第七章 空间解析几何思考题
[整理]7空间解析几何与向量代数习题与答案
![[整理]7空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/8953ea7069eae009581bec92.png)
第七章 空间解析几何与向量代数A一、1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ.三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面.3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z +=(2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程.5、求直线⎩⎨⎧=--=++03z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3.7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知a 和b 为两非零向量,问t 取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量n ,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过z 轴,且与平面052=-+z y x 的夹角为3π的平面方程.6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线2l :211zy x =-=平行的平面.8、求在平面π:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为m ).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线L :121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程.4、求两直线1L :1101-=-=-z y x 与直线2L :0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、a 在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j ib a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高等数学第七章向量代数与空间解析几何习题

解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
空间解析几何习题答案解析

一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1) 又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,1016.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
空间解析几何应用题解析

空间解析几何应用题解析解析几何是数学中的一个重要分支,主要研究空间中的点、直线、平面和曲面等几何元素之间的关系和性质。
空间解析几何的应用题是解析几何的一种实际问题,通常需要运用坐标系、向量和方程等方法进行求解。
本文将通过几个空间解析几何应用题来探讨其解题方法和思路。
题目一:过点A(1,2,3)且平行于直线l1:x-1/2=y/3=z-5/4的平面方程。
解析:要求解过点A(1,2,3)且平行于直线l1:x-1/2=y/3=z-5/4的平面方程。
首先,我们需要确定平面的法向量。
由于平面平行于直线l1,故直线l1的方向向量也是平面的法向量。
直线l1的方向向量为(1/2, 1/3, 5/4)。
知道平面的法向量后,我们可以利用点法式求解平面方程。
设平面的法向量为n=(A,B,C),平面上一点为P(x,y,z),则平面方程可表示为Ax+By+Cz+D=0,其中D为常数。
由于平面过点A(1,2,3),代入平面方程得到:A*1 + B*2 + C*3 + D= 0,即A + 2B + 3C + D = 0。
然后,将平面的法向量(1/2, 1/3, 5/4)代入,得到方程:1/2 * A + 1/3 * B + 5/4 * C = 0。
我们可以得到一个平面方程的方程组:A + 2B + 3C +D = 01/2 * A + 1/3 * B + 5/4 * C = 0进一步化简方程组,可以求解出平面方程的解。
题目二:已知点A(1,2,3)和点B(-1,3,4),求直线AB的方程。
解析:要求直线AB的方程,我们可以用两点确定一条直线的方法。
点A(1,2,3)和点B(-1,3,4)确定了直线AB。
直线上两点的坐标分别为(x1, y1, z1)和(x2, y2, z2)。
我们可以使用参数方程表示直线的方程:x = x1 + t(x2-x1)y = y1 + t(y2-y1)z = z1 + t(z2-z1)这里,t是一个参数,可以取任意实数。
(整理)第七章 空间解析几何

第七章空间解析几何与向量代数内容概要习题7-1★★1.填空:(1) 要使b a b a -=+成立,向量b a , 应满足b a ⊥(2) 要使b a b a +=+成立,向量b a , 应满足 //b a ,且同向★2.设c b a v c b a u-+-=+-=3 , 2,试用c b a , , 表示向量v u 32-知识点:向量的线性运算解:c b a c b a c b a v u 711539342232+-=+-++-=-★3.设Q , P 两点的向径分别为21 , r r ,点R 在线段PQ 上,且nmRQPR =,证明点R 的向径为 n m m n+=+r r r 12知识点:向量的线性运算证明:在OPQ ∆中,根据三角形法则PQ OP OQ =-,又)(21r r -+=+=nm mn m m ,∴nm m n n m mPR OP OR++=-++=+=22r r r r r 111)(★★4.已知菱形ABCD 的对角线b a AC ==B D , ,试用向量b a , 表示DA CD BC AB , , , 。
知识点:向量的线性运算解:根据三角形法则, b a ==-==+B , ,又ABCD 为菱形,∴=(自由向量),∴222AB AC BD AB CD DC AB --=-=-⇒=⇒=-=-=a b b aa b ∴2b a +==,2DA +=-a b★★5.把ABC ∆的BC 边五等分,设分点依次为4321 , , , D D D D ,再把各分点与点A 连接,试以a c ==BC AB , 表示向量 , , 321A D A D A D 和A D 4。
知识点:向量的线性运算 解:见图7-1-5,根据三角形法则,)51(51 ,11111a c +-=-=⇒==+AD A D BC BD AD BD AB 同理:)54( ),53( ),52((432a c a c a c +-=+-=+-=D D D习题7-2★1在空间直角坐标系中,指出下列各点在哪个卦限?(2 , 2 , 3)A -; 5) , 3 , 3(-B ; )4 , 2 , 3(--C ; 2) , 3 , 4(--D答:(2 , 2 , 3)A -在第四卦限,5) , 3 , 3(-B 在第五卦限,)4 , 2 , 3(--C 在第八卦限,2) , 3 , 4(--D 在第三卦限★2.在坐标面上和坐标轴上的点的坐标各有什么特征?并指出下列各点的位置:A B C D -(2,3,0); (0,3,2); (2,0,0); (0,2,0)知识点:空间直角坐标答:在各坐标面上点的坐标有一个分量为零,坐标轴上点的坐标有两个分量为零,∴点A 在xoy 坐标面上;B 在yoz 坐标面上;C 在x 轴上;D 在y 轴上。
第七章 空间解析几何与向量代数(答案)

第七章 空间解析几何与向量代数一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:(A )A )5B ) 3C ) 6D )92. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2, 1,-2},求用标准基i , j , k 表示向量c=a-b 为(A )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C )A )2πB )4πC )3πD )π5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( B )A )5焦耳B )1焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( C )A )2πB )4πC )3π D )π7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ⨯ 是:( )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )3i -3j +3k9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A B )364 C )32 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A )2x+3y=5=0 B )x-y+1=0C )x+y+1=0D )01=-+y x .11、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );(A )-+a b =a b ; (B )=a b ; (C )0⋅a b =; (D )⨯a b =0.12、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a =( D );(A )53; (B )5; (C )3; (D13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 B ; (A )6π; (B )3π; (C )4π; (D )2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 A ;(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、方程222231x y z -+=表示 曲面,其对称轴在 上;(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;(C)单叶双曲面,y 轴; (D)双叶双曲面,z16设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b17、设向量,a b 相平行,但方向相反,则当0>>a b 时,必有(A ) A +=-a b a b B +>-a b a b C a b a b +<- D a b a b +=+18向量a 与b 的数量积⋅a b =( C ). A a rj P b a ; B ⋅a rj P a b ; C a rj P a b ; D b rj P a b . 19非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .20设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.21设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k22空间曲线的方程是( B ).A 惟一的;B 不惟一的;C 可能不惟一;D 不能确定.23方程组2222491x y z x ⎧++=⎪⎨=⎪⎩ 表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影.24方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.25设空间直线的对称式方程为 012x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.26设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩, 则必有( D ).A 1L ∥2L ;B 1L ∥3L ;C 32L L ⊥;D 21L L ⊥.二、填空题1 平面的点法式方程是2、yoz 坐标面的曲线0),(=z y f 绕z 轴旋转生成的旋转曲面的方程是:3、 已知两点)5,0,4(A 与)3,1,7(B ,与向量AB 方向一致的单位向量0a = 。
空间解析几何习题答案解析(最新整理)

一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 空间解析几何思考题
特别说明:为打印简便,这段的向量都没有箭头
1.,0=++c b a b a c μλ+=的几何意义是什么?
2.若平行四边形ABCD 的三个顶点A ,B ,C 的向径分别为321,,r r r ,则顶点
D 的向径为什么?
3.若b a ⊥,则下列各式哪个必成立?||||||b a b a +=+,
||||||b a b a -=-,||||b a b a -=+,b a b a -=+
4.若,0=++c b a 则?=⨯b a
5.向量)57()3(b a b a -⊥+,)27()4(b a b a -⊥-,
则b a ,的夹角=? 6.下列各式是否正确?为什么?
0≠a 时,有1=a a ; b a b a a 2)(=⋅; 222)(b a ab =;
b b b a a a b a b a ⨯+⨯+⨯=+⨯+2)()(;
0)()(=⨯-⨯=-⨯+b b a a b a b a ;
若0≠a
,c b ac ab =⇒= 若0≠a ,c b c a b a =⇒⨯=⨯.
7.如果已知三点(四点)坐标,如何验证这三点(四点)是否共线(共面)? 8.已知空间四点的坐标,能用向量方法计算出以它们为顶点的四面体体积吗? 9.若c b a ,,均为非零向量,问它们有怎样的位置时,下列式子成立? ||||||b a b a +=+,||||||b a b a +=-,c b a b c a )()(⋅=⋅. 10.下列两组角是否都可作为某向量的方向角?
60,150,90===γβα; 60,135,45===γβα. 11.如果a 与三个坐标面的夹角分别为A,B,C ,那么
?cos cos cos 222=++C B A
12.想象图形:是否存在满足下列条件的平面.若存在,唯一吗?
(1)过一已知点与已知直线平行;(2)过一已知点与已知直线垂直; (3)过一已知点与已知平面平行;(4)过一已知点与已知平面垂直;
(5)过两已知点与已知直线平行;(6)过两已知点与已知直线垂直;
(7)过两已知点与已知平面平行;(8)过两已知点与已知平面垂直;
13.设有两直线⎪⎩⎪⎨⎧=+-==t z t y t x L 4332:1,⎪⎩
⎪⎨⎧+=+-=+=t z t y t x L 2221:2.如果相交,那么
交点坐标应满足两个方程,即⎪⎩
⎪⎨⎧+=+-=+-+=t t t t t t 22423312应有解,但这样的解是
不存在的,故二直线不相交.以上的结论对吗?为什么?
14.直线⎩⎨⎧=+++=+++0
022221111D z C y B x A D z C y B x A 的系数满足哪些条件,才能使直线:
过原点?与z轴平行?与x轴重合?与y轴相交?
15.如何求过一已知点且与二已知的异面直线都相交的直线?
※ 如何求二已知的异面直线的公垂线?(有能力的同学可尝试!)
16.试推导点到平面的距离公式、点到直线的距离公式、直线间距离公式. 17.(1)1=x ,在数轴上、在平面直角坐标系下、空间直角坐标系下各表
示什么图形?
(2)⎩⎨⎧==11y x 在平面直角坐标系下、空间直角坐标系下各表示什么图形? (3)022=+y x 表示什么图形?
18.写出满足下列条件的动点轨迹的方程,它们分别表示什么曲面? (1)动点到坐标原点的距离等于它到平面4=z
的距离; (2)动点到坐标原点的距离等于它到点)4,3,2(的距离的一半;
(3)动点到点)5,0,0(的距离等于它到x 轴的距离.
19.如何写出一条空间曲线在坐标面上投影曲线方程?试求曲线
⎩⎨⎧-+-=--=222
2)
1()1(2y x z y x z 在三个坐标面上的投影曲线的方程.
参考答案:
1.如果不共线,,0=++c b a 说明三向量构成一个三角形;
b a
c μλ+=说明三个向量共面.
2.3214r r r r +-= .
3.只有||||b a b a -=+成立.
4.若,0=++c
b a 则
c b b a ⨯=⨯. 5. 60.
6.都不正确. 因为不能把数的运算法则使用于向量运算.
7.若三点为A,B,C ,当且仅当向量→→BC AB ,的向量积为零向量;
如果已知四点A,B,C ,D ,→→BC AB ,,→AD 的混合积为零.
8.平行六面体体积的六分之一,即为混合积的绝对值的六分之一. 9.b a ,同向时,有 ||||||b a b a +=+;
b a ,反向时,有||||||b a b a +=-;
当b a ⊥且c a ⊥或c b ,平行时,c b a b c a )()(⋅=⋅成立.
10. 用1cos cos cos 222=++γβα判定.
60,150,90===γβα可以;
60,135,45===γβα不可以.
11.2cos cos cos 222=++C B A
12.(1)存在但不唯一.
(2)存在且唯一.
(3)存在且唯一.
(4)存在但不唯一.
(5)若两点连线与已知直线不平行,则存在且唯一;若平行,存在但有无
穷多个.
(6)仅当两点连线垂直于已知直线时,存在且唯一.
(7)仅当两点连线平行于已知平面时,存在且唯一.
(8)存在,仅当两点连线不垂直于已知平面才唯一存在.
13.不对.)0,3,0(-点是他们的交点.推导过程中两直线方程的参数并无特
殊联系,问题在于把两个方程中的参数看成了相等的参数.
14.直线⎩⎨⎧=+++=+++0
022221111D z C y B x A D z C y B x A 021==D D 时,过原点;021==C C 且2
121B B A A ≠时,与z轴平行. 02121====D D A A 时,与x轴重合.2
121D D B B =时,与y轴相交. 15.分别求过已知点与已知直线的两个平面,则交线即为所求.
◎ 设已知二异面直线的方向向量分别为21,s s ,且分别过点21,M M ,而s 是所求公垂线的方向.
则由于21,s s s s ⊥⊥,利用垂直的条件可确定21s s s ⨯=;然后由11,,M s s 可确定一个平面1π,由22,,M s s 可确定平面2π,则21,ππ的交线即为所求.
16.已知点),,(0000z y x M ,平面方程0=+++D Cz By Ax ,直线方程
n
z z m y y l x x ***-=-=-,方向),,(n m l s =,M 是直线上任意点 则点到平面的距离为222000||C
B A D Cz By Ax d +++++= (与中学平面解析几何中点到直线的距离公式比较); 点到直线的距离公式是|
|0s d =; 如果21,M M 分别是二直线的各一点,21,s s 分别是方向,则当二直线异面时,二直线的距离为|
||)(|212121s s s s M M d ⨯⨯⋅=. 17.(1)1=x ,在数轴上、在平面直角坐标系下、空间直角坐标系下分别
表示一点、一直线、一平面;
(2)⎩⎨⎧==1
1y x 在平面直角坐标系下、空间直角坐标系下分别表示平面上一
点、一直线;
(3)022=+y x
表示直线,即z 轴. 18.写出满足下列条件的动点轨迹的方程,它们分别表示什么曲面? (1))2(822z y x -=+,开口朝下,顶点在)2,0,0(的旋转椭圆抛物面;
(2)911634)1(322
22=⎪⎭⎫ ⎝
⎛++++⎪⎭⎫ ⎝⎛+z y x ,这是球面; (3)25102-=z x ,母线平行于y 轴的抛物柱面.
19.要求一条空间曲线在xoy 面上投影曲线方程,只须由表示该曲线的两个曲面方程中消去变量z 即可得到投影曲线方程中的两个中的一个,再与0=z
联立即为曲线在xoy 面的投影曲线方程.
例如曲线⎩⎨⎧-+-=--=222
2)
1()1(2y x z y x z 在xoy 面上的投影曲线的方程为 ⎩
⎨⎧=-+-=--0)1()1(22
222z y x y x .可以化简一下. 想一想如果空间曲线方程为参数方程时,如何写出其在坐标面上的投影曲线方程.。