第七章空间解析几何与向量代数[作业No.40]班级_.

合集下载

高等数学 第七章 空间解析几何与向量代数 第一节 向量及其线性运算

高等数学 第七章 空间解析几何与向量代数 第一节 向量及其线性运算
a
2a
1 − a 2
首页
上页
返回
下页
结束
数与向量的乘积符合下列运算规律: (1)结合律:λ ( µ a ) = µ (λ a ) = (λµ )a (2)分配律: (λ + µ )a = λ a + µ a
λ (a + b ) = λ a + λ b
两个向量的平行关系
定理 设向量 a ≠ 0,那末向量 b 平行于 a 的充 分必要条件是:存在唯 一的实数 λ,使 b = λa .
1− − ←⎯ 1→ 有序数组 ( x , y , z ) ⎯ 空间的点
称为点M的坐标,x称为横坐标, y称为纵坐标, z称为竖坐标. 记为 M ( x , y , z ) 特殊点的表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C ,
O ( 0, 0, 0 )
B ( 0, y , z )
第七章 空间解析几何与向量代数
y
• P ( x, y)
O x
平面解析几何
1--1
平面上的点P 有序实数对(x,y)的集合R2
平面曲线L
1--1
方程
y = f ( x)
为了把空间的几何问题代数化,把代数的问题用几 何方法直观表示,需要建立空间解析几何.
首页 上页 返回 下页 结束
§1. 向量及其线性运算 一、向量的概念
首页 上页 返回 下页 结束
r 在三个坐标轴上的分向量:
R(0,0, z )
z
xi , yj , zk .
o
r

M ( x, y, z )
y
Q(0, y,0)
显然,
首页
上页

微积分第七章空间解析几何与向量代数

微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。

图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。

高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)第七章空间解析几何与向量代数习题7-1★★1.填空题:(1)要使(2)要使★2.设ua?b?a?b设立,向量a,b应当满足用户a?ba?b?a?b成立,向量a,b应满足a//b,且同向ab2c,va3bc,试用a,b,c则表示向量2u?3v知识点:向量的线性运算求解:2u?3v?2a?2b?4c?3a?9b?3c?5a?11b?7c★3.设p,q两点的向径分别为r1,r2,点r在线段pq上,且prrq?m,证明点r的向径为nr?nr1?mr2m?n知识点:向量的线性运算证明:在?opq中,根据三角形法则oq?op?pq,又pr?mmpq?(r2?r1),m?nm?n∴or?op?pr?r1?nr?mr2m(r2?r1)?1m?nm?n★★4.未知菱形abcd的对角线ac?a,bd?b,试用向量a,b表示ab,bc,cd,da。

知识点:向量的线性运算解:根据三角形法则,ab?bc?ac?a,ad?ab?bd?b,又abcd为菱形,ad?bc(民主自由向量),a?b????????????b?a?cd??dc??ab?∴2ab?ac?bd?a?b?ab?22?a?b??? a?b∴ad?bc?,da??22∴★★5.把?abc的bc边五等分,设分点依次为d1,d2,d3,d4,再把各分点与点a相连接,先行以ab?c,bc?a表示向量d1a,d2a,d3a和d4a。

知识点:向量的线性运算解:见图7-1-5,acbad1d2图7-1-5cd3d411bc?d1a??ad1??(c?a)55234同理:d2a??((c?a),d3a??(c?a),d4a??(c?a)555根据三角形法则,ab?bd1?ad1,bd1?习题7-2★1在空间直角坐标系则中,表示以下各点在哪个卦减半?a(2,?2,3);b(3,3,?5);c(3,?2,?4);d(?4,?3,2)请问:a(2,?2,3)在第四卦减半,b(3,3,?5)在第五卦减半,c(3,?2,?4)在第八卦减半, d(?4,?3,2)在第三卦限★2.在座标面上和坐标轴上的点的座标各存有什么特征?并表示以下各点的边线:a(2,3,0);b(0,3,2);c(2,0,0);d(0,?2,0)知识点:空间直角坐标答:在各坐标面上点的坐标有一个分量为零,坐标轴上点的坐标有两个分量为零,∴点a在xoy坐标面上;b在yoz坐标面上;c在x轴上;d在y轴上。

第七章 空间解析几何与向量代数

第七章 空间解析几何与向量代数
第六节 空间直线及其方程 <1> 空间直线的一般方程 L: <2> 点向式(对称式) 直线过点M0(x0、y0、z0),为L方向向量 则 L: <3>参数式L: t为参数
L1∥L2 ∥ L1⊥L2 ⊥
50直线与平面关系
<1> L∥π ⊥

<2> L⊥π ∥
<3> 点P到直线L的距离,L的方向向量,M0为L上一点
<4>平面束方程 直线L: 则 为过直线L的除平面外的平面束方程
四.例题
例1:已知三角形的顶点为A(1,2,3),B(7,10,3)和 C(-1,3,1)。试证明A角为钝角。
证:=
=
= 可见,>+由余弦定理,就可知A角为钝角。 例2:在z轴上,求与A(-4,1,7)和B(3,5,-2)两点等距离的点。 解:设M为所求的点,因为M在z轴上,故可设M的坐标为:(0, 0,z) 根据题意,及= 去根号,整理得:z=14/9 ∴ M(0,0,14/9)。 例3:试在xoy平面上求一点,使它到A(1,-1,5)、B(3,4,4)和C(4,6,1)各 点的距离相等。
∴ ={4,-2,1}
又∵ 平面的法向量:{4,-2,1}
∴ 直线与平面垂直,故选(B)。
例13:求过点P(2,-1,3)且与直线1:垂直相交的直线的方程。
解:不妨设两直线交点为M(x0,y0,z0),
由于M在1上,故:,其中t为参变量。
由于直线与直线1垂直:
பைடு நூலகம்
其中直线1的方向向量为,而直线的方向向量为:
又∵ Ax0+By0+Cz0=-D ∴ d= 如:P1(-1,1,2)到平面:3x-2y+z-1=0的距离为d= 例10 求直线l: 的点向式方程。

(完整版)空间解析几何与向量代数习题与答案

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

《高等数学》课件第7章 空间解析几何与向量代数

右手定则,即以右手握住z 轴,当右手的四个手指从 x轴正向以 角度转向 y 轴正向时,大拇指的指向就是z
2 轴的正向.

yOz面

xOy面
x
Ⅶ Ⅷ
z zOx面


•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式

a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).

第七章空间解析几何与向量代数

2 2 2
x 2 11 ,
下页 返回
上页
例2、 设点P在x轴上, 且它到点P1 (0, 2, 3)的距离为 到点P2 (0, 1, 1)的距离的两倍, 求点P的坐标.
解:由点P在x轴上可设点P的坐标为( x, 0, 0),
2 x 11 , 则 PP1 (0 x ) ( 2 0) ( 3 0) 2 2 2 2 PP2 (0 x ) (1 0) ( 1 0) x 2 . PP1 2 PP2 ,
上页
下页
返回
二、 空间两点的距离公式 如图, 设M1 ( x1, y1, z1 )、M 2 ( x2, y2, z2 )为空间两点, z 在直角三角形M1 NM 2中, 有
M 1 M 2 M 1 N NM 2 在直角三角形M1 PN中, 有
M 1 N M 1 P PN , 2 2 2 2 M 1 M 2 M 1 P PN NM 2


x


上页
下页 返回
设M为空间一点, 过点M作三个平面分别垂直于 x轴、 y轴和z轴, 交点依次为P、 Q、 R, 它们是点M在x轴、 y 轴和z轴上的投影, 且有向线段的值 OP、 OQ、 OR对应 的实数为x、 y、 z. 4、 空间点的坐标: 上述x、 y、 z称为点M的坐标, z 记为M ( x, y, z ). 6、 卦限中点的坐标的符号 5、 特殊点的坐标 Ⅰ:+ + + R B Ⅱ:- + + O(0, 0, 0) P ( x, 0, 0) Ⅲ:- - + M C Q(0, y, 0) Ⅳ:+ - + y Ⅴ:+ + o Q R(0, 0, z) Ⅵ:- + A A( x, y, 0) x P Ⅶ:- - B(0, y, z) Ⅷ:+ - C ( x, 0, z)

第七章 空间解析几何与向量代数(完整资料).doc

【最新整理,下载后即可编辑】第七章空间解析几何与向量代数1.求点(2,-3,-1)关于:(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点.解答:(1)xOy面:()---,zOx面:()2,3,12,3,1-;2,3,1-,yOz面:()(2)x轴:()2,3,1,y轴:()2,3,1--;--,z轴:()2,3,1(3)()-2,3,1.所属章节:第七章第一节难度:一级2.求点(4,-3,5)到坐标原点和各坐标轴的距离.解答:点(4,-3,5)到坐标原点的距离为=点(4,-3,5)到x=点(4,-3,5)到y=点(4,-3,5)到z5=.所属章节:第七章第一节难度:一级3.把两点(1,1,1)和(1,2,0)间的线段分成两部分,使其比等于2:1,试求分点的坐标.解答:设分点坐标为(,,)x y z ,则由条件11121201x y z x y z ---===---,解得511,,33x y z ===,即所求分点坐标为511,,33⎛⎫⎪⎝⎭.所属章节:第七章第一节 难度:一级4.设立方体的一个顶点在原点,三条棱分别在三条坐标轴的正半轴上,已知棱长为a ,求各顶点的坐标. 解答:各顶点的坐标为:()()()()()()()()0,0,0,,0,0,0,,0,0,0,,,,,,,0,,0,,0,,.a a a a a a a a a a a a所属章节:第七章第一节 难度:一级5.在yOz 平面上求一点,使它与点A (3,1,2),点B (4,-2,-2)和点C (0,5,1)的距离相等.解答:设所求点为(0,,)P y z ,则由条件有PA PB PC ==,故==,解得1,2y z ==-.即所求点为(0,1,2)-. 所属章节:第七章第一节 难度:一级6.在z 轴上求一点,使它到点A (-4,1,7)和点B (3,5,-2)的距离相等.解答:设所求点为(0,0,)P z ,则由条件有PA PB =,故=解得149z =.即所求点为14(0,0,)9. 所属章节:第七章第一节 难度:一级7.已知向量a 和b 的夹角为60°,且5,8,==a b 试求+a b 和.-a b 解答:由于222((2cos 129θ+=+⋅+++=a b a b)a b)=a b a b ,代入已知条件,即可得+=a b又由于222((2cos 49θ-=-⋅-+-=a b a b)a b)=a b a b ,故7-=a b .所属章节:第七章第三节 难度:二级8.设向量a 和b 的夹角为2π3,且3,4,==a b 试求: (1)⋅a b(2)()()322-⋅+a b a b解答:(1)2cos 34cos 63θπ⋅⋅⋅=⨯⨯=-a b =a b ;(2)22(32)(2)34461-⋅+=-+⋅-a b a b a b a b =. 所属章节:第七章第三节 难度:二级9.设23,3,=+=-A a b B a b 其中2,1,==a b 向量a 和b 的夹角为π3,试求⋅A B 及Pr oj B A . 解答:2222(23)(3)637637cos 28θ⋅=+⋅-=-+⋅=-+⋅⋅=A B a b a b a b a b a b a b ;由于22222(3)(3)9696cos 31θ=⋅-⋅-=+-⋅=+-⋅⋅=B B B =a b a b a b a b a b a b ,所以Pr oj31B ⋅===A B A B . 所属章节:第七章第三节 难度:二级10.设2,,1,2,k =+=+==A a b B a b a b 且,⊥a b 问: (1)k 为何值时,;⊥A B(2)k 为何值时,A 与B 为邻边的平行四边形面积为6.解答:(1) 要使⊥A B ,则⋅=A B ,即22(2)()2(2)0k k k +⋅+=+++⋅=a b a b a b a b ,代入条件即240k +=,解得2k =-;(2)要使以A 与B 为邻边的平行四边形面积为6,即6⨯=A B ,代入条件即23k -=,解得1k =-或 5.k = 所属章节:第七章第四节 难度:二级11.已知向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,试求向量a 与b 的夹角.解答:因为a +3b ⊥7a -5b ,a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0, 由以上两式可得 b a b a ⋅==2||||,于是21||||) ,cos(^=⋅⋅=b a b a b a ,3) ,(^π=b a . 所属章节:第七章第三节 难度:二级12.设[],,2,=a b c 求:()()(),,.+++⎡⎤⎣⎦a b b c c a 解答:()()()[],,[()()]()()()2,,4+++=+⨯+⋅+=⨯+⨯⋅+==⎡⎤⎣⎦a b b c c a a b b c c a a b a c c a a b c .所属章节:第七章第四节 难度:二级13.设{}{}3,2,6,2,1,0,=-=-a b 试求下列各向量的坐标: (1);+a b (2)1;2-b (3)1.3+a b 解答:(1){}{}{}3,2,62,1,01,1,6+---a b =+=; (2){}1112,1,01,,0222⎧⎫----⎨⎬⎩⎭b ==;(3){}{}1113,2,62,1,01,,2333⎧⎫+-+-=-⎨⎬⎩⎭a b =. 所属章节:第七章第二节 难度:一级14.求向量=++a i k 的模以及它与坐标轴之间的夹角.解答:2==a ;与坐标轴的夹角余弦分别为1111cos ,cos 222αβγ======a a a , 故与坐标轴的夹角分别为°°°60,45 ,60αβγ===.所属章节:第七章第二节 难度:一级15.已知一向量的起点是A (2,-2,5),终点是B (-1,6,7),试求: (1)向量AB 在各坐标轴上的投影; (2)向量AB 的模和方向余弦; (3)AB 的单位向量. 解答:由于向量{}3,8,2AB =-,所以(1)向量AB 在各坐标轴上的投影为382-,,;(2)向量AB 的模(3)-=,方向余弦为cosαβγ===;(3)AB 的单位向量AB AB ⎧=⎨⎩. 所属章节:第七章第二节 难度:一级16.已知向量{}3,1,2-的起点坐标为(2,0,-5),求它的终点坐标.解答:终点坐标为()()()3,1,22,0,55,1,3-+-=--. 所属章节:第七章第二节 难度:一级17. 已知向量的终点为B (2,-1,7),它在坐标轴上的投影依次为4、-4和7,求该向量起点A 的坐标. 解答:起点A 的坐标()()()2,1,74,4,72,3,0---=-. 所属章节:第七章第二节 难度:一级18.已知向量{}{}1,1,5,2,3,5,==-a b 求与3-a b 同向的单位向量. 解答:由于{}{}{}31,1,532,3,55,10,10-=--=--a b ,单位化,与3-a b 同向的单位向量为{}311225,10,10,,315333-⎧⎫=--=--⎨⎬-⎩⎭a b a b . 所属章节:第七章第二节 难度:一级19.设向量{}{},5,1,3,,,l l m =-=a b 且//a b ,试求l 与m 的值. (题目与解答不统一)如果题目中向量为{}{},5,1,3,1,l m =-=a b ,则答案为115,.5l m ==-即原参考答案,下面按原题解答. 参考答案:115,.5l m ==-解答:由于//a b ,所以513l l m-==,解得l m ==或5l m ==.所属章节:第七章第二节 难度:一级20.已知向量32,23,=++=--a i j k b i j k 试求⋅a b 与.⨯a b 解答:321(3)2(1)1⋅=⨯+⨯-+⨯-=a b ;{}3125,7,11231⨯==---ij ka b .所属章节:第七章第四节 难度:一级21.已知()()()1,2,34,4,32,4,3A B C ---、、和()8,6,6D ,试求向量AB 在向量CD 上的投影.解答:{}3,2,6AB =--,{}6,2,3CD =,4Pr oj 7CD AB CD AB CD⋅==-. 所属章节:第七章第四节 难度:一级22.设直线L 通过点(-2,1,3)和(0,-1,2),求点(10,5,10)到直线L 的距离.解答:设(2,1,3),(0,1,2),(10,5,10)A B P --,点P 到直线L 的距离为d ,则{}{}{}12,4,7,10,6,8,2,2,1PA PB AB =---=---=--利用12PAB S PA PB ∆=⨯,12PAB S AB d ∆=⨯,解得d =所属章节:第七章第四节 难度:二级23.求点(1,-3,2)关于点(-1,2,1)的对称点. 解答:设(1,3,2),(1,2,1)A B --,所求点为(,,)C x y z ,由题意知AB BC →→=,即{}{}2,5,11,2,1x y z --=+--,解得(3,7,0)C -. 所属章节:第七章第四节 难度:一级24.求以向量25,33,25=+=+=-a i j b j k c j k 为相邻三棱的平行六面体的体积.解答:由于25[,,]03342025==--a b c ,所以所求六面体的体积为[,,]42V ==a b c .所属章节:第七章第四节 难度:三级25.试证()()()2,1,2,1,2,1,2,3,0A B C --和()5,0,6D -四点共面. 解答:由题意{}{}{}1,3,3,0,4,2,3,1,4AB AC AD =-==-,由于133[,,]0420314AB AC AD -==-,所以,,,A B C D 四点共面. 所属章节:第七章第四节 难度:三级26.确定球面22224470x y z x y z ++-+--=的球心和半径. 参考答案:球心()1,2,2, 4.R -=(本题参考答案有误) 解答:将原方程22224470x y z x y z ++-+--=配方,得222(1)(2)(2)9x y z -+++-=,故球心为(1,2,2)-,半径为3R =.所属章节:第七章第五节 难度:一级27.一球面过坐标原点和()()()2,0,01,1,01,0,1A B C -、、三点,试确定该球面的方程. 参考答案:()2221 1.x y z -++=解答:设球面的方程为2222000()()()x x y y z z R -+-+-=,将它所经过的四个点的坐标代入,即可解得0001,0,1x y z R ====,即球面方程为()22211x y z -++=. 所属章节:第七章第五节 难度:二级28.试求与()()122,1,34,1,2M M --、距离相等的点的轨迹方程. 参考答案:44107.x y z +-=解答:设动点坐标为(,,)P x y z ,则由条件有12PM PM =,故有222222(2)(1)(3)(4)(1)(2)x y z x y z -+++-=-+-++,化简得44107x y z +-=. 所属章节:第七章第五节 难度:一级29.指出下列方程所表示的曲面:(1)22111;222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭(2)221;49x y -=(3)221;49y z += (4)22z y =+解答:(1)母线平行于z 轴的圆柱面; (2)母线平行于z 轴的双曲柱面; (3)母线平行于x 轴的椭圆柱面; (4)母线平行于x 轴的抛物柱面. 所属章节:第七章第五节 难度:一级30.说明下列旋转曲面是如何形成的并写出其名称:(1)2221;4y x z +-=(2)224;x y z +=(3)2221;169z x y +-= (4)2224x y z +=解答:(1)旋转单叶双曲面,它是由双曲线221,40y x z ⎧-=⎪⎨⎪=⎩或221,40y z x ⎧-=⎪⎨⎪=⎩绕y 轴旋转而成;(2)旋转抛物面,它由抛物线24,0x z y ⎧=⎨=⎩或24,0y z x ⎧=⎨=⎩绕z 轴旋转而成;(3)旋转双叶双曲面,它是由双曲线221,1690z x y ⎧-=⎪⎨⎪=⎩或221,1690z y x ⎧-=⎪⎨⎪=⎩绕z 轴旋转而成;(4)圆锥面,它由相交的两条直线224,0x z y ⎧=⎨=⎩或224,y z x ⎧=⎨=⎩绕z 轴旋转而成.所属章节:第七章第五节 难度:一级31.建立下列旋转曲面的方程:(1)曲线25:,0z xL y ⎧=⎨=⎩绕x 轴旋转一周所生成的旋转曲面;(2)yOz 平面上的椭圆22149y z +=绕z 轴旋转一周所生成的曲面;(3)xOy 平面上的双曲线224936x y -=绕y 轴和x 轴旋转一周所生成的曲面; (4)直线2,0y xz =⎧⎨=⎩绕x 轴旋转一周所生成的曲面.解答:(1)225;y z x +=(2)2221;449x y z ++=(3)绕y 轴:22249436,x y z -+= 绕x 轴:22249936;x y z --= (4)22240.x y z --= 所属章节:第七章第五节 难度:一级32.指出下列方程所表示的曲线:(1)22225.3;x y z x ⎧++=⎨=⎩(2)()()2221425,10;x y z y ⎧-+++=⎪⎨+=⎪⎩(3)221;9420y z x ⎧-=⎪⎨⎪-=⎩(4)24;1x yz ⎧=⎨=⎩(5)2221;169420.x y z x ⎧++=⎪⎨⎪-=⎩解答:(1)平面x =3上的圆; (2)平面y =-1上的圆;(3)平面x =2上的双曲线; (4)平面z =1上的抛物线; (5)平面x =2上的椭圆. 所属章节:第七章第五节 难度:一级33.求曲线22236,2x y z z ⎧++=⎨=⎩在xOy 平面上的投影曲线.(原参考答案有误)解答:在所给方程中消去z ,得2212x y +=,加上0z =,即得22320x y z ⎧+=⎨=⎩. 所属章节:第七章第五节 难度:一级34.求曲线22,1z x y x y z ⎧=+⎨++=⎩在xOy 平面上的投影曲线.解答:在所给方程中消去z ,得22113222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,加上0z =,即得221132220x y z ⎧⎛⎫⎛⎫+++=⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=⎩. 所属章节:第七章第五节难度:一级35.求下列曲线在xOy 平面上的投影:(1)22222241,;x y z x y z ⎧++=⎪⎨=+⎪⎩(2)222224, 1.x y x y z ⎧+=⎪⎨-+=-⎪⎩解答:(1)在所给方程中消去z ,得22531x y -=,加上0z =,即得22531x y z ⎧-=⎨=⎩; (2)在所给方程中消去z ,得224x y +=,加上0z =,另外由2221x y z -+=-知2221y x z =++,故1y ≥,于是投影曲线为224x y z ⎧+=⎨=⎩ 且1y ≥.所属章节:第七章第五节 难度:二级36.求曲线()2222221,11x y z x y z ⎧++=⎪⎨++-=⎪⎩在各坐标面上的投影:? 解答:xOy面:223,,40x y z ⎧+=⎪⎨⎪=⎩yOz 面:210,z x -=⎧⎨=⎩且y ≤xOz 面:210,0z y -=⎧⎨=⎩且2x ≤所属章节:第七章第五节 难度:二级37.求下列各平面的方程:(1)平行与(于)Oy轴,且通过点(1,-5,1)和(3,2,-2);(2)通过Ox轴和点(4,-3,-1);(3)平行于xOz平面,且通过点(3,2,-7).解答:(1)由于所求平面平行于Oy轴,故可设方程为+-=;++=,将另外两点坐标代入即得3250x zAx Cz D(2)由于所求平面通过Ox轴,故可设方程为0+=,By Cz 将另一点坐标代入即得30-=;y z(3)由于所求平面平行于xOz平面,故可设方程为y=.-,故2By D+=,又通过点(3,2,7)所属章节:第七章第六节难度:一级38. 设点P(3,-6,2)为原点到一平面的垂足,求该平面的方程.解答:法向量为{}n OP→3,6,2==-,所求平面的方程为x y z--++-=,即3(3)6(6)2(2)0-+-=.x y z362490所属章节:第七章第六节难度:一级39.求通过两点(8,-3,1)和(4,7,2),且垂直于平面+--=的平面方程.35210x y z解答:由条件可设法向量为{}{}{}n=-⨯-=---,4,10,13,5,115,1,50由点法式方程得++-=.15501670x y z所属章节:第七章第六节难度:二级40.求通过点()1,2,1P且垂直于两平面0y z+=的平面方+=和50x y程.解答:由条件可设法向量为{}{}{}1,1,00,5,11,1,5n=⨯=-,由点法式方程得-+-=.x y z540所属章节:第七章第六节难度:二级41.求一个通过点()3,2,1-且平行y轴的平面方程.-和()1,5,1解答:由条件可设法向量为{}{}{}2,7,20,1,02,0,2n =-⨯=,由点法式方程得20x z +-=.所属章节:第七章第六节 难度:二级42.求a 和b 的值,使:(1)平面2350x ay z ++-=与620bx y z --+=平行; (2)平面3530x y az -+-=与3250x y z +++=垂直. 解答:(1)要使平面2350x ay z ++-=与620bx y z --+=平行,则两个法向量平行,故有2361a b ==--,解得218,3a b ==-; (2)要使平面3530x y az -+-=与3250x y z +++=垂直,必须两个法向量垂直,故有31(5)320a ⨯+-⨯+⨯=,解得6a =. 所属章节:第七章第六节 难度:一级43.求过点(2,-3,8)且平行于直线243325x y z --+==-的直线方程.解答:由于两直线平行,方向向量相同,故得所求直线方程238325x y z -+-==-. 所属章节:第七章第七节 难度:一级44.求过点(4,-2,3)且垂直于平面2310x y z +-+=的直线方程.解答:由于所求直线垂直于已知平面,它的方向向量与该平面的法向量相同,即{}1,2,3s =-,于是所求方程为423123x y z -+-==-. 所属章节:第七章第七节 难度:一级45.求过点(-1,2,1)且平行于直线210,210x y z x y z +--=⎧⎨+-+=⎩的直线方程.解答:已知直线的方向向量为{}{}{}1,1,21,2,13,1,1s =-⨯-=-,所求直线方向向量与它相同,于是所求直线方程为121311x y z +--==-. 所属章节:第七章第七节 难度:二级46.试求下列直线的标准方程:(1)240,3290;x y z x y z -+=⎧⎨--+=⎩(2)350;280.x z y z -+=⎧⎨-+=⎩解答:(1)令0x =,代入方程,求得直线上一点坐标为(0,1,4),方向向量为{}{}{}2,4,13,1,29,7,10s =-⨯--=, 于是标准方程为14;9710x y z --== (2)令0z =,代入方程,求得直线上一点坐标为(5,8,0)--,方向向量为{}{}{}1,0,30,1,23,2,1s =-⨯-=,于是标准方程为58.321x y z++== 所属章节:第七章第七节 难度:二级47.确定下列直线与平面的位置关系: (1)34273x y z++==-与42230;x y z ---=(2)327x y z ==--与641490.x y z -+-= 解答:(1)直线的方向向量{}2,7,3s =-,平面的法向量{}4,2,2n =--,易证s n ⊥,故所给直线与平面平行;(2)直线的方向向量{}3,2,7s =--,平面的法向量{}6,4,14n =-,易证sn ,故所给直线与平面垂直.所属章节:第七章第七节 难度:一级48.确定下列直线间的平行或垂直关系:(1)27,27x y z x y z +-=⎧⎨-++=⎩与3638,20.x y z x y z +-=⎧⎨--=⎩(2)21,21x y y z +=⎧⎨-=⎩与1,2 3.x y x z -=⎧⎨-=⎩解答:(1)直线27,27x y z x y z +-=⎧⎨-++=⎩的方向向量为{}11213,1,5211i j ks =-=-,直线3638,20.x y z x y z +-=⎧⎨--=⎩的方向向量为{}23639,3,15211i j ks =-=-----,由于它们平行,所以两条直线平行; (2)直线21,21x y y z +=⎧⎨-=⎩的方向向量为{}11202,1,2021ij ks ==--,直线1,2 3.x y x z -=⎧⎨-=⎩的方向向量为{}21102,2,1102ijk s =-=-,由于它们垂直,所以两条直线垂直. 所属章节:第七章第七节 难度:二级49.求直线221312x y z +-+==与平面23380x y z ++-=的交点和交角. 参考答案:()1,1,1,arcsin 154(参考答案有误?)解答:将直线方程221312x y z +-+==改写成参数形式32221x t y t z t =-⎧⎪=-+⎨⎪=-⎩,代入所给平面方程23380x y z ++-=,解得1t =,再代回直线方程,即得交点(1,1,1);由于直线的方向向量为{}3,1,2s =,平面的法向量{}2,3,3n =,所以交角的正弦为sin 15414s n s nϕ⋅===⋅⋅,于是交角为arcsin154.所属章节:第七章第七节 难度:二级50.求点(3,-1,-1)在平面23300x y z ++-=上的投影. 解答:过已知点()3,1,1--向已知平面作垂线311123x y z -++==,参数形式为32131x t y t z t =+⎧⎪=-⎨⎪=-⎩,代入已知平面解得参数167t =,于是交点也即所求投影点为372541,,777⎛⎫⎪⎝⎭. 所属章节:第七章第七节 难度:二级51.求点(2,3,1)在直线722123x y z +++==上的投影.解答:过已知点作垂直于已知直线的平面(2)2(1)3(1)0x y z -+-+-=,再将已知直线的参数方程72232x t y t z t =-⎧⎪=-⎨⎪=-⎩代入,即得参数2t =,两者交点即所求投影点为(5,2,4)-. 所属章节:第七章第七节 难度:二级52.在平面1x y z ++=上求作一直线,使它与直线1,1y z ==-垂直相交.解答:由于所求直线与直线1,1y z ==-垂直,故可作平面平行与该已知直线,得平面方程0x x =,联立已知平面方程1x y z ++=,得一条直线01x x x y z =⎧⎨++=⎩,又由于所求直线与直线1,1y z ==-相交,将1,1y z ==-代入直线方程01x x x y z =⎧⎨++=⎩,可得01x =,于是所求直线方程为11x x y z =⎧⎨++=⎩,即111011x y z --+==-. 所属章节:第七章第七节 难度:三级53.通过点(-1,0,4)作一直线,使它平行于平面34100,x y z -+-=且与直线13312x y z +-== 相交.解答:过点(-1,0,4)作一平面,使它平行于平面34100x y z -+-=,得3410x y z -+-=, 由于所求直线与已知直线13312x y z+-== 相交,将已知直线方程化为参数方程3132x t y t z t =-⎧⎪=+⎨⎪=⎩,代入平面方程3410x y z -+-=,得交点413732(,,)777,此为所求直线上另一点,过两点作出直线1448374x y z +-==,即为所求. 所属章节:第七章第七节 难度:三级54.求两异面直线11112x y z +-==和12134x y z +-==之间的距离. 解答:分别在两条已知直线上任取一点,如取(1,0,1),(0,1,2)P Q --,连接两点得向量{}1,1,1PQ →=-,作与两条已知直线都垂直的向量{}{}{}1,1,21,3,42,2,2s =⨯=--,则所求距离为Pr 312s PQ s d oj PQ s→→⋅====. 所属章节:第七章第七节 难度:三级55.一直线通过点(1,2,1)并与2xy z ==-相交,且垂直于直线11,321x y z -+==求它的方程. 解答:过已知点(1,2,1)P 作垂直于已知直线11321x y z -+==的平面,得:3280x y z π++-=,它与已知直线2x y z ==-交于点1688(,,)777Q -,连接,P Q ,即得所求直线121325x y z ---==-. 所属章节:第七章第七节 难度:二级56.求通过直线0,20x y x y z +=⎧⎨-+-=⎩且平行于直线x y z ==的平面方程.解答:过直线0,20x y x y z +=⎧⎨-+-=⎩的平面束为(2)0x y x y z λ++-+-=,即(1)(1)20x y z λλλλ++-+-=,由于它与直线x y z ==平行,故(1)(1)0λλλ++-+=,解得2λ=-,于是所求平面方程为3240x y z -+-=.所属章节:第七章第七节 难度:二级57.求通过直线240,3290x y z x y z -+=⎧⎨---=⎩且垂直于平面41x y z -+=的平面方程.解答:过直线2403290x y z x y z -+=⎧⎨---=⎩的平面束为24(329)0x y z x y z λ-++---=,即(23)(4)(12)90x y z λλλλ++--+--=,由于它垂直于平面41x y z -+=,故两者的法向量平行,解得1311λ=-,代回平面束方程,即得所求平面方程1731371170x y z +--=. 所属章节:第七章第七节 难度:二级58.过两平面0x y z +-=和20x y z ++=的交线,作两个互相垂直的平面,且使其中一个平面通过点A (0,1,-1).解答:过两平面0x y z +-=和20x y z ++=的交线的平面束方程为(2)0x y z x y z λ+-+++=,即(1)(12)(1)0x y z λλλ++++-+=,由于其中一个平面经过点(0,1,1)A -,将此点坐标代入平面束方程,得2λ=-,得到一个平面330x y z ++=,由于平面束中的另一个平面与上面平面垂直,利用法向量垂直,解得98110x y z +-=. 所属章节:第七章第七节 难度:三级。

第七章空间解析几何与向量代数-PPT精品文档


设 AB , AD 例1 在平行四边形ABCD中, . a b 试用 a 和 b表示向量 MA 、MB 、 MC 和 MD ,
这里M是平行四边形对角线的角交点. D 解 由于平行四边形的对角线 互相平分 , 所以 C
M b a b AC 2 AM , 即 ( a b ) 2 AM , 于是 1 A B MA (ab). a 2 1 因为 MC (ab). MA , 所以 MC 1 2 又因 a b BD 2 MD , 所以MD (ba). 1 2 由于 MB 所以 MB (ab). MD ,
兰州交通大学数理与软件工程学院

yoz 面
z
zox 面
Ⅱ Ⅳ
xoy 面
Ⅶ Ⅷ
o
y Ⅰ
Ⅵ Ⅴ
x
空间直角坐标系共有八个卦限
兰州交通大学数理与软件工程学院
向量 r的坐标分解式: r OM x i y j z k 向径: 以原点为起点,M为终点的向量,例如 r.
空间的点 ,y ,z) 有序数组 (x 特殊点的表示: 坐标轴上的点 P , Q , R , 坐标面上的点 A , B , C , O ( 0 , 0 , 0 )
兰州交通大学数理与软件工程学院
2
设 e a 表示与非零向量 a同方向的单位向量,按照向量与数 的乘积的规定, a a |a |e ea . a |a |
上式表明:一个非零向量除以它的模的结果是一个与原向 量同方向的单位向量.
两个向量的平行关系 0 定理 设向量 a ,那么,向量 b 平行于 的充分必 a 要条件是:存在唯一的实数 ,使 b a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章空间解析几何与向量代数[作业No.40] 班级§1空间直角坐标系§2向量及其加减法,向量与数的乗法姓名________一、概念题1、在空间直角坐标系中,指出下列各点在哪个卦限。

(】,-2, 3) ________ (2,- 3,- 4) _________ (- 1,- 3,- 5) _________ (-1, 5,- 3)____________ (2, 3,- 4)____________ (- 2,- 3, ]) _______________ (-5 , 3 , 1) _________ (3 , 4 , 6) _______________2、指出下列各点的位置。

A(3,4,0) ___________ B(0,4,3) ________ C(3,0,0) ___________ D(0,—1,0) ________ 3、指出当点的坐标适合下列条件之一时,该点所在的卦限。

点)在__________________ 上的对称点是15、点A (—4,3,5 )在%0『平面上的投影点为_________________________在ZOX平面上的投影点为 _______________在0X轴上的投影点为 _________________在oy轴上的投影点为__________________6、点P (—3,2,— 1)关于yoz平面的对称点为_______________________关于ZOX 平面的对称点为 ______________关于oy轴的对称点为_______________关于ox轴的对称点为_______________7、在y轴上与点A (1,—3,7 )和点B (5,7,—5 )等距离的点为_______________8、u a b 2 c, v a 3b c,用a, b, c 表示2u 3v = __________________二、计算题:1、求点M (4,—3,5 )到各坐标轴的距离。

2、把厶ABC 的BC 边五等分,设分点依次为 D 「D 2、D3、D 4,再把各分 点与点A 连接試以AB = c ,BC = a,表示向量 3.已知在空间直角坐标系下,立方体4个顶点为 A (-a ,— a ,— a ), B (a , — a , — a ), C (— a , a , — a )和 D (a , a , a ),则其余各顶点分别 是什么?三、证明题1 .若平面上一个四边形的对角线相互平分 2、试证明以三点 A (4 , 1 , 9), B (10,- 1 , 6), C (2 , 4 , 3)为 顶点的三角形是等腰直角三角形。

一、 填空题:DAD 2A ,D 3A 和 D 4A . ,试用向量证明它是平行四边形§ 3 .向量的坐标[作业No.41]班级姓名1、若三角形的顶点为M 1(3 , 2 , -5),M 2 (1,-4,3 )和皿3(-3 , 0 , 1),则各边的中点为 __________________ , ____________ , ________ .2、两点P 1(2,5,—3),P 2(3,-2,5),设在P 1P 2上一点P满足p i p 3pi P2,则P的坐标为__________________3、设向量r的模是4,它与轴u的夹角是60°,则Prj u r =__________________4、设a与三轴正向夹角依次为a,3,Y⑴ 当cos 3 =0时,a平行于_______________ 平面。

⑵ 当COS Y =1时,a垂直于 _______________ 平面。

⑶ 当COS a =COS 3 =0时,a垂直于____________ 平面, __________ 于z轴。

5、平行于向量a= 6 i+ 7 j —6 k的单位向量为______________ 。

6、已知M[(4, 2 , 1),皿2(3,0,2),向量M1M2的模为_______________ 方向余弦为____________ 方向角为 _______________7、a与各坐标轴之间夹角为a、3、丫,若a =60°, 3 =120°,则丫= __________二、计算题:1、一向量的终点为点B ( 2, —1,7),它在三坐标轴上的投影依次为4,-4,7, 求这向量的起点A的坐标。

2、设m=3i+5j+8k , n =2i —4j —7k和p=5i+j —4k,求向量a=4m+3n—p在x轴上的投影及在y轴上的分向量。

3、向量a= {3,—5,7},求平行于a且模为2 \ 83的向量4§4数量积、向量积[作业No.42]班级■生名一、概念题:1. 若a、b为平行的单位向量,则它们的数量积为_____________ 。

2. 向量a x b与二向量a与b的位置关系是__________________ 。

3•若向量a与b之间的交角为60°, | a | =5, | b | =8,则|a—b | = ______ ,I a+b | = _________4. 设a=3i —j —2k,b=i+2j —k,贝Ua b ___ ,a x b= ________, a x 2b= _____cos(a,b)= -------------- 。

5. 在直角坐标系中,两向量数量积为零的充要条件是至少其中一个向量为或它们相互__________ ;向量积为零的充要条件是至少其中一个向量为_ 或它们相互____________6. 向量a= {4 , —3 ,4}在向量b= {2 , 2 , 1} 上的投影为_________________ 。

二、计算题:1 .设a,b,c为单位向量,且满足a+b+c =0,求a b+bc+c a.2 .已知M1(1,-1,2),M 2(331)和M3(3,1,3),求与M,M2, M 2M 3同时垂直的单位向量。

3. 设质量为100kg的物体从点M[(3,1,8)沿直线移动到点M2(1,4,2)计算重力所作的功(长度单位为m,重力方向为z轴负方向)。

4. 已知OA=i+3k ,OB =j+3k,求△ OAB 的面积。

5. 已知向量a=2i —3j+k,b=i —j+3k 和c=i —2j,计算:⑴(a b)c —(a c)b ;⑵(a+b) x (b+c);⑶(a x b) c.§5 .曲面及其方程[作业No.43]班级■生名、概念题1. 一动点与两定点(2 ,3 , 1 )和(4 ,5 ,6 )等距离,则动点的轨迹方程为_________2. ___________________________________________________________ 以点(1,3 , -2 )为球心,且通过坐标原点的球面方程是________________________ 。

3•将xoz坐标面上的抛物线Z2=5X绕x轴旋转一周,所生成的旋转曲面的方程为 ___________________4•方程x= 2在平面解析几何中表示________________ 在空间解析几何中表示.2 2,方程x2+y2=4在平面解析几何中表示在空间解析几何中表示,方程x2-y2= 1在平面解析几何中表示 _____________ 在空间解析几何中表示________________ 。

5 .只含x,y而缺z的方程F(x,y)= 0,在空间直角坐标系中表示_________ 平行于______ 轴的柱面,其准线是 _____________ 。

二•计算题:1. 将xoz坐标面上的双曲线4x2—9y2=36分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程。

2. 求与坐标原点O及点(2 ,3 , 4 )距离之比为1 : 2的点的全体所组成的曲面的方程,它表示怎样的曲面。

§5 .曲面及其方程[作业No.43]班级■生名3. 画出方程所表示的曲面⑴ % - 2)2+y2=(2)2⑵ z=2 —x24. 指出下列旋转曲面的一条母线和旋转轴⑴ Z=2(x2+y2)⑵ z2=3(x2+y2)⑶ x2—y2—z2=i2⑷ x2—— +z2=14§6 .空间曲线及其方程§7 .平面及其方程[作业No.44]一、概念题班级________________ 姓名_________________y 5x 11. 方程组y 在平面解析几何中表示_________________ 在空间解y 2x 3析几何中表示 ________________、 2 22. 旋转抛物面z=x +y (0< z W 4)在xoy坐标面上的投影为 _________________ ,在yoz坐标面上的投影为 ______________ ,在zox坐标面上的投影为 _______3. 过点(3,0,-1)且与平面3x —7y+5z —12=0平行的平面方程为___________4. 过三点Mi(a,0,0),M2(0,b,0),M 3(0,0,c)的平面方程为__________ (其中a、b、c都不为零)5. 平面Ax+By+Cz= 0必通过_______________ (其中A、B、C不全为零)平面By+Cz+D= 0 _______ ox 轴,By+Cz= 0 ________ ox 轴。

6. 写出符合下列条件的平面方程⑴平行于xoz面且经过点(2 ,—5 ,3 ) ______________________⑵通过z轴和点(一3 , 1 ,—2 ) _________________________⑶平行于x轴且经过两点(4 ,0 ,—2 )和(5 , 1 , 7 )_________________7. 点(1,2 ,1 )到平面x+2y+2z —10=0的距离为 ________________8. 设有两平面n 1:A[X+B 仃+C 1Z+D[= 0 及n 2:A2X+B 2y+C2z+D2= 0,则它们夹角的余弦cos 0 = ______ , n 1平行n 2的充要条件是 ___________ , n 1垂直n 2的充要条件是__________________ ,n 1重合于n 2的充要条件3. 求平面2x—2y+z+5=0与各坐标面夹角的余弦。

4. 求上半球O w z< . a2x2y2与圆柱体x2+y2w ax(a>0)的公共部分在xoy面和xoz面上的投影。

5.—平面过点(1,0 ,—1 )且平行于向量a= {2 , 1,1}和b= {1 , —1,0} 试求这平面方程。

相关文档
最新文档