太原市最新初中数学—分式的知识点总复习含解析

合集下载

分式数学知识点归纳总结

分式数学知识点归纳总结

分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。

2. 分式可以表示有理数,有理数包括整数和分数。

3. 分式可以看作是代数式的特殊形式,其中分母不为零。

4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。

5. 分式可以相加、相减、相乘和相除,也可以化简和合并。

6. 分式的大小比较可以用分式的加减乘除性质进行比较。

二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。

2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。

三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。

2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。

3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。

4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。

四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。

对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。

2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。

五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。

2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。

六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。

2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。

新人教版初中数学——分式方程-知识点归纳及典型题解析

新人教版初中数学——分式方程-知识点归纳及典型题解析

新人教版初中数学——分式方程知识点归纳及典型题解析1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤: ①设未知数; ②找等量关系; ③列分式方程; ④解分式方程;⑤检验(一验分式方程,二验实际问题); ⑥答.考向一 解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根.典例1 解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2, 解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 典例2 方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-, 解得1x =,检验:1x =时,20x -≠, 所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.1.解分式方程13211x x-=--,去分母得 A .12(1)3x --=-B .12(1)3x --=C .1223x --=-D .1223x -+=2.方程24222x x x x =-+--的解为 A .2B .2或4C .4D .无解考向二 分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解. (3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.典例3 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6B .0C .1D .9【答案】D【解析】分式方程去分母得:ax -1-x =3, 解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去), 则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.典例4 若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠.3.若关于x 的方程21111a x x -=++有增根,则a 的值为 A .-12B .12C .2D .2-4.关于x 的方程2334ax a x +=-的解为1x =,则a =A .1B .3C .-1D .-3考向三 分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.典例5 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+B .2010154x x -=+C .201015x x+=D .201015x x-= 【答案】A【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+.故选A .典例6 元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400元,所以300400260120)%(x x+=+,解得 2.5x =元. 故选B .5.某单位向一所希望小学赠送1080本课外书,现用A ,B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x=-+D .10801080615x x=++6.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?1.下列关于x 的方程: ①153x -=,②121x x =-,③()111x x x -+=,④31x a b =-中,是分式方程的有 A .4个 B .3个 C .2个D .1个2.方程2131x x 的解为 A .3x B .4x C .5xD .5x3.解分式方程11222x x x-+=-- A .2x =是方程的解 B .3x =是方程的解 C .4x =是方程的解 D .无解 4.若关于x 的方程223ax a x =-的解为x =1,则a 等于 A .0.5B .-0.5C .2D .-25.若代数式12x -和321x +的值相等,则x 的值为 A .x =-7B .x =7C .x =-5D .x =36.若关于x 的方程3111k x x=---有增根,则k 的值为 A .3 B .1 C .0D .1-7.若分式方程3211x m x x =+++无解,则m = A .1- B .3- C .0D .2-8.关于x 的方程2211x a ax x++=--的解不小于0,则a 的取值范围是 A .2a ≤且1a ≠ B .2a ≥且3a ≠ C .2a ≤D .2a ≥9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x 千米/时,则可列出的方程为A .906022x x =+-B .906022x x =-+ C .90602x x += D .60902x x+=10.若分式方程22111x m x x x x x++-=++有增根,则m 的值是A .-1或1B .-1或2C .1或2D .1或-211.已知关于x 的分式方程212x ax +=--的解为非负数,则a 的取值范围是 A .a ≤2B .a <2C .a ≤2且a ≠-4D .a <2且a ≠-412.一项工程,甲队单独做需20天完成,甲、乙合作需12天完成,则乙队单独做需多少天完成?若设乙单独做需x 天完成,则可得方程A .1112012x += B .2012x x +=1 C .111220+=xD .1112012x +=13.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程得A .1501503012x x -=. B .1501503012x x +=. C .1501150212x x-=.D .1501150212x x+=. 14.整数a 满足下列两个条件,使不等式-2≤352x +<12a +1恰好只有3个整数解,使得分式方程13522ax x x x-----=1的解为整数,则所有满足条件的a 的和为 A .2B .3C .5D .615.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,施工时对“……”,设实际每天铺设管道x 米,则可得方程300030001510x x-=-.根据此情景,题中用“……”表示的缺失的条件应补为 A .每天比原计划多铺设10米,结果延期15天才完成B .每天比原计划少铺设10米,结果延期15天才完成C .每天比原计划多铺设10米,结果提前15天才完成D .每天比原计划少铺设10米,结果提前15天才完成16.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是 A .20元B .18元C .15元D .10元17.分式方程xx 412=+的解为_______________. 18.若关于x 的分式方程33x ax x+--=2a 无解,则a 的值为__________. 19.关于x 的方程123(2)(3)x x x ax x x x ++-=-+-+的解为非正数,则a 的取值范围为__________. 20.分式72x -与2x x-的和为4,则x 的值为_______________. 21.已知x =3是方程211kx k x x---=2的解,那么k 的值为__________. 22.某物流仓储公司用A ,B 两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20 kg ,A 型机器人搬运1000 kg 所用时间与B 型机器人搬运800 kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_______________.23.解下列方程:(1)1233x x x=+--; (2)2316111x x x +=+--;(3 (4)241111x x x +=---.24.“六一”儿童节前,某玩具商店根据市场调查,用1500元购进一批儿童玩具,上市后很快脱销,接着又用2700元购进第二批,所购数量是第一批数量的1.5倍,但每套进价多了10元,求第二批玩具每套的进价是多少元?25.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?26.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.A .x =1B .x =-1C .x =2D .x =-2A .x =-1B .x =1C .x =2D .x =-23.解分式方程21x x -+212x-=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)A .m ≤3B .m <3C .m >-3D .m ≥-35.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .120150= D .120150=7.方程1x -+21x -=1的解是__________.8.一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为__________km /h .9.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A -B -C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:__________.10.解分式方程:21x-=251x-.12.端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?13.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.14.列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.15.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.1.【答案】A【解析】方程两边同乘以1x -得到12(1)3x --=-, 故选A . 2.【答案】C【解析】去分母得:2x =(x -2)2+4,分解因式得:(x -2)[2-(x -2)]=0, 解得:x =2或x =4,经检验x =2是增根,分式方程的解为x =4, 故选C . 3.【答案】B【解析】方程21111a x x -=++两边同时乘以(1)x +,可得211a x -=+, 因为方程21111a x x -=++有增根,所以最简公分母10x +=,即增根是1x =-, 把1x =-代入整式方程,可得12a =.故选B . 4.【答案】D【解析】把x =1代入原方程得:23314a a +=-, 去分母得,8a +12=3a -3, 解得a =-3, 故选D . 5.【答案】C【解析】设每个A 型包装箱可以装书x 本,则每个B 型包装箱可以装书(15)x +本,根据单独使用B 型包装箱比单独使用A 型包装箱可少用6个,列方程得10801080615x x=-+, 故选C .6.【解析】(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(3)x +元,由题意得:9007503x x=+, 解得:15x =,经检验:15x =是原方程的解. 所以15+3=18(元).答:A 类玩具的进价是18元,B 类玩具的进价是15元.(2)设购进A 类玩具a 个,则购进B 类玩具(100)a -个,由题意得:1210(100)1080a a +-≥,解得:40a ≥,答:该淘宝专卖店至少购进A 类玩具40个.1.【答案】C【解析】关于x 的方程①153x -=,该方程分母中不含未知数,不是分式方程. 关于x 的方程②121x x =-,该方程分母中含有未知数,是分式方程. 关于x 的方程③()111x x x -+=,该方程分母中含有未知数,是分式方程.关于x 的方程④31x a b =-中,该方程分母中不含未知数,不是分式方程.综上,是分式方程的有②、③,共2个. 故选C . 2.【答案】C【解析】方程两边同乘()(31)x x +-,可得()213x x -=+,即223x x -=+,即5x =, 检验:当5x =时,1)03()(x x -≠+,所以5x =是原方程的根, 故选C . 3.【答案】D【解析】方程两边分别乘以x -2得:1-x +2(x -2)=-1, 去括号整理得:x =2, 经检验x =2是方程的增根, 故原方程无解. 故选D . 4.【答案】B【解析】把x =1代入方程223ax a x =-得:2213a a =-, 解得:a =-0.5,经检验a =-0.5是原方程的解, 故选B . 5.【答案】B【解析】根据题意得:13221x x =-+, 去分母得:3x -6=2x +1, 解得:x =7,经检验x =7是分式方程的解. 故选B . 6.【答案】A【解析】将方程的两边同时乘以(1)x -,可得31x k =-+,解得4x k =-,根据方程有增根可得1x =,即41k -=,所以3k =.故选A . 7.【答案】B【解析】去分母,可得32(1)x m x =++,解得2x m =+, 因为分式方程3211x mx x =+++无解,所以12130x m m +=++=+=,解得3m =-, 故选B . 8.【答案】A 【解析】2211x a ax x++=-- 方程两边同时乘以(x -1)得:x +a -2a =2(x -1), 解得:x =2-a ,∵方程的解不小于0,∴2-a ≥0,解得:a ≤2, ∵分式方程分母不为0,∴2-a ≠1,解得:a ≠1, 即a 的取值范围是:a ≤2且a ≠1, 故选A . 9.【答案】A【解析】因为船在静水中的速度为x 千米/时,所以由题意可得906022x x =+-, 故选A . 10.【答案】D【解析】方程两边都乘x (x +1),得2x 2-(m +1)=(x +1)2, ∵最简公分母x (x +1)=0, ∴x =0或x =-1. 当x =0时,m =-2;当x =-1时,m =1.故选D . 11.【答案】C 【解析】212x ax +=--, 去分母可得:22x a x +=-+, 移项可得:22x x a +=- , 合并同类项可得:32x a =-, 系数化为1可得:23ax -=, 根据分式方程的解为非负数和分式有解可得:203a -≥,且223a-≠,解得:a ≤2且a ≠-4, 故选C . 12.【答案】D【解析】设乙单独做需x 天完成, 由题意得:1112012x +=,故选D . 13.【答案】C【解析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时, 根据题意可得:1501150212x x-=.. 故选C . 14.【答案】C【解析】由不等式组-2≤352x +<12a +1,可知-3≤x <33a -, ∵x 有且只有3个整数解,∴-1<33a -≤0,∴0<a ≤3, 由分式方程可知:x =-64a -,将x =-64a -代入x -2≠0,∴a ≠1,∵关于x 的分式方程有整数解,∴6能被a -4整除, ∵a 是整数,∴a =2、3、5、6、7、10、-2; ∵0<a ≤3,∴a =2或3,∴所有满足条件的整数a 之和为5, 故选C .【解析】题中方程表示原计划每天铺设管道(10)x -米,即实际每天比原计划多铺设10米,结果提前15天完成, 故选C . 16.【答案】A【解析】设文学类图书平均价格为x 元/本,则科普类图书平均价格为1.2x 元/本, 依题意得:12000120001001.2x x-=, 解得:x =20,经检验,x =20是原方程的解,且符合题意. 故选A . 17.【答案】2x =【解析】方程x x 412=+两边都乘以x ,可得24x +=,解得2x =,检验:当2x =时,0x ≠,即2x =是原方程的解,故答案为:2x =. 18.【答案】1或12【解析】去分母得:x -a =2a (x -3), 整理得:(1-2a )x =-5a , 当1-2a =0时,方程无解,故a =12; 当1-2a ≠0时,x =521aa -=3时,分式方程无解,则a =3, 则a 的值为:1或12;故答案为:1或12.19.【答案】a ≤3且a ≠-12【解析】去分母,得:(x +1)(x +3)-x (x -2)=x +a ,解得x =35a -, 由题意知35a -≤0且35a -≠-3, 解得:a ≤3且a ≠-12, 故答案为:a ≤3且a ≠-12.【解析】首先根据分式72x -与2xx-的和为4,可得7422x x x +=--,去分母,可得748x x -=-,解得3x =,经检验3x =是原方程的解,故x 的值为3.故答案为:3.21.【答案】2【解析】当x =3时,有321223k k --=, 去分母得:9k -4k +2=12,5k =10, 解得:k =2,故答案为:2. 22.【答案】100080020x x=+ 【解析】设B 型机器人每小时搬运x kg 物品,则A 型机器人每小时搬运(x +20)kg 物品,根据题意可得100080020x x =+,故答案为:100080020x x=+.23.【解析】(1)去分母,可得126x x =--,解得7x =,经检验7x =是分式方程的解, 所以方程1233x x x=+--的解为7x =. (2)去分母,可得3316x x -++=,解得2x =, 经检验2x =是分式方程的解,所以方程2316+=的解为2x =.(3 即5(4)2111x x =---,去分母得2241(1)x x =-++,化简得321x =+,解得1x =, 经检验1x =为方程的增根, 所以方程无解.24.【解析】设第一批玩具每套的进价是x 元,则1500x×1.5=270010x +,解得:x =50.经检验:x =50是原方程的解,则第二批玩具每套的进价是x +10=60(元). 答:第二批玩具每套的进价为60元.25.【解析】(1)设乙种款型T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意:78006400301.5x x+=, 解得40x =,经检验,40x =是原方程的解,且符合题意,1.560x =.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)6400160x=,16030130-=(元), 13060%6016060%(402)160[1(160%)0.5](402)⨯⨯+⨯⨯÷-⨯-+⨯⨯÷468019206405960=+-=(元)答:售完这批T 恤衫商店共获利5960元.26.【解析】(1)设甲种商品的进价为x 元/件,则乙种商品的进价为0.9x 元/件,36003600100.9x x+=, 解得,x =40,经检验,x =40是原分式方程的解, ∴0.9x =36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m 件,则乙种商品购进(80-m )件,总利润为w 元, w =(80-40)m +(70-36)(80-m )=6m +2720, ∵80-m ≥3m , ∴m ≤20,∴当m =20时,w 取得最大值,此时w =2840, 答:该商店获得的最大利润是2840元.经检验x=-1是原方程的根;故选B.2.【答案】A【解析】方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选A.3.【答案】C【解析】方程两边都乘以(2x-1),得x-2=3(2x-1),故选C.7.【答案】x=-2【解析】2121 1(1)(1)xx x x--=-+-,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),去括号,得2x2+x-3=x2-1,移项并整理,得x2+x-2=0,所以(x+2)(x-1)=0,解得x=-2或x=1,经检验,x=-2是原方程的解.故答案为:x=-2.8.【答案】10【解析】设江水的流速为x km/h,根据题意可得:12030x+=6030x-,解得:x=10,10.【解析】两边都乘以(x+1)(x-1),得:2(x+1)=5,解得:x=32,检验:当x=32时,(x+1)(x-1)=54≠0,∴原分式方程的解为x=32.11.【答案】x=2【解析】方程两边都乘以(x+1)(x-1),去分母得x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2.检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.12.【解析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:96x+720.6x=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.14.【解析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均15.【解析】设甲校师生所乘大巴车的平均速度为x km/h,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得24027011.5x x-=,解得x=60,经检验,x=60是原分式方程的解,1.5x=90.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km/h和90 km/h.16.【解析】设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:1200x-4=30003x,解得:x=50,经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.。

(完整版)初中数学分式章节知识点及典型例题解析

(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。

(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。

2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。

12+x x C 。

133+x x D 。

25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。

—1或—3 C 。

-1 D 。

3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。

太原市数学中考《第十章分式方程》知识点聚焦

太原市数学中考《第十章分式方程》知识点聚焦

⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩分式方程的概念分母中含有未知数的方程叫做分式方程基本思路:具体做法:解法化:将分式方程转化为整式方程分一般步骤解:解这个整式方程式检验:检验原分式方程的最简公分母是否为零方程产生增根的原因增根验根的方法一般方法列分式方程题型举例解应用题步骤:审、设、列、解、检、答第22讲分式方程及其解法知识能力解读知能解读(一)分式方程的概念分母中含有未知数的方程叫作分式方程,如752x x =-,212xx =-等. 注意分式方程有两个重要特征:①是方程;②分母中含有未知数. 知能解读(二)解分式方程的基本思路、方法和一般步骤 解分式方程的基本思路:将分式方程转化为整式方程. 解分式方程的具体做法是“去分母”,即方程两边同时乘最简公分母,这也是解分式方程的一般方法. 解分式方程的一般步骤:“一化,二解,三检验”. 即:解整式方程分式方程整式方程a 不是分式 方程的解a 是分式方程的解注意在去分母前,需确定分式方程的最简公分母,若分母是多项式,应先分解因式,再确定最简分母. 知能解读(三)验根的方法一般地,解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应做如下检验:将整式方程的解代入原分式方程的最简公分母,如果最简公分母的值为0,那么这个解不是原分式方程的解.注意验根时也可以将整式方程的解代入原分式方程检验,这种方法虽然计算量大,但是能检查解分;式方程的过程中有无计算错误.知能解读(四)列分式方程解应用题列分式方程解应用题的步骤类似于列一元一次方程解应用题,即审题、设未知数、列方程、解方程、检验并写出答案.注意列分式方程解应用题的检验要分两步:第一步检验得到的未知数的值是不是原分式方程的根;第二步检验得到的未知数的值是否符合实际问题的意义方法技巧归纳方法技巧(一)分式方程的解答解分式方程的常用方法是去分母,将分式方程转化为整式方程,解整式方程.编1分式方程的识别2分式方程的解法技巧点拨解分式方程时,要注意检验以确定分式方程的解.方法技巧(二)利用分式方程解的情况确定所含字母的值的技巧注意思考问题要周密,不仅要考虑化成的整式方程有解但分式方程的最简公分母值为0时,原分式方程无解,还要考虑到化成的整式方程无解时,原分式方程也无解.(三)列分式方程解应用题的方法利用分式方程解决实际问题,首先要分析题意,准确找出应用题中蕴含的等量关系,恰当地设出未知数,列出分式方程,检验时,既要检验得到的未知数的值是否为所列分式方程的解,又要检验得到的未知数的值是否符合题意.点拨利用分式方程解应用题的关键是找出题目中的等量关系,列出方程.切记最后一定要检验得到的未知数的值是否为增根、是否符合题意.易混易错辨析易混易错知识去分母时,漏乘不含分母的项.去分母时,分式方程两边的每一项都要乘最简公分母,不要漏乘不含分母的项.易混易错(一)解分式方程易忘记验根易混易错(二)去分母时,易漏乘不含分母的项易混易错(三)混淆分式方程无解和有增根中考试题研究中考命题规律本讲知识在中考中经常考查,可化为一元一次方程的分式方程是中考考查的重点,特别是运用分式方程的有关知识解决实际问题是近几年中考的热点,一些阅读题、跨学科问题也随之成为考点.题型有选择题、填空题和解答题.中考试题(一)解分式方程点拨本题考查了分式方程的解法,去分母将分式方程转化为整式方程是基本思路.中考试题(二)根据方程解的情况确定所含字母的值中考试题(三)分式方程的增根中考试题(四)利用分式方程解决实际问题2019-2020学年数学中考模拟试卷一、选择题1.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有().A.1个B.2个C.3个D.4个2.把a移到根号内得()B. C.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.C.D.4.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G网络的商用示范.目前,北京市已经在怀柔试验场对5G进行相应的试验工作.现在4G网络在理想状态下,峰值速率约是100Mbps,未来5G网络峰值速率是4G网络的204.8倍,那么未来5G网络峰值速率约为( )A.1×102 Mbps B.2.048×102 MbpsC.2.048×103 Mbps D.2.048×104 Mbps5.如图,四边形ABCD是平行四边形,点A、B、C的坐标分别为(2,0)、(0,1)、(1,2),则AB+BC的值为()AB .3C .4D .56.某非物质文化遗产共有16名传承艺人,为了了解每位艺人的日均生产能力,随机调查了某一天每位艺人的生产件数.获得数据如下表:从这一天16名艺人中随意抽取1人,则他的这一天生产件数最可能的是( ) A .11件B .12件C .13件D.15件7.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+C .3338π- D .259π 8.若a b ,则实数a ,b 的大小关系为( ) A .a >bB .a <bC .a =bD .a≥b9.一次函数图象经过A (1,1),B (﹣1,m )两点,且与直线y =2x ﹣3无交点,则下列与点B (﹣1,m )关于y 轴对称的点是( ) A .(﹣1,3)B .(﹣1,﹣3)C .(1,3)D .(1,﹣3)10.x 1,x 2是关于x 的一元二次方程x 2﹣2mx ﹣3m 2=0的两根,则下列说法不正确的是( ) A.x 1+x 2=2mB.x 1x 2=﹣3m 2C.x 1﹣x 2=±4mD.12x x =﹣3 11.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为 ( ) A .82﹢x 2 = (x ﹣3)2 B .82﹢(x+3)2= x 2 C .82﹢(x ﹣3)2= x 2D .x 2﹢(x ﹣3)2= 8212.如图,四边形ABCD 是⊙O 的内接四边形,BE 平分∠ABC ,点A 是BE 的中点.若∠D =110°,则∠AEB 的度数是( )A.30°B.35°C.50 D.55°二、填空题13.﹣3的绝对值的倒数的相反数是_____.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C,若∠ACB=30°,则阴部分面积是_____.16.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是 ______1730°,圆锥的侧面积为_____.18.如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有_____个.三、解答题19.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1111⨯=2222121121⨯=++3333331232112321⨯=++++……根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n )20的整数部分为x ,小数部分为y ,求21x y+的值. 21.某校举行了一次古诗词朗读竞赛,满分为10分,学生得分均为整数,成绩达到6分及6分以上为合格.达到9分或10分为优秀.这次竞赛中,甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示.(1)求出成绩统计分析表中a 的值.(2)小英说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察成绩统计分析表判断,小英是甲、乙哪个组的学生.(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.试写出两条支持乙组同学观点的理由.(4)从这次参加学校古诗词朗诵竞赛的甲、乙两组成绩优秀的学生中,随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率是多少?(画树状图或列表求解)22.如图,在平行四边形ABCD 中,点E 、F 分别为边AB 、CD 的中点,BD 是平行四边形ABCD 的对角线,AG ∥BD 交CB 的延长线于点G(1)求证:四边形BEDF 是平行四边形;(2)若AE =DE ,则四边形AGBD 是什么特殊四边形?请证明你的结论.23.先化简,再求值:111()a a a ⎛⎫+-⎪-⎝⎭,其中a=12 .24.如图,正比例函数y =﹣2x 与反比例函数y =kx的图象相交于A (m ,4),B 两点. (1)求反比例函数的表达式及点B 的坐标; (2)当﹣2x≤kx时,请直接写出x 的取值范围.25.甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;(1)补全甲选手10次成绩频数分布图. (2)a = ,b = ,c = .(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).【参考答案】*** 一、选择题二、填空题13.-1 314.2 7155 18π-16.x>1 17.2π18.136 三、解答题19.(1)55555555551234567654321,123454321⨯++++++++;(2)65,74,83,92;(3)任意两个橄榄数a m,a n的各数位之和的差能被m﹣n整除.【解析】【分析】(1)根据题中给出的定义,直接可得:(2)设十位数字是x,个位数字是y,根据题意得到x+y=11,进而确定两位数;(3)根据数的规律求得a m的各数位之和m2,a n的各数位之和n2,然后因式分解证明结论. 【详解】(1)根据题中给出的定义,直接可得:11111112=1234567654321,123454321=⨯++++++++5555555555 123454321;(2)设十位数字是x,个位数字是y,x>y,10x+y+10y+x=11(x+y)=121,∴x+y=11,∴这个两位数是65,74,83,92;(3)a m的各数位之和1+2+3+…+m+(m﹣1)+…+2+1=(1)(1)22m m m m+-+=m2,a n的各数位之和1+2+3+…+m+(m﹣1)+…+2+1=(1)(1)22n n n n+-+=n2,∴a m,a n的各数位之和的差为m2﹣n2=(m+n)(m﹣n),∵m >n ,∴m 2﹣n 2=(m+n )(m ﹣n )能被m ﹣n 整除,∴任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除. 【点睛】本题考查新定义,字母表示数,自然数求和,因式分解;能够理解定义,熟练掌握因式分解,自然数求和方法是解题的关键.20. 【解析】 【详解】,可得整数,小数,根据x 、y 的值,可得答案. 解:4<5,x =4,y ﹣4,2214x y +===. 【点睛】本题考查了估算无理数的大小,根据平方根据平方估算无理数是解题关键.21.(1)中位数a =6;(2)小英属于甲组学生;(3)①乙组的总体平均水平高;②乙组的成绩比甲组的成绩稳定;(4)随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率为110. 【解析】 【分析】(1)由折线图中数据,根据中位数的定义求解可得; (2)根据中位数的意义求解可得; (3)可从平均数和方差两方面阐述即可;(4)首先根据题意列表,然后求得所有等可能的结果与两名学生恰好是乙组的情况,再利用概率公式即可求得答案. 【详解】(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10, ∴其中位数a =6,(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游, ∴小英属于甲组学生;(3)乙组学生成绩的平均分b =(5×2+6×1+7×2+8×3+9×2)÷10=7.2; ①乙组的平均分高于甲组,即乙组的总体平均水平高; ②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定; (4)列表得:∵共有20种等可能的结果,两名学生恰好是乙组的有2种情况,∴随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率=21= 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 的结果数目m,然后利用概率公式计算事件A的概率.也考查了折线统计图以及中位数与方差的定义.22.(1)见解析;(2)若AE=DE,则四边形AGBD是矩形;理由见解析.【解析】【分析】(1)根据平行四边形的性质得出AD∥BC,DC∥AB,DC=AB,推出DF=BE,DF∥BE,根据平行四边形的判定推出即可;(2)先证明四边形AGBD是平行四边形,再证出∠ADB=90°,即可得出结论.【详解】(1)证明:∴四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴点EF分别为边AB、CD的中点,∴BE=12AB,DF=12CD,∴BE=DF,∵BE∥DF,∴四边形BEDF是平行四边形;(2)解:若AE=DE,则四边形AGBD是矩形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BG,∵AG∥BD,∴四边形AGBD是平行四边形,∵点E是AB的中点,∴AE=BE=12 AB,∵AE=DE,∴AE=DE=BE,∴∠DAE=∠ADE,∠EDB=∠EBD,∵∠DAE+∠ADE+∠EDB+∠EBD=180°,∴2∠ADE+2∠EDB=180°,∴∠ADE+∠EDB =90°,即∠ADB =90°, ∴平行四边形AGBD 是矩形. 【点睛】本题考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质是解题的关键. 23.2a ﹣1,0 【解析】 【分析】根据乘法分配律可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【详解】 解:(11aa +-)(a ﹣1) =a+(a ﹣1) a+a ﹣1 =2a ﹣1, 当a =12时,原式=2×12﹣1=1﹣1=0. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 24.(1)8y x=- ,B (2,﹣4);(2)﹣2≤x<0或x≥2. 【解析】 【分析】(1)将A 坐标代入正比例函数2y x =-求出m 的值,将(24A -,)代入反比例解析式求k 的值,根据A 、B关于O 点对称即可确定出B 坐标;(2)根据图象和交点坐标找出正比例函数图象位于反比例函数图象下方时x 的范围即可. 【详解】解:(1)将4A m (,)代入正比例函数2y x =-得:42m =-, 解得2m =-,∴(24A ﹣,),∵反比例函数ky x=的图象经过24A (﹣,) , ∴248k =-⨯=- , 则反比例解析式为8y x=- , ∵A 、B 关于O 点对称∴B (2,﹣4);(2)由图象得:当2kx x≤﹣时,x 的取值范围为20x -≤<或2x ≥. 【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定. 【解析】 【分析】(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案; (2)根据平均数公式、中位数的求法和方差公式计算得到答案; (3)从平均数和方差进行分析即可得到答案. 【详解】解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4, 补全图形如下:(2)a =67284921010+⨯+⨯+⨯+=8(环),c =110×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2, b =872+=7.5,故答案为:8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定. 【点睛】本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).A.12B.7C.5D.132.在同一直角坐标系中,函数y=kx+1与y=kx(k≠0)的图象大致是()A.B.C.D.3.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A. B.C. D.4.如图所示的几何体的主视图是()A .B .C .D .5.下列代数运算正确的是( ) A .x 3•x 2=x 5 B .(x 3)2=x 5 C .(3x )2=3x 2D .(x ﹣1)2=x 2﹣16.在不透明口袋内装有除颜色外完全相同的5个小球,其中红球3个,白球2个搅拌均匀后,随机抽取一个小球,是白球的概率为( ) A .15B .310C .25D .357.如图,直线y =﹣x+b 与双曲线(0)ky x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNO b S 五边形;④若∠AOB=45°,则S △AOB =2k ,⑤当AB 时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个8.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A .B .C .D .9.定义一种新的运算:a•b=2a b a +,如2•1=2212+⨯=2,则(2•3)•1=( ) A .52B .32C .94D .19810.如图,在圆O 中,点A 、B 、C 在圆上,∠OAB =50°,则∠C 的度数为( )A .30°B .40°C .50°D .60°11.tan60︒的值为( )A .3B .3CD12.下面是一个几何体的俯视图,那么这个几何体是( )A .B .C .D .二、填空题13.若x 2-4x+1=0,则221x x +=______. 14.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为________只、树为________棵.15.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为___________元. 16.已知关于x 的代数式221x x +,当x =______时,代数式的最小值为______. 17.如图,O 是正方形ABCD 边上一点,以O 为圆心,OB 为半径画圆与AD 交于点E ,过点E 作⊙O 的切线交CD 于F ,将△DEF 沿EF 对折,点D 的对称点D'恰好落在⊙O 上.若AB =6,则OB 的长为_____.18_____. 三、解答题19.某中学欲开设A 实心球、B 立定跳远、C 跑步、D 足球四种体育活动,为了了解学生们对这些项目的选择意向,随机抽取了部分学生,并将调查结果绘制成图1、图2,请结合图中的信,解答下列问题:(1)本次共调查了 名学生; (2)将条形统计图圉补充完整;(3)求扇形C的圆心角的度数;(4)随机抽取了3名喜欢“跑步”的学生,其中有1名男生,2名女生,现从这3名学生中选取2名,请用画辩状图或列表的方法,求出刚好抽到一名男生一名女生的概率.20.某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?21.某中学为了帮助贫困学生读书,由校团委向全校2400名学生发起了“脱贫攻坚我在行”爱心捐款活动,为了解捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为,图①中m的值是;(2)请补全条形统计图;(3)求本次调查获取的样本数据的众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.如图,已知AB是⊙O的直径,⊙O与Rt△ACD的两直角边分别交于点E、F,点F是弧BE的中点,∠C=90°,连接AF.(1)求证:直线DF是⊙O的切线.(2)若BD=1,OB=2,求tan∠AFC的值.23.下表是2018年三月份某居民小区随机抽取20户居民的用水情况::(1)求出m=,补充画出这20户家庭三月份用电量的条形统计图;(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:(3)为了倡导“节约用水绿色环保”的意识,江赣市自来水公司实行“梯级用水、分类计费”,价格表如下:如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭在Ⅰ级标准?(4)按上表收费,如果某用户本月交水费120元,请问该用户本月用水多少吨?24.在等腰三角形ABC中,底边BC为y,腰长AB长为x,若三角形ABC的周长为12.(1)求y关于x的函数表达式;(2)当腰长比底边的2倍多1时,求x的值.25.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)【参考答案】***一、选择题二、填空题13.1414.515.4x+1616.±1, 217.10 318.1 三、解答题19.(1)150(2)60(3)144°(4)2 3【解析】【分析】(1)用B项目的人数除以它所占的百分比可得到调查的总人数;(2)先计算出C项目人数,然后补全条件统计图;(3)用360°乘以C项目所占的百分比得到扇形C的圆心角的度数;(4)画树状图展示所有6种等可能的结果数,找出抽到一名男生一名女生的结果数,然后根据概率公式求解.【详解】解:(1)调查的总人数为45÷30%=150(人);故答案为150;(2)C项目的人数为150﹣15﹣45﹣30=60(人),条形统计图圉补充为:(3)扇形C的圆心角的度数=360°×(1﹣20%﹣30%﹣10%)=144°;(4)画树状图为:共有6种等可能的结果数,其中抽到一名男生一名女生的结果数为4,所以抽到一名男生一名女生的概率=42 63 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(1)100;(2)108°;(3)480(件).【解析】【分析】(1)由S码衣服的人数及其所占百分比可得被调查的总人数;(2)用360°乘以L码衣服的人数所占比例即可得;(3)用总人数乘以样本中M码衣服的人数所占比例即可得.【详解】解:(1)本次调查的总人数为22÷22%=100人,故答案为:100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为:108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)50,32;(2)详见解析;(3)众数:10元;中位数:15元;(4)768.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m的值;(2)总人数乘以15元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人,∵1650×100%=32%,∴m=32,故答案为:50、32;(2)15元的人数为50×24%=12,补全图形如下:(3)本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(4)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.22.(1)详见解析;(2【解析】【分析】(1)连结OF,BE,根得到BE∥CD,根据平行线的性质得到∠OFD=90°,根据切线的判定定理证明;(2)由OF∥AC可得比例线段求出AC长,再由勾股定理可求得DC长,则能求出CF长,tan∠AFC的值可求.【详解】(1)证明:连结OF,BE,∵AB是⊙O的直径,∴∠A EB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD ∽△ACD , ∴OF OD AC AD=, ∵BD=1,OB=2,∴OD=3,AD=5, ∴251033AC ⨯==, ∴, ∵CF CD OA AD=, ∴CD OA CF AD ⨯=∴tan ∠AFC=103AC CF == 【点睛】本题考查的是切线的判定、三角函数的计算,掌握切线的判定定理是解题的关键.23.(1)6(2)25,25,26.5(3)100(4)39【解析】【分析】(1)根据各用户数之和等于数据总和即可求出m 的值,根据表格数据补全统计图;(2)根据众数、中位数、平均数的定义计算即可;(3)用达标的用户数除以总用户数,乘以500即可;(4)设该用户本月用水x 吨,列方程2.4×30+4(x ﹣30)=108,解答即可.【详解】(1)m =20﹣2﹣4﹣4﹣3﹣0﹣1=6,这20户家庭三月份用电量的条形统计图:故答案为6;(2)根据题意可知,25出现的次数最多,则众数为25,由表可知,共有20个数据,则中位数为第10、11个的平均数,即为25;平均数为(15×2+20×4+25×6+30×4+45×1)÷20=26.5,故答案为25,25,26.5;(3)小区三月份达到ⅠI 级标准的用户数:3150010020+⨯=(户), 答:该小区三月份有100户家庭在ⅠI 级标准;(4)∵2.4×30=72<120,∴该用户本月用水超过了30吨,设该用户本月用水x 吨,2,4×30+4(x ﹣30)=108,解得x =39,答:该用户本月用水39吨.【点睛】本题考查的是统计表即条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.(1)12-2(36)y x x =<<;(2)x=5【解析】【分析】(1)等腰三角形的底边长=周长﹣2×腰长;(2)根据题意列方程即可得到结论.【详解】(1)∵等腰三角形的腰长为x ,底边长为y ,周长为12,∴y=12﹣2x ;∵2x >y >0,∴2x >12﹣2x >0,解得:3<x <6.故y=12﹣2x (3<x <6);(2)∵腰长比底边的2倍多1,∴x=2y+1,∴x=2(12﹣2x )+1,解得:x=5.【点睛】本题考查了等腰三角形的性质,根据实际问题列一次函数关系式;判断出等腰三角形腰长的取值范围是解决本题的难点.25.(1)袋子中白球有2个;(2)见解析,59 . 【解析】【分析】(1)首先设袋子中白球有x 个,利用概率公式求即可得方程:213x x =+,解此方程即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个, 根据题意得:213x x =+, 解得:x =2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

分式的全部知识点总结

分式的全部知识点总结

分式的全部知识点总结在本文中,我们将全面总结分式的相关知识点,包括分式的定义、简化、运算、化简以及分式方程的解法等内容。

一、分式的定义分式是用分数表示的数,它是分子与分母之比。

其形式通常为a/b,其中a为分子,b为分母,分子和分母都是整数。

分式通常表示为a/b,读作a分之b,a称为分子,b称为分母。

分式也可以表示为小数形式,分数形式等,但本质上还是表示两个数之间的比值关系。

二、分式的简化分式的简化是指将分式化为最简形式的过程。

通常情况下,分式的分子和分母可以约分,分子和分母的公因数可以化简,最终得到最简分式。

简化分式的步骤包括:1. 找出分子和分母的公因数;2. 用公因数约分分子和分母;3. 化简得到最简分式。

例如,分式2/4可以简化为1/2,分式6/9可以简化为2/3等。

三、分式的运算分式的运算包括加减乘除四则运算。

分式的加减法通常需要找到它们的公分母,然后进行加减,乘法和除法要分别进行分子和分母的运算,然后化简得到最终结果。

加减法运算步骤如下:1. 找到分式的公分母;2. 将分式按照公分母进行加减;3. 化简得到最终结果。

例如,分式1/3和2/5的加法运算为:1/3 + 2/5 = 5/15 + 6/15 = 11/15。

乘法和除法运算步骤如下:1. 分子相乘,分母相乘;2. 化简得到最终结果。

例如,分式1/2和2/3的乘法运算为:1/2 * 2/3 = 2/6 = 1/3。

四、分式方程的解法分式方程是含有分式的方程,通常需要通过化简分式,转化为一般方程,然后解方程得到结果。

解分式方程的步骤如下:1. 化简分式,得到一般方程;2. 解一般方程得到结果;3. 检验解是否正确。

例如,解分式方程2/x = 3的步骤如下:1. 化简得到2 = 3x;2. 解一般方程得到x = 2/3;3. 检验得到的解是否正确。

以上是关于分式的全部知识点总结,分式是数学中非常重要的概念,掌握分式的相关知识对于数学学习具有重要意义。

分式知识点的总结及复习

分式知识点的总结及复习

分式知识点的总结及复习分式是数学中的一个重要概念,对于理解和解决各种问题非常有帮助。

分式的概念、性质以及操作都是数学中的基础知识点,非常值得我们重视和复习。

下面给出分式的总结及复习,希望能对大家有所帮助。

一、分式的定义和表示方法1.分式是由两个整数用除号连接起来的表达式,形如a/b,其中a和b都是整数,b不等于0。

a被称为分子,b被称为分母。

分子和分母都可以为正整数、负整数或零。

2.分式也可以表示为a÷b,即a除以b。

二、分式的化简1.如果分式的分子和分母都可以被同一个非零整数整除,则可以进行约分。

约分后得到的分式与原分式的值相等。

2.两个分数相加(减)时,要先找到它们的公共分母,然后将分子相加(减),再写上公共分母。

3.两个分数相乘时,将分子相乘,分母相乘。

4.两个分数相除时,将除号转为乘号,即分子乘以分母的倒数。

5.分子和分母同时乘以一个非零整数不改变分数的值。

这也是化简分式中常用的方法。

三、分式的乘除混合运算1.分式的乘法:把分子与分子相乘,分母与分母相乘。

然后可以进行约分。

2.分式的除法:用除号变成乘号,然后求倒数,即分子和分母交换位置。

然后进行乘法运算,可以进行约分。

四、分式的加减混合运算1.分式的加法:确定两个分式的公共分母,然后将分子相加,写上公共分母。

最后可以进行约分。

2.分式的减法:确定两个分式的公共分母,然后将分子相减,写上公共分母。

最后可以进行约分。

五、分式的化简与方程的解1.在代数中,分式经常出现在方程的求解中。

如果方程中含有分式,我们需要对方程进行化简,使得分母消失,然后求解方程。

2.常用的化简方法有通分、去括号、移项等。

六、分式的应用1.在实际生活中,分式的应用非常广泛。

比如:计算机网络中的带宽分配、物资的平均分配等都涉及到分式的应用。

2.分式在商业计算、金融投资等领域也有广泛应用。

七、分式的习题练习1.简化下列分式:(a)12/30(b)-18/12(c)40/802.求下列分式的值:(a)1/4+3/8(b)5/6-2/3(c)2/3×3/4(d)1/2÷2/33.解方程:2/(x-1)-3/(x+2)=1/(x+1)以上是分式知识点的总结及复习,对于掌握分式知识以及应用都有一定的帮助。

分式知识点总结及复习

分式知识点总结及复习

分式知识点总结及章末复习知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)经典例题1、代数式14x-是( ) A .单项式 B .多项式 C .分式 D .整式 2、在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B .2 C .3 D .4 3、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种 糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克 元,总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时,下列式子中一定有意义的是( )A .1a a + B .21a a + C .211a a ++ D .211a a +- 5、当1x =时,分式①11x x +-,②122x x --,③211x x --,④311x +中,有意义的是( ) A .①③④ B .③④ C .②④ D .④6、当1a =-时,分式211a a +-( )A .等于0 B .等于1 C .等于-1 D .无意义 7、使分式8483x x +-的值为0,则x 等于( ) A .38 B .12- C .83 D .12 8、若分式2212x x x -+-的值为0,则x 的值是( ) A .1或-1 B .1 C .-1 D .-2 9、当x 时,分式11x x +-的值为正数. 10、当x 时,分式11x x +-的值为负数. 11、当x = 时,分式132x x +-的值为1. 12、分式1111x ++有意义的条件是( ) A .0x ≠ B .1x ≠-且0x ≠ C .2x ≠-且0x ≠ D .1x ≠-且2x ≠-13、如果分式33x x --的值为1,则x 的值为( ) A .0x ≥ B .3x > C .0x ≥且3x ≠ D .3x ≠14、下列命题中,正确的有( )①A 、B 为两个整式,则式子A B 叫分式; ②m 为任何实数时,分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数. A .1个 B .2个 C .3个 D .4个15、在分式222x ax x x ++-中a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分 式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-2.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍3.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 4.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-5.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-6.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( ) A .2 B .3 C .4 D .5 7.下列各式中,正确的是( ).A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a---=- 8.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-9.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=-C .222()x y x y x y x y --=++ D .23193x x x -=-- 10.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个11.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 12.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解13.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a14.使分式224x x +-有意义的取值范围是( ) A .2x =-B .2x ≠-C .2x =D .2x ≠15.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米 B .20×10-8米 C .2×10-9米 D .2×10-8米 16.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定17.下列等式或不等式成立的是 ( )A .2332<B .23(3)(2)---<-C .3491031030⨯÷⨯=D .2(0.1)1-->18.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况19.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1920.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<d B .b<a<d<cC .a<b<d<cD .b<a<c<d21.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯ B .90.710⨯C .8710-⨯D .710⨯822.如果把分式2+mm n中的m 和n 都扩大2倍,那么分式的值 ( ) A .扩大4倍B .缩小2倍C .不变D .扩大2倍23.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-24.下列分式是最简分式的是( )A .2426a a -+B .1b ab a ++C .22a ba b+- D .22a ba b ++25.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( )A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a mb m++已是最简分式,故B 选项错误;C.22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.2.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.3.B解析:B 【解析】 原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.4.D解析:D 【解析】 ∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.5.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.6.B解析:B 【解析】 解:分式有2x 、12a-、21x x +共3个.故选B .点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.7.C解析:C【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .8.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.10.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数. 11.A解析:A【解析】试题解析:()1 x y x yx y x y-+--==---.故选A. 12.A 解析:A 【解析】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.13.C解析:C【解析】【详解】解:a=20170=1,b=2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c=(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b<a<c.故选C.点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.14.D解析:D【解析】【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可.【详解】解:由题意得:2x-4≠0,解得:x≠2,故选:D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.000000001×2=2×10﹣9. 故选C .点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.A解析:A 【解析】 试题分析:==;故选A.考点:分式的基本性质.17.D解析:D 【分析】先进行指数计算,再通过比较即可求出答案. 【详解】解:A 2339;28==,9>8 ,故A 错.B ()()2311;9832----==-,1198>-,故B 错. C 347910310=310⨯÷⨯⨯,故C 错. D ()20.1100--=,100>1, 故D 对.故选D. 【点睛】本题主要考查指数计算和大小比较,题目难度不大,细心做题是关键.18.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.19.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.20.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.21.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA分子的直径只有0.00000007cm,则这个数用科学记数法表示为8710-⨯.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.C解析:C【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案.【详解】分式2+mm n中的m和n都扩大2倍,得4222m mm n m n=++,∴分式的值不变,故选A.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.23.D解析:D【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2+3a+1=0,即可求得所求式子的值.【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.D解析:D 【解析】 【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 【详解】A 、该分式的分子、分母中含有公因数2,则它不是最简分式.故本选项错误;B 、分母为a (b+1),所以该分式的分子、分母中含有公因式(b+1),则它不是最简分式.故本选项错误;C 、分母为(a+b )(a-b ),所以该分式的分子、分母中含有公因式(a+b ),则它不是最简分式.故本选项错误;D 、该分式符合最简分式的定义.故本选项正确. 故选D . 【点睛】本题考查了对最简分式,约分的应用,关键是理解最简分式的定义.25.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.。

相关文档
最新文档