2)某+5},若A∩B=φ,则k的取值是____________.(18)用集合表示图中阴影部分____________.三.解答题(19)写出所有适合{a,b}A的集合A.(20)某班有学生55人,其中有音乐爱好者34人,有体育爱好者43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?(21)若a<0<b<|a|,A={某|a≤某≤b},B={某|-b≤某≤-a},试求A∪B,A∩B.(22)P={a,a+2,-3},Q={a-2,2a+1,a+1},P∩Q={-3},求a.22(23)已知A={某|某-a某+a-19=0},B={某|某-5某+8=2},C={某|某+2某-8=0},若2222∩B,且A∩C,求a的值.=(24)设集合A={某|某+(p+2)某+1=0},且A{某|某>0}=ф,求实数p的取值范围.2数学的内参函数的解析式的求法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.一.换元法题1.已知f(3某+1)=4某+3,求f(某)的解析式.1某练习1.若f(),求f(某).某1某二.配变量法11题2.已知f(某)某22,求f(某)的解析式.某某练习2.若f(某1)某2某,求f(某).三.待定系数法题3.设f(某)是一元二次函数,g(某)2某f(某),且g(某1)g(某)2某1某2,求f(某)与g(某).练习3.设二次函数f(某)满足f(某2)f(某2),且图象在y轴上截距为1,在某轴上截得的线段长为22,求f(某)的表达式.数学的内参四.解方程组法题4.设函数f(某)是定义(-∞,0)∪(0,+∞)在上的函数,且满足关系式3f(某)2f()4某,某求f(某)的解析式.练习4.若f(某)f(五.特殊值代入法题5.若f(某y)f(某)f(y),且f(1)2,求值练习5.设f(某)是定义在N上的函数,且f(1)2,f(某1)六.利用给定的特性求解析式.题6.设f(某)是偶函数,当某>0时,f(某)e某2e某,求当某<0时,f(某)的表达式.练习6.对某∈R,f(某)满足f(某)f(某1),且当某∈[-1,0]时,f(某)某22某求当某∈[9,10]时f(某)的表达式.某1)1某,求f(某).某f(2)f(3)f(4)f(2005).f(1)f(2)f(3)f(2004)f(某)1,求f(某)的解析式.2数学的内参七.归纳递推法某1题7.设f(某),记fn(某)ff[f(某)],求f2004(某).某1八.相关点法题8.已知函数f(某)2某1,当点P(某,y)在y=f(某)的图象上运动时,点Q(图象上,求函数g(某).九.构造函数法题9.若f(某)表示某的n次多项式,且当k=0,1,2,,n时,f(k)k,求f(某).k1y某,)在y=g(某)的23课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。

北师大版高一数学必修1经典PPT课件

北师大版高一数学必修1经典PPT课件

4.1二次函数的图像
北师大版高一数学必修1经典PPT课 件
4.2二次函数的性质
北师大版高一数学必修1经典PPT课 件
习题2—4
2.3映射
北师大版高一数学必修1经典PPT课 件
习题2—2
北师大版高一数学必修1经典PPT课 件
阅读材料 生活中的映射
§2 对函数的进一步认识
北师大念
北师大版高一数学必修1经典PPT课 件
2.2函数的表示法
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
3.1交集与全集
北师大版高一数学必修1经典PPT课 件
3.2全集与补集
北师大版高一数学必修1经典PPT课 件
习题1—3
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
§3 函数的单调性
北师大版高一数学必修1经典PPT课 件
习题2—3
北师大版高一数学必修1经典PPT课 件
§4 二次函数的再研究
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
§5 简单的幂函数
北师大版高一数学必修1经典PPT课 件
习题2—5
北师大版高一数学必修1经典PPT课 件
阅读材料 函数概念的发展—— 从解析式到对应关系
北师大版高一数学必修1经典PPT课 件
阅读材料
北师大版高一数学必修1经典PPT课 件
本章小结
北师大版高一数学必修1经典PPT课 件
复习题一
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
习题1—2
北师大版高一数学必修1经典PPT课 件

高一数学:人教版高一数学上学期第一章) PPT课件 图文

高一数学:人教版高一数学上学期第一章) PPT课件 图文
其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}

高一数学必修一 第一章综合 教学课件PPT

(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.

高中集合复习课件

x 2 1 0 的实数解 ) .

例1 求不等式2 x 3 5 的解集.
解 由2 x 3 5 可得 x 4 , 所不等式2 x 3 5 的 解集为 x | x 4, x R.
x | x 4. 这里, x | x 4, x R可简记为
实数集 记作 R .
集合的元素常用小写拉丁字母表示 .如果 a是集合A的元素, 就记作a A, 读作" a 属 于A "; 如果 a 不是集合 A的元素, 就记作 A A 或 aA , 读作" a 不属于A".例如, 2 R, 2 Q.
除了用自然语言描述一个集合,还有以下两种 方式:
例3 (1)用符号 或 填空: 设A为偶数集,B为奇数集,若 a A, b B , 则 (i)a b __ A (ii)a+b____B (iii)a.b____A (iv)a.b____B 3 1 N (iii) 0 N (2)给出下列关系(i)2 R (ii) (iv) 3 Q (v) 3 Z 1 (vi) 2 Q 其中正确的是——。 解 (1)(i) (ii) (iii) (iv) (2)(i),(iv),(v)(vi)
例1中的解集的元素有无限 多个.
一般地, 含有有限个元素的集合 称为有限集 ( fnfinite set ) .若一个集合不是有限集 , 就称此 集合为无限集 (inf inite set ) .我们把不含任何 元素的集合称为空集(em pty set ), 记作 .
例2 求方程 x 2 x 1 0 所有实数解 的集合.
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
7.小结
• • • • • 集合的含义 元素与集合之间的关系 集合中元素的三个特征 集合的表示方法 选择适当的方法表示集合

高一数学《集合复习课》.ppt


a 2 . 则实数a的取值范围是 ________
B {x | x a}且A B,
6.已知集合M {0, 1, 2}, N {x | x 2a, a M }, 则集合M N _______ . A. {0} B. {0, 1} C. {1, 2} D. {0, 2}
n n n
二、基本思想:
1. 数形结合
2. 分类讨论 3. 转化化归
三、典型习题:
1. 下列命题:
(1) 方程 x 2 y 2 0的解集为{2, 2} ( 2) 集合{ y | y x 1, x R }与 { y | y x 1, x R }的公共元素所组成 的集合是{0, 1} ( 3) 集合{ x | x 1 0}与集合{ x | x a , a R } 没有公共元素
D 若Q P , 则a的值为______ .
A. 1 C. 1或 1
B. 1 D. 0, 1或 1
4. 集合S {a, b, c, d , e}, 则S包含 {a, b}的子集个数共有 _____ 个. A. 2 C. 5 B. 3 D. 8
4. 集合S {a, b, c, d , e}, 则S包含
其中正确的个数有 _____个.
2. 下列六个关系式: 1) {a , b} {b, a } 3) Φ {Φ} 5) Φ {0} A. 6 B. 5 2 ) {a , b} {b , a } 4) {0} Φ 6) 0 {0} C. 4 D. 3
C 个. 其中正确的个数有 _____
D 个. {a, b}的子集个数共有 _____
A. 2 C. 5
B. 3 D. 8
5.已知集合A {x | 2 x 2, x R}, B {x | x a}且A B, 则实数a的取值范围是 ________ .

人教A版高一数学必修一第一章综合复习 PPT课件 图文


必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )

A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例8,某班有30人,期中15人喜爱篮球运 动,10人喜爱乒乓球运动,8人对两项运动 都不热爱,则喜爱篮球不喜爱乒乓球的人 数是多少?
例9:已知集合A={x|x2-x-2<0},B={x| -1<x<1},则A和B的关系是什么?
例7.已知A {x | x 4 x 0},
2
B {x | x 2(a 1) x a 1 0}
2 2
(1)若A B B, 求实数a的值. (2)若A B B, 求a的值
解: A {4,0}, B A B 或B {4}或B {0}或B {4,0}. 当B 时, 4(a 1) 2 4(a 2 1) 0, a 1. 8(a 1) 0 当B {4}时, a无解 2 16 2(a 1) (4) a 1 0 0 当B {2}时, a -1 2 a 1 0 4 0 2(a 1) 当B {4, 0}时, 0 a 1 2 0 a 1 综上所述,a 1或a 1. (2) A B B, 则A B, A {4,0}, 且B中至多有两个元素, 则A B,由( 1 )知道a 1
例4:已知集合A {x | x a}, B {x | 1 x 2}, 且A (CR B) R, 则实数a的取值范围是什么?
例5:若集合A {1, பைடு நூலகம்,x}, B {1, x }, A B {1,3, x},则满足条件的实数x有几个
2
例6 .设全集I={不超过5的正整数},A={x|x25x+q=0},B={x|x2+px+12=0},( )∪B={1,3,4,5}, 求p,q的值和集合A,B。 解:∵ ( )∪B={1,3,4,5}, I={1,2,3,4,5}, ∴ 2 即2∈A。 将2代入x2-5x+q=0得 ={1,4,5}且 q=6,于是A={2,3}。又∵ ( )∪B={1,3,4,5}, ∴ 3∈B代入x2+px+12=0,得p=-7, ∴ B={3,4}。
由补集定义可知,对于任意集合A,有:
A ( CU A ) U A ( CU A )
CU ( CU A ) A
练习:判断正误
(1)若U={四边形},A={梯形}, 则CUA={平行四边形} (2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=
例 设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
={x|-1<x<3}
3.补集,全集
U
A
符号定义: CU A={x|A U, 且x U,且x A}
所要研究的集合都是某一给定集合的子集, 全集. 那么称这个给定的集合为_____. 通常用U表示.
知识结构
元素性质 确定性 互异性 无序性 有限集 无限集 空集 常用集合
概念
集合分类
列举法 描述法 图示法
包含关系 真子集 相等
集合
表示方法
子集
元素与集合
a A a A
集合的运算 集合与集合的关系
交集 并集 补集
四、集合运算 1.交集 符号定义: A B { x| x A,且x B }
A B
对任意两个集合A,B,都有: A A B B A A A A A A B
A B A B A
2.并集 符号定义: AUB { x| x A,或x B }
A B
A
B
A B A B B
对任意两个集合A,B,都有: A B B A A A A A A A
求: (1)A∩B;(2)A∪CRB; (3)(CRA)∩(CRB)
A y | y x 2 x 2 y | y 1
2
B x | y x 2 x 8 x | x R R
2
例3.设I={1,2,3,……,9},已知: (1)( )∩B={3,7},(2)( B)∩A={2,8}, (3)( )∩( B)={1,5,6}求集合A和B。
2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3} 且CBA={5},求实数a的值。
例1:集合U=R,A={x|1 x 3 },B={x| 2 x 4 } 求 A B, A B, A (CU B), B (CU A)
例2. 已知全集为R,A={y|y = x2 +2x+2}, B={x|y = x2 +2x-8},
相关文档
最新文档