函数极值与导数
导数与极值

当a=2,b=9时,f′(x)=3x2+12x+9=3(x+1)(x+3).
当x∈(-3,-1)时,f(x)为减函数;当x∈(-1,+∞)时, f(x)为增函数,
所以f(x)在x=-1时取得极小值,因此a=2,b=9.
【规律总结】 1.求参数值:利用函数的极值确定参数的值,常根据极
值点处导数为0和极值两个条件列方程组,利用待定系
(2)函数y=f(x)在点x=b的函数值f(b)比它在点x=b附 近其他点的函数值都大, 则b叫做极大值点,f(Байду номын сангаас) f′(b)=0 叫做函数y=f(x)的极大值. 其中_________,在点x=b f′(x)>0 附近的左侧 _________,右侧_________, f′(x)<0
【练习】 1.函数y=f(x)的导数y′与函数值和极值之间的关系为
【解析】因为在点x2左侧导数图象在x轴上方,导数为 正,在点x2右侧附近导数图象在x轴下方,导数为负,故
点x2为极大值点,因为在点x4左侧导数图象在x轴下方,
导数为负,在点x4右侧附近导数图象在x轴上方,导数为 正,故点x4为极小值点.
答案:x2 x4
【注意事项】 1.函数的极值可以在区间端点处取得吗? 提示:不可,因为在端点处不能反映两侧的函数值的变 化情况,况且端点处的导数不一定为0.
书本P38
【题型探究】 类型一:求函数的极值
书本P39例题2
【规律总结】求可导函数f(x)的极值的步骤 (1)定区间求导:确定函数的定义域,求导数f′(x). (2)解方程:求方程f′(x)=0的根. (3)列表:用函数的导数为0的点,顺次将函数的定义区间分成若
干个小开区间,并列成表格.
高考数学知识点:函数的极值与导数的关系_知识点总结

高考数学知识点:函数的极值与导数的关系_知识点总结高考数学知识点:函数的极值与导数的关系极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
判别f(x0)是极大、极小值的方法:若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,函数的最大值和最小值:在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
高考数学知识点:函数的极值与导数的关系

高考数学知识点:函数的极值与导数的关系高考数学知识点:函数的极值与导数的关系极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
判别f(x0)是极大、极小值的方法:若x0满足,且在x0的两侧f(x)的导数异号,则x0是f (x)的极值点,是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,函数的最大值和最小值:在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
导数与函数的极值、最值。

栏目索引
判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的极大值不一定比极小值大. (√) (2)对可导函数f(x), f '(x0)=0是x0点为极值点的充要条件. (×) (3)函数的极大值一定是函数的最大值. (×) (4)开区间上的单调连续函数无最值. (√)
栏目索引
又f (2) 40 a, f (0) a, f (2) 8 a
由已知得 40 a 37解得a 3
(2)由(1)知f (x)在2, 2的最大值为3.
反思:本题属于逆向探究题型: 其基本方法最终落脚到比较极值与端点函数值大
小上,从而解决问题,往往伴随恒成立和分类讨论。
栏目索引
2.函数的最值与导数 一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下: (1)求函数y=f(x)在(a,b)内的⑨ 极值 ; (2)将函数y=f(x)的各极值与⑩ 端点处 的函数值f(a)、 f(b)比较,其中 最大的一个是最大值,最小的一个是最小值. 注:如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它 必有最大值和最小值.
栏目索引
导数与函数的极值、最值
栏目索引
1.函数的极值与导数 (1)函数的极小值 若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值 ① 都小 , f '(a)=0,而且在点x=a附近的左侧② f '(x)<0 ,右侧 ③ f ' (x)>0 ,则点a叫做函数y=f(x)的极小值点, f(a)叫做函数y=f(x)的 极小值. (2)函数的极大值 若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值 ④ 都大 , f '(b)=0,而且在点x=b附近的左侧⑤ f '(x)>0 ,右侧 ⑥ f ' (x)<0 ,则点b叫做函数y=f(x)的极大值点, f(b)叫做函数y=f(x)的极大值. 注:⑦ 极大值 和⑧ 极小值 统称为极值.
导数与函数极值最值

导数与函数的极值与最值1. 函数的极值⑴.判断 f (x 0)是极值的方法一般地,当函数 y =f (x )在点 x 0 处连续时,①.如果在 x 0 附近的左侧 f ′(x )>0,右侧 f ′(x )<0,那么 f (x 0)是极大值; ②.如果在 x 0 附近的左侧 f ′(x )<0,右侧 f ′(x )>0,那么 f (x 0)是极小值. ⑵.求可导函数极值的步骤:①.求 f ′(x );②.求方程 f ′(x )=0 的根;③.检查 f ′(x )在方程 f ′(x )=0 的根左右值的符号.如果左正右负,那么 y =f (x )在这个根处取得极大值;如果左负右正,那么 y =f (x )在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2. 函数的最值⑴.在闭区间[a ,b ]上连续的函数 y =f (x )在[a ,b ]上必有最大值与最小值.⑵.若函数 f (x )在[a ,b ]上单调递增,则 f (a )为函数的最小值,f (b )为函数的最大值;若函数 f (x )在[a ,b ]上单调递减,则 f (a )为函数的最大值,f (b )为函数的最小值.⑶.设函数 f (x )在[a ,b ]上连续,在(a ,b )内可导,求 f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①.求 f (x )在(a ,b )内的极值;②.将 f (x )的各极值与 f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 3. 利用极值求参数1. 极值点使得导函数为0,即极值点为导函数的零点.2. 极值点的个数就是导函数变号零点的个数3. 方法:①直接法:直接求方程,得到方程的根,在通过解不等式确定参数取值范围; ②分离参数法:将参数分离,构造新函数转化成求最值或者值域的问题; ③数形结合:先对解析式变形,在坐标系中画出函数图像,通过找交点求解.题型一 求极值【例1】(1)(2019·湖北高二期末)函数()f x 的导函数()f x '的图象如图所示,则( )A .12为()f x 的极大值点 B .2-为()f x 的极大值点 C .2为()f x 的极大值点D .45为()f x 的极小值点 (2)(2019·黑龙江铁人中学高二期中(文))函数()()2312f x x =-+的极值点是( ) A .0x =B .1x =C .1x =-或1D .1x =或0【解析】(1)对于A 选项,当122x -<<时,()0f x '>,当122x <<时,()0f x '<,12为()f x 的极大值点,A 选项正确;对于B 选项,当2x <-时,()0f x '<,当122x -<<时,()0f x '>,2-为()f x 的极小值点,B 错误; 对于C 选项,当122x <<时,()0f x '<,当2x >时,()0f x '>,2为()f x 的极小值点,C 选项错误; 对于D 选项,由于函数()y f x =为可导函数,且405f ⎛⎫'<⎪⎝⎭,45不是()f x 的极值点,D 选项错误.故:A. (2)函数的导数为2233()2(1)(3)6(1)f x x x x x '=-⨯=-, 当()0f x '=得0x =或1x =,当1x >时,()0f x '>,当01x <<时,()0f x '<, 所以1x =是极小值点.当0x <时,()0f x '<,当01x <<时,()0f x '<, 所以0x =不是极值点.故选B .【举一反三】1.(2018·安徽高二期末(理))函数()321313f x x x x =+--的极小值点是( ) A .1B .(1,﹣83)C .3-D .(﹣3,8)【解析】()223f x x x =+-',由2230x x +-=得31x =-或 函数()321313f x x x x =+--在(),3-∞-上为增函数,()3,1-上为减函数, ()1+∞,上为增函数,故()f x 在1x =处有极小值,极小值点为1.选A 2.(2019·安徽高二月考(文))已知函数()2ln f x ax b x =+在点M (1,1)处的切线方程为230x y +-=.(1)求函数()y f x =的解析式;(2)求函数()y f x =的单调区间和极值.【答案】(1)f (x )=x 2-4lnx (2)函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为22ln 2-,无极大值 【解析】(1)()2bf x ax x'=+, 因为点M (1,1)处的切线方程为2x +y -3=0,所以()()11122f a f a b ⎧==⎪⎨=+=-'⎪⎩,所以14a b =⎧⎨=-⎩,则f (x )=x 2-4lnx ;(2)定义域为(0,+∞),()24242x f x x x x-'=-=,令()0f x '=,得x =. 列表如下:故函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为222ln 2f=-=-,无极大值.题型二 求最值【例2】(2019·黑龙江铁人中学高二期中 )函数32()32f x x x =-+在区间[-1,1]上的最大值是( ) A .4 B .2 C .0 D .-2【答案】B【解析】令()2360f x x x '=-=,解得0x =2x =.()()()()02,22,12,10f f f f ==--=-=,故函数的最大值为2,所以本小题选B.【举一反三】1.(2019·湖南高一月考)已知函数2()4,[0,3],f x x x a x =-++∈若()f x 有最小值2-,则()f x 的最大值为____【解析】二次函数()y f x = 在[]0,2x ∈ 单调递增,当(]2,3x ∈ 单调递减故在x=0时取得最小值,即a=2题型三 利用极值最值求参数【例3】(1)(2019·河北唐山一中高三期中(理))若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为( ).A .1-B .32e --C .35e -D .1(2)(2019·贵州省铜仁第一中学高三(文))若函数()333f x x bx b =-+在()0,1内有极小值,则b 的取值范围为( ) A .01b <<B .1b <C .0b >D .12b <(3)(2019·安徽高二月考(文))若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是 A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)【答案】(1)A(2)A(3)C 【举一反三】1.已知是函数的极小值点,则的范围是_____2.已知是函数的极小值点,则取值范围________3.已知函数有两个极值点,且,则( )4.(2019·新疆高三月考)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是____.5.若函数在区间内有极值,则取值范围( C )0x =()()()22222f x x a x a x a=-++a ()(),02,-∞⋃+∞1x =()()()2202xk f x x e x kx k =--+>k ()0,e ()221ln f x x x a x =-++12,x x 12x x <D ()212ln 2.4A f x +<-()212ln 2.4B f x -<()212ln 2.4C f x +>-()212ln 2.4D f x ->()()()2122ln 02ax f x a x x a =-++>1,02⎛⎫ ⎪⎝⎭a6. 若函数在上有小于零的极值点,实数的取值范围是( )7. 若函数在区间恰有一个极值点,则实数取值范围______.8. 已知函数在区间上至少有一个极值点,实数取值范围______ 课后训练:1.(2019·江西高三期中(文))若函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,则实数m 的取值范围是( ) A .[)2,+∞ B .(),1-∞ C .(],2-∞ D .()2,+∞【答案】D 【解析】依题意()'2666f x x mx =-+,由于函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,所以()'2666fx x mx =-+在区间()1,+∞上有正有负,由于二次函数()'2666f x x mx =-+开口向上,对称轴为2m x =,2364660m ∆=-⨯⨯>,解得2m <-或2m >.当2m <-时,对称轴12mx =<-,()'060f =>故此时在区间()1,+∞上()'0f x >,函数()f x 单调递增,没有极值点.当2m >时,由于()'16661260f m m =-+=-<,且二次函数()'2666f x x mx =-+开口向上,故()'2666f x x mx =-+区间()1,+∞上必存在零点,也即()f x 在区间()1,+∞上存在极值点. 故选:D.2.(2019·陕西高三(文))函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤【答案】C【解析】因为2()31f x ax '=+,所以221()31030f x ax a x =+=⇒=-<',即0a <,应选答案C 。
导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.
函数的极值与导数

y
y = f ( x)
x3 x x5 x6 b
a
x1
x2 O
x4
结论: 求解函数极值的一般步骤: (1)确定函数的定义域 (2)求方程f’(x)=0的根 (3)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列 成表格 (4)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取 极值的情况
例: 求出函数 f ( x ) = x 3 3 x 2 9 x 5 的极值. 解
f ( x ) = 3 x 2 6 x 9= 3( x 1)( x 3)
令 f ( x ) = 0,得驻点 x1 = 1, x2 = 3. 列表讨论
x
f ( x )
f ( x)
( ,1)
1
0
极 大 值
( 1,3)
3
0
极 小 值
( 3, )
来自极大值 f ( 1) = 10,
极小值 f ( 3) = 22.
函数的极值与导数
观察图像:
在x1 、 x3处函数值f(x1)、 f(x3) 与x1 、 x3左右近旁各点处
的函数值相比,有什么特点?
f (x2)、 f (x4)比x2 、x4左右近旁各点处的函数值相比呢?
y
f (x1)
f(x3)
y=f(x)
f(x2)
f(x4)
x3 x4 b x
O a
x1
x2
函数的极值定义
y
y
使函数取得极值的点x0称为极 值点
o
x0
x
o
x0
x
设函数f(x)在点x0附近有定义, •如果对X0附近的所有点,都有f(x)<f(x0),
导数与极值

2.三次函数单调性与极值(设x1<x2) (1)当Δ≤0时,①若a>0,则f(x)在R上是增函数;
②若a<0,则f(x)在R上是减函数.
(2)当Δ>0时,①若a>0,则f(x)的增区间为(-∞,x1)和 (x2,+∞),减区间为(x1,x2),f(x1)为极大值,f(x2)为极
小值;②若a<0,则f(x)的减区间为(-∞,x1)和(x2,+∞),
【解析】函数y=f(x)的图象与y=g(x)的图象有且只有 三个不同的交点,即函数φ(x)=g(x)-f(x)的图象与x轴
的正半轴有且只有三个不同的交点.
因为φ(x)=x2-8x+6ln x+m,
6 2x 2 8x 6 2 x 1 x 3 (x>0), 所以φ′(x)= 2x 8 x x x
呢?
【解析】由例(2)解析可知:当m=-3或m=1时,直线y=m与 y=f(x)的图象有两个不同的交点;
当m<-3或m>1时,直线y=m与y=f(x)的图象只有一个交点.
2.(变换条件)若本例(2)中条件改为“已知函数f(x)= -x3+ax2-4在x= 4 处取得极值”,其他条件不变,小值f(1)=-3.
作出f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点, 结合f(x)的图象可知,m的取值范围是(-3,1).
【延伸探究】 1.(变换条件,改变问法)若本例(2)“三个不同的交点”
改为“两个不同的交点”结果如何?改为“一个交点”
x x
x 3 x 1
x2
. 令f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)的变化情况如下表: x f′(x) f(x) (0,1) ↘ 1 0 3 (1,+∞) + ↗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极值与导数
函数极值与导数是数学中的一个重要概念,在微积分学中起到了极为重要的作用。
它们被广泛应用于理论研究和实际问题解决中,为
人们的工作和生活带来了便利和创新。
本文将分步骤阐述函数极值与
导数的相关知识。
第一步:导数的定义和性质
在微积分学中,导数是函数变化率的表示,它是函数在某一点的切线斜率。
导数的定义是:当自变量的增量趋近于0时,函数值的增
量与自变量增量之比的极限称为函数在该点的导数。
一般用符号f‘(x)表示。
导数具有以下的性质:
(1)导数存在的充分必要条件是函数在该点连续;
(2)可导函数的任何一点,切线必然过曲线上相应点;
(3)可导函数微小区间上的平均变化率在微小区间趋于零时的
极限,等于这个区间的导数。
第二步:函数极值的定义和判定
函数极值是指函数取得最大值或最小值的点,它是函数曲线的拐点。
函数的极大值和极小值统称为极值。
通常用f(x)表示函数,x0表示函数的零点,若f(x)在x0处取得极大值,则称f(x)在x0处取得极大值;若f(x)在x0处取得极小值,则称f(x)在x0处取得极小值。
判断函数的极值可以采用以下常用方法:
(1)导数法:求出函数的导数f’(x),令其等于0,求根,根即为函数的极值点。
(2)二阶导数法:计算函数的二阶导数f’’(x),当
f’(x)=0,f’’(x)<0时,函数在该点有极大值;当f’(x)=0,
f’’(x)>0时,函数在该点有极小值。
(3)边界法:当函数定义域中存在有限区间[a,b]时,在区间端点处极值的情况也可能存在,可以通过求函数在端点取值情况比较
的方法来判断该区间内的极值情况。
第三步:函数极值的应用
函数极值在实际问题中的应用非常广泛,下面以几个例子进行说明:
(1)优化生产问题:生产厂家需要求出生产成本的最小值,可
以将生产成本函数的导数求解,找出导数为0的点以及随着自变量的
变化,导数变化的趋势,决策者可以依据这些信息来做最优化生产。
(2)为了研究影响空气和水质的因素,需要分析空气和水样品
的样本数据,用标准正态分布的概率密度函数来进行拟合,根据函数
图像的形状以及导数、二阶导数的符号来判断峰值和谷值。
(3)在房地产业中,我们需要根据市场需求来判断房屋价格走势,此时可以利用函数极值的方法来进行分析,以获得更准确的预测。
综上所述,函数极值与导数是微积分学中一个重要的概念,不仅
在数学理论研究中有着广泛的应用,同时在各个领域的实际问题中也
有着广泛的应用。
对于我们的生活和工作来说,掌握这些知识是非常
重要的。