第七章-空间解析几何与向量代数复习题(答案)
最新7空间解析几何与向量代数习题与答案汇总

7空间解析几何与向量代数习题与答案第七章空间解析几何与向量代数A一、1、平行于向量«Skip Record If...»的单位向量为______________.2、设已知两点«Skip Record If...»,计算向量«Skip Record If...»的模,方向余弦和方向角.3、设«Skip Record If...»,求向量«Skip Record If...»在x轴上的投影,及在y轴上的分向量.二、1、设«Skip Record If...»,求(1)«Skip Record If...»(3)a、b的夹角的余弦.2、知«Skip Record If...»,求与«Skip Record If...»同时垂直的单位向量.3、设«Skip Record If...»,问«Skip Record If...»满足_________时,«Skip Record If...».三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程«Skip Record If...»表示______________曲面.3、1)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3)将xOy坐标面上的«Skip Record If...»绕x轴及y轴旋转一周,生成的曲面方程为_____________,曲面名称为_____________________.4)在平面解析几何中«Skip Record If...»表示____________图形。
微积分练习册[第七章]向量代数与空间解析几何
![微积分练习册[第七章]向量代数与空间解析几何](https://img.taocdn.com/s3/m/4513ee35182e453610661ed9ad51f01dc281571a.png)
习题7-1 空间直角坐标系1.填空题(1)下列各点所在象限分别是:a .(1,-2,3)在________________;b .(2,3,-4)在________________;c .(2,-3,-4)在________________;d .(-2,-3,1)在________________。
(2)点P(-3,2,-1)关于平面XOY 的对称点是_______,关于平面YOZ 的对称点是_________,关于平面ZOX 的对称点是__________,关于X 轴的对称点是__________,关于Y 轴的对称点是____________,关于Z 轴的对称点是____________。
(3)点A(-4,3,5)在XOY 平面上的射影点是_________,在YOZ 平面上的射影点是_________,在ZOX 面上的射影点是__________,在X 轴上的射影点是_________,在Y 轴上的射影点是__________,在Z 轴上的射影点是__________。
(4)已知空间直角坐标系下,立方体的4个顶点为A(,,a a a ---),B(,,a a a --),C(,,a a a --)和D (,,a a a ),则其余顶点分别为___________,_____________,___________, ___________。
2.已知三角形的三个顶点A(2,-1,4),B(3,2,-6),C(-5,0,2),求过A、B、C 三点的中线的长度。
3.已知平行四边形ABCD的两个顶点A(2,-3,-5),B(-1,3,2)及它的对角线的交点E(4,-1,7),求顶点C、D的坐标。
4.已知某直线线段AB被点C(2,0,2)及点D(5,-2,0)内分为3等分,求端点A、B的坐标。
5.求点M(-4,3,-5)到各坐标轴的距离。
6.在YOZ面上,求与三个已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
高等数学第七章向量代数与空间解析几何习题

解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
第七章 空间解析几何与向量代数(答案)

第七章 空间解析几何与向量代数一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:(A )A )5B ) 3C ) 6D )92. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2, 1,-2},求用标准基i , j , k 表示向量c=a-b 为(A )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C )A )2πB )4πC )3πD )π5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( B )A )5焦耳B )1焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( C )A )2πB )4πC )3π D )π7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ⨯ 是:( )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )3i -3j +3k9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A B )364 C )32 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A )2x+3y=5=0 B )x-y+1=0C )x+y+1=0D )01=-+y x .11、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );(A )-+a b =a b ; (B )=a b ; (C )0⋅a b =; (D )⨯a b =0.12、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a =( D );(A )53; (B )5; (C )3; (D13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 B ; (A )6π; (B )3π; (C )4π; (D )2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 A ;(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、方程222231x y z -+=表示 曲面,其对称轴在 上;(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;(C)单叶双曲面,y 轴; (D)双叶双曲面,z16设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b17、设向量,a b 相平行,但方向相反,则当0>>a b 时,必有(A ) A +=-a b a b B +>-a b a b C a b a b +<- D a b a b +=+18向量a 与b 的数量积⋅a b =( C ). A a rj P b a ; B ⋅a rj P a b ; C a rj P a b ; D b rj P a b . 19非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .20设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.21设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k22空间曲线的方程是( B ).A 惟一的;B 不惟一的;C 可能不惟一;D 不能确定.23方程组2222491x y z x ⎧++=⎪⎨=⎪⎩ 表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影.24方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.25设空间直线的对称式方程为 012x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.26设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩, 则必有( D ).A 1L ∥2L ;B 1L ∥3L ;C 32L L ⊥;D 21L L ⊥.二、填空题1 平面的点法式方程是2、yoz 坐标面的曲线0),(=z y f 绕z 轴旋转生成的旋转曲面的方程是:3、 已知两点)5,0,4(A 与)3,1,7(B ,与向量AB 方向一致的单位向量0a = 。
第七章 向量与空间解析几何复习题

第七章 向量与空间解析几何复习题一、选择题1. 向量}6,3,2{-=a ,则与a 同向的单位向量为( )(A ) }6,3,2{- (B )}6,3,2{71-- (C ) }6,3,2{71-± (D ) }6,3,2{71- 2. 平面243=-z x ( )(A)平行于zox 平面 (B)平行于y 轴 (C)垂直于y 轴 (D)垂直于x 轴3. 设向量c b a ,,满足0)(=-⨯c b a 则必有( )(A)0 =a (B) c b = (C)b a //且c a // (D) )//(c b a -4. 平面0=+++D Cz By Ax 过x 轴,则( )(A )0==D A (B )0,0≠=C B (C )0,0=≠C B (D )0==C B5. 在空间直角坐标系中,点(1,-2,3)关于原点对称的点的坐标是( )(A) (1,-2,-3) (B) (-1,2,-3) (C) (-1,-2,-3) (D) (1,-2,-3)6. 设向量a ={4,-3,4},b={2,2,1},则向量a 和b 的夹角为( ) (A) 412arcsin (B) 0 (C) 412arccos (D) 4π 7.平面4y-7z=0的位置特点是( )(A) 通过oz 轴 (B) 通过oy 轴 (C) 通过ox 轴,且过点(0,7,4)(D) 平行于oyz 面8.平面x+y+2z=0的位置特点是( )(A) 通过原点 (B) 不通过原点 (C) 平行于向量a={1,1,2} (D)过x 轴 9.向量k j i k j i a 22432-+=+-=β与的夹角为( ) (A)2π (B) 0 (C) π (D) 4π 10. 平面3510x z -+= ( )(A) 平行于zox 平面 (B) 平行于y 轴 (C) 垂直于y 轴 (D) 垂直于x 轴 11. 下列平面中,与平面012=++-z y x 垂直的平面是( )(A)052=++-z y x (B) 0532=++-z y x(C) 0103=+--z y x (D) 0653=-+-z y x12.设向量{}1,2,3-=,⎭⎬⎫⎩⎨⎧=k ,34,2b .已知b a ⊥,则=k ( ). (A) 32 (B) 326 (C) 27(D) 113.在空间直角坐标系中,方程1222=+y x 表示的曲面是( ).(A) 球面 (B) 圆柱面 (C) 圆锥面 (D)椭圆柱面14.设向量{}2,1,1-=,{}4,0,3=,则向量在向量上的投影为( ). (A) 65 (B) 65- (C) 1 (D) -115.下列曲面方程中表示圆锥面的是( ).(A)22y x z += (B)22y x z += (C)1222=++z y x (D) 1222=+y x16.设平面截x ,y ,z 轴的截距分别为a ,b ,c (a 、b 、c 均不为0)则这个平面的方程为() (A)1xyza b c ++= (B)1xyza b c ++=- (C) 1=++cz by ax (D) 0=++cz by ax17. 设空间直线 210zyx== ,则该直线过原点,且( )(A) 与X 轴垂直 (B) 垂直于Y 轴,但不平行X 轴(C) 与X 轴平行 (D) 垂直于Z 轴,但不平行X 轴18. 直线42z 31y 21x -=+=-与平面x-2y+z=5的位置关系是( ).(A) 垂直 (B) 平行 (C) 重合 (D) 斜交19.向量b a ⨯与二向量a 及b 的位置关系是( )(A) 共面 (B) 共线 (C) 垂直 (D) 斜交20. 在空间直角坐标系中,点(1,3,1)P -关于y 轴对称的点的坐标是( )(A) (1,3,1) (B) (-1,3,-1) (C) (-1,-3,1) (D) (-1,3,1)21.点(1,2,1)到平面032=++-z y x 的距离=d ( ).(A) 0 (B) 2 (C)36(D) 36222.在空间直角坐标系中,仅有点( )是在第三卦限内.(A )(1,-1,2) (B )(-1,-1,2) (C )(1,1,-2) (D )(-1,1,-2)23. 同时垂直于向量(2,1,4)a =和z 轴的向量的单位向量是( )(A )(55- (B )(55- (C )(55- (D )(5524.过点(2,-3,0)且以)3,2,1(-=→n 为法向量的平面方程为( )(A) 13231)2(=+-++-z y x (B) 13231)2(-=+-++-z y x (C) 13)3(2)2(=++--z y x (D) 03)3(2)2(=++--z y x25.yoz 平面内的直线14=+z y 绕y 轴旋转一周所得的曲面方程为( ).(A) )(16)1(222z x y +=- (B) 116)(222=++z x y(C) 1)(4=++z x y (D) 11622=+z y二、填空题1.设a b k a },1,2,0{},,1,1{-=-=⊥,b 则常数k = .2.已知112,(2,0,1)a b =-=(,,) ,则a b ⨯= .3.设},4,2,1{},1,0,2{==b a 则a 与b 的夹角=)^(b a .4.过空间两点)2,1,0(-和)1,4,3(-的直线方程为 .5.已知3=a ,26=b ,72=⨯b a ,则=⋅b a .6. 点)0,2,1(M 到平面02543=++-z y x 的距离为 .7. 过点)3,1,2(-且与平面2240x y z +--=垂直的直线方程为 .8.设k j i a 23-+=,k j i b --=32,则b a ⋅= .9.点(0,1,3)-到平面2380x y z -+-=的距离为____________________.10.设(2,3,5),(2,4,),a b c ==-且a b ⊥,则常数c =___________.11.直线1139412-=-=-z y x 与平面0253=--+z y x 的交点为 12.设(2,1,1),(1,1,2),a b a b →→→→=-=-⨯=则________________.13.在空间直角坐标系中,点)3,2,1(-关于x 轴的对称点为 _____________.14.已知点)2,1,3(-A 和向量}1,3,4{-=AB ,则B 点的坐标为______________.15.过点0(3,4,4)P -且方向角为2,,343πππ的直线方程为___________________. 16.已知向量}2,3,2{},0,1,3{-=-=b a ,则a 与b 的夹角余弦为 .17.过点)3,1,2(-且垂直于直线11211-+==-z y x 的平面方程为 . 18.若向量b 与向量k j i a 22+-=平行且满足18-=⋅k b ,则b = . 19.向量}1,2,2{-=a 在y 轴上的投影等于 .20.已知向量 {}{}2,3,2b , 0,1,3-=-=→→a , 则模→→⨯b a = .21. 过(1,1,-1)、(-2,-2,2)和(1,-1,2)三点的平面方程是 .22.求过定点)2,1,1(-且与直线111122-=-+=-z y x 垂直的平面方程为____________. 23.曲线 ⎪⎩⎪⎨⎧==-01422z x y 绕x 轴旋转一周,所得的旋转曲面的方程为 .24.已知)2,1,2(),1,2,2(),1,1,1(C B A ,则与,同时垂直的向量是 .25.xOz 平面内的抛物线122+=x z 绕z 轴旋转一周所得曲面方程 .26. 过空间两点)0,1,1(),2,1,0(-B A 的直线方程为 .27.过空间两点)5,2,1(),2,0,1(--的直线方程为 ..28.过点)1,1,2(-且与直线12431:-==-z y x l 平行的直线方程为 .29.已知向量{}1,0,1a -=,{}3,2,0b -=,则a 在b 上的投影为 . 30.xoy 平面上的曲线y x 22=绕y 轴旋转后得到的旋转曲面方程 .31.过点(1,-2,0)且垂直于向量}1,3,2{-=a 的平面方程是 .32.设向量{}4,3-,4=,{}1,2,2=,则_____________),(cos =. 33. 设}1,2,1{},3,1,0{=-=b a ,则与a 和b 同时垂直的单位向量为 .34. 直线1139412-=-=-z y x 与平面0253=--+z y x 的交点为 .35. 点M (1,2,1)到平面:02543=++-z y x 的距离为36.在空间直角坐标系中,点)3,2,1(-关于原点的对称点是 __________.37. xoy 平面内双曲线12y 3x 22=-绕y 轴旋转所得曲面方程是 . 38.过空间两点)1,3,0(),2,1,0(B A -的直线方程为 .39.设空间三点)3,1,2(),0,1,1(),2,1,0(C B A -,则=⋅AC AB .三、解答题1.求过空间三点(1,0,2),(-1,1,1),(3,1,0)的平面方程.2.试把空间直线⎩⎨⎧=++-=+++043201z y x z y x 化成参数方程形式.3.求过点)1,2,1(-且同时平行于两平面012:1=--+z y x π与012:2=+-+z y x π的直线方程.4. 求过P 0129(,,)-与平面π:3250x y z +--=垂直的直线方程,并求出直线与平面的交点.6.求平行于x 轴是过点)2,1,3(1-M 和)0,1,0(2M 的平面方程.9.试写出直线⎩⎨⎧=-+-=+++022301z y x z y x 的点向式方程和参数方程. 10.求过点)4,2,0(且与平面12=+z x 平行的平面方程.12. 已知平面通过)2,7,4(),1,3,8(21P P -且垂直于平面021753=+-+z y x ,求这个平面的方程.13. 已知A (1,1,1),B (2,2,1),C (2,1,2),求与AB →,AC →同时垂直的单位向量.14. 设平面经过原点及点(6,-3,2),且与平面824=+-z y x 垂直,求此平面方程.15. 求过点)0,1,2(且与两平面0152084=---=+-z y x z x 和都平行的直线的方程。
7空间解析几何与向量代数习题与答案

空间解析几何与向量代数第七章 A 一、)?6(a?6,7,1、平行于向量的单位向量为______________.)0,,)和2M(3M(4,2,1MM.设已知两点的模,方向余弦和方向角,计算向量2、2121pn?4m?3j?5i??4ka?7nim?3?5j?8k,?2i?4j?k,p轴设3、在,求向量x .上的投影,及在y轴上的分向量二、;?b?b?2b及aab2()(?2a)?3及a k?2k,b??2j?iia?3?j(1)的、(3)ab1、设,求 .夹角的余弦1,2),M(3,3,?1),M(3,1,3),(M1MM,MM同时垂直的单位向量.,求与2、知31232211??b?z轴?与a??),4?(2,1?a?(3,5,2),b满足设.3、_________时,,问三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.222?2x?4y??y2?zz?x0表示______________曲面2、方程.2x?y2 __将xOy坐标面上的轴旋转一周,生成的曲面方程为绕x、31)___________________._____________,曲面名称为22xy2x??生成的曲面方程坐标面上的2)将xOyx轴旋转一周,绕___________________._____________,曲面名称为2236??9y4x轴旋转一周,生成的曲面方轴及yxOy坐标面上的绕x3)将_____________________._____________程为,曲面名称为2xy?在空间解析几何中)在平面解析几何中图形。
表示____________ 42x?y图形.表示______________ )画出下列方程所表示的曲面 5222)(x?y4z? (1)222)??4(xyz (2)四、22?yx1???图形,在空间解1在平面解析几何中表示____________、指出方程组94??3y??图形.析几何中表示______________2229?zx??y1?x?z.面上的投影方程的交线在2、求球面与平面xOy22222?ax(a?0xy?)yxa0?z???的公共部分在、求上半球与圆柱体3xOy面及xOz面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a=(2,1,1)和b=(1,-1,0)的平面方程.33、求平行于xOz面且过点(2,-5,3)的平面方程.4、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.六、1?3zyx???、求过点1(1,2,3)且平行于直线.的直线方程521 2??3zy1?zx?2且与两平面2、求过点(0,2,4)平行的直线方程,.0?7??x?2y4z? .垂直的平面方程(2,0,-3)3、求过点且与直线?0z?5x3?y2?1??x?4y?3z??的平面方程且通过直线. 4、求过点(3,1,-2)152 x?y?3z?0?x?y?z?1?0的夹角5、求直线.与平面?0??zyx??6、求下列直线与直线、直线与平面的位置关系x?2y?z?7?x?1y?3z??;与直线1)直线?7??2xy?z?112??? x?2y?2z?3??和平面2)x+y+z=3.直线43?1x?y?z?1?0?到直线、求点7(3,-1,2)的距离.?04????2xyz?5B c,a,b a?c?c?a?b?c?0b?b?a.1、已知(:为非零矢量),试证)ba,},求?(,a?b?{11,13a?b?, .2、a)tb(a?tb|a?|b?t b.取何值时,向量模和为两非零向量,问已知3、最小?并证明此时n)86,(a?3,xan?n? 4、求单位向量,使轴,其中.且?0?y?5z2x?z的平面方程轴,且与平面.的夹角为5、求过3)5()1,2M?3,,?1,(M40?3y?6x2?z7?.的平面,、求过点6,且垂直于2160?1??2y?zx?zxyl??.:、求过直线,且与直线平行的平面7?202?y?z?2x?21?1? 1?y??1?x?y?z:L.垂直相交的直线方程求在平面、上,:且与直线8?1?z??),2M(1,43M(,1,8)kg100,计算重力所做的功的物体从空间点9、设质量为,移动到点21m(长度单位为.)22?02xy?z??xoy坐标面上的投影曲线的方程,并指出原曲线是什么曲在10、求曲线?3z??线?OA?i?3k,OB?j?3k?OAB的面积,求、已知1170??z2x?4y?1??z4x?y.12、.求直线在平面上的投影直线方程?0??9y?2z3x??C?????????,c?0,??a,b,c?a?b?0,不全为零有相同起点,且,1、设向量,其中cb,a,终点共线证明:.?212y?x?)2,?1M(1,??L.且与直线,求过点角的直线方程:相交成2、0112?3z3y?x?1??0)3x?4y?z??10,(?10,4相交的直线方且平行于平面、过又与直线3211程.2z?yzxy1x?LL????.4、求两直线::与直线的最短距离210?3?160?1xoy}1,1,g?{1,,母线平行于向量5、柱面的准线是面上的圆周(中心在原点,半径为1) .求此柱面方程a?xb?a?lim?)b(?2,a,b.非零,a,b,求6、设向量x30?x x?2y??L:绕y轴旋转一周所围成曲面方程7、求直线. ?1)1y?(?z??2?第七章空间解析几何与向量代数答案习题 A 8?667??,?, 1一、、??111111?????12132?????????,cos,coscos????,,MM ,2、=2,21222334a在x轴上的投影为7j3、,在y轴上的分量为1331)???2)?(?a?b?31?(?1)?2?(二、11)、kijk?7?5i?j3a?b??1?212?1k2j?14(??18a?2b?2a?b)?10i?62(?a)?3b??(a?b),(2)3ba?^??cos(a,b)(3)ba?212}2?,2,{?2,4,?1},MM?{0MM 2、3122kijk44j???MM?24?1?6iMa?M3221220?4??4a6},,???{a172172217即为所求单位向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 空间解析几何与向量代数答案一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 92. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )A (-1,1,5).B (-1,-1,5).C (1,-1,5).D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C )A2π B 4π C 3πD π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A2π B 4π C 3πD π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A )A 138B 118C 158D 1 7. 设,23,a i k b i j k =-=++求a b ⨯是:( D )A -i -2j +5kB -i -j +3kC -i -j +5kD 3i -3j +3k8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )B 364C 32D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )A 2x+3y=5=0B x-y+1=0C x+y+1=0D 01=-+y x .10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );A -+a b =a b ;B =a b ;C 0⋅a b =;D ⨯a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C )A a b a b +=+B a b a b -=-C +=-a b a bD +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D );A 53; B 5; C 3; . 13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A6π; B 3π; C 4π; D 2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭.15、向量a 与b 的数量积⋅a b =( C ).A a rj P b a ;B ⋅a rj P a b ;C a rj P a b ;D b rj P a b . 16、非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b . 17、设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件. 18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ). A 7 B 7j C –1; D -9k19、方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ).A 椭球面;B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影. 20、方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面. 21、设空间直线的对称式方程为 012xy z==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴; C 过原点且垂直于z 轴; D 过原点且平行于x 轴. 22、设空间三直线的方程分别为123321034:;:13;:2025327x tx y z x y z L L y t L x y z z t=⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩,则必有( D ).A 1L ∥2L ;B 1L ∥3L ;C 32L L ⊥;D 21L L ⊥.23、直线34273x y z++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知1,==a b 且(,)4∧π=a b , 则 +a b = ( D ). A 1;B 1+C 2;.25、下列等式中正确的是( C ).A +=i j k ;B ⋅=i j k ;C ⋅=⋅i i j j ;D ⨯=⋅i i i i . 26、曲面22x y z -=在xoz 平面上的截线方程为 (D).A 2x z =; B 20y z x ⎧=-⎪⎨=⎪⎩; C 2200x y z ⎧-=⎪⎨=⎪⎩; D 20x zy ⎧=⎪⎨=⎪⎩.二、计算题1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。
解:由题设知((1212,32,01,1,,M M =---=- 则()(),2211222=-++-=21cos -=α,21cos =β,22cos -=γ,于是,32πα=,3πβ=,43πγ=。
2.设k j i m 853++=,k j i n 742--=和k j i p 45-+=,求向量p n m a -+=34在x 轴上的投影及在y 轴上的分向量。
解:()()()4574238534-+---+++=15713++=故在x 轴上的投影为13,在y 轴上的分向量为7。
3.在xoz 坐标面上求一与已知向量()2,3,4a =-垂直的向量。
解:设所求向量为()00,0,b x z =,由题意,04200=+-=⋅z x取10=z ,得20=x ,故()2,0,1b =与垂直。
当然任一不为零的数λ与的乘积λ也垂直。
4.求以()3,2,1A ,()5,4,3B ,()7,2,1--C 为顶点的三角形的面积S 。
解:由向量积的定义,可知三角形的面积为AC AB S ⨯=21,因为()2,2,2AB =,()2,4,4AC =--,所以()22216,12,4244i j kAB AC ⨯==----,于是, ()().69242162144222221222=-+-+=--=S 5.求与向量()2,0,1a =,()1,1,2b =-都垂直的单位向量。
解:由向量积的定义可各,若=⨯,则同时垂直于和,且k j i kj ib ac 23211102--=-=⨯=,因此,与b a c ⨯=平行的单位向量有两个:()()()k j i c 2314123123222--=-+-+--===和 ().23141k j i c ++-=- 6.求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。
解:由1=+z x ,得x z -=1,代入9222=++z y x ,消去z 得()91222=-++x y x ,即82222=+-y x x ,这就是通过球面9222=++z y x 与平面1=+z x 的交线,并且母线平行于z轴的柱面方程,将它与0=z 联系,得:⎩⎨⎧==+-082222z y x x ,即为所求的投影方程。
7、求过()1,1,1-A ,()2,,2,2--B 和()2,1,1-C 三点的平面方程。
解一:点法式:{}3,3,3--=,{}3,2,0-=,取{}2,3,13320333---=---=⨯=, 于是所求方程:023=--z y x 。
解法二:用一般式,设所求平面方程为 ,0=+++D Cz By Ax将已知三点的坐标分别代入方程得,0202220⎪⎩⎪⎨⎧=++-=++--=+-+D C B A D C B A D C B A 解得⎪⎩⎪⎨⎧=-=-=023D A C A B ,得平面方程:023=--z y x 。
8.求平面0522=++-z y x 与xoy 面的夹角余弦。
解:()2,2,1n =-为此平面的法向量,设此平面与xoy 的夹角为γ,则()()2,2,10,0,11cos 33||||n k n k γ-⋅⋅===⋅ 9.分别按下列条件求平面方程(1)平行于xoz 面且经过点()3,5,2-; (2)通过z 轴和点()2,1,3-;(3)平行于x 轴且经过两点()2,0,4-和()7,1,5。
解:(1)因为所求平面平行于xoz 面,故()0,1,0j =为其法向量,由点法式可得:()()()0305120=-⋅++⋅+-⋅z y x ,即所求平面的方程:05=+y 。
(2)因所求平面通过z 轴,其方程可设为(*)0=+By Ax ,已知点()2,1,3--在此平面上,因而有03=+-B A ,即A B 3=,代入(*)式得:03=+Ay Ax ,即所求平面的方程为:03=+y x 。
(3)从共面式入手,设()z y x P ,,为所求平面上的任一点,点()2,0,4-和()7,1,5分别用A ,B表示,则,,i 共面,从而[]00191124,,=+-=z yx ,于是可得所求平面方程为:029=--z y 。
10.用对称式方程及参数式方程表示直线l :⎩⎨⎧=++=+-421z y x z y x 。
解:因为直线l 的方向向量可设为()121112,1,3211i j ks n n =⨯=-=-,在直线上巧取一点()2,0,3-A (令0=y ,解直线l 的方程组即可得3=x ,2-=z ),则直线的对称式方程为32123+==--z y x ,参数方程为:t x 23-=,t y =,t z 32+-=。
11.求过点()4,2,0且与两平面12=+z x 和23=-z y 平行的直线方程。
解:因为两平面的法向量()11,0,2n =与()20,1,3n =-不平行,所以两平面相交于一直线,此直线的方向向量()121022,3,1013i j ks n n =⨯==--,故所求直线方程为14322-=-=-z y x 。
12.确定直线37423zy x =-+=-+和平面3224=--z y x 间的位置关系。
解:直线的方向向量()2,7,3,s =-- 平面的法向量()4,2,2,n =--2,7,34,2,2cos 0.φ--⋅--==从而⊥,由此可知直线平等于平面或直线在平面上。