导数与函数的极值与最值
《导数与函数的极值、最值》 知识清单

《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
对于函数 y = f(x),其在点 x = x₀处的导数定义为:f'(x₀) = limₕ→₀ f(x₀+ h) f(x₀) / h导数的几何意义是函数曲线在该点处的切线斜率。
如果导数存在,则函数在该点处可导。
二、函数的极值1、极值的定义函数在某区间内的极大值和极小值统称为极值。
极大值是指在该区间内比其附近的函数值都大的函数值;极小值则是指在该区间内比其附近的函数值都小的函数值。
2、极值点的判别方法(1)导数为零的点:若函数 f(x) 在点 x₀处可导,且 f'(x₀) = 0,则 x₀可能是极值点。
(2)导数不存在的点:函数在某些点处导数不存在,但也可能是极值点。
3、第一导数判别法设函数 f(x) 在点 x₀的某个邻域内可导,且 f'(x₀) = 0。
(1)如果当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x) 在 x₀处取得极大值。
(2)如果当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x) 在 x₀处取得极小值。
4、第二导数判别法设函数 f(x) 在点 x₀处具有二阶导数,且 f'(x₀) = 0,f''(x₀) ≠ 0。
(1)若 f''(x₀) < 0,则函数 f(x) 在 x₀处取得极大值。
(2)若 f''(x₀) > 0,则函数 f(x) 在 x₀处取得极小值。
三、函数的最值1、最值的定义函数在某个区间内的最大值和最小值分别称为函数在该区间内的最值。
2、求最值的步骤(1)求函数在给定区间内的导数。
(2)找出导数为零的点和导数不存在的点。
(3)计算这些点以及区间端点处的函数值。
(4)比较这些函数值,最大的即为最大值,最小的即为最小值。
导数与函数的极值、最值。

栏目索引
判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的极大值不一定比极小值大. (√) (2)对可导函数f(x), f '(x0)=0是x0点为极值点的充要条件. (×) (3)函数的极大值一定是函数的最大值. (×) (4)开区间上的单调连续函数无最值. (√)
栏目索引
又f (2) 40 a, f (0) a, f (2) 8 a
由已知得 40 a 37解得a 3
(2)由(1)知f (x)在2, 2的最大值为3.
反思:本题属于逆向探究题型: 其基本方法最终落脚到比较极值与端点函数值大
小上,从而解决问题,往往伴随恒成立和分类讨论。
栏目索引
2.函数的最值与导数 一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下: (1)求函数y=f(x)在(a,b)内的⑨ 极值 ; (2)将函数y=f(x)的各极值与⑩ 端点处 的函数值f(a)、 f(b)比较,其中 最大的一个是最大值,最小的一个是最小值. 注:如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它 必有最大值和最小值.
栏目索引
导数与函数的极值、最值
栏目索引
1.函数的极值与导数 (1)函数的极小值 若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值 ① 都小 , f '(a)=0,而且在点x=a附近的左侧② f '(x)<0 ,右侧 ③ f ' (x)>0 ,则点a叫做函数y=f(x)的极小值点, f(a)叫做函数y=f(x)的 极小值. (2)函数的极大值 若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值 ④ 都大 , f '(b)=0,而且在点x=b附近的左侧⑤ f '(x)>0 ,右侧 ⑥ f ' (x)<0 ,则点b叫做函数y=f(x)的极大值点, f(b)叫做函数y=f(x)的极大值. 注:⑦ 极大值 和⑧ 极小值 统称为极值.
微积分中的导数与函数的极值与最值

微积分中的导数与函数的极值与最值微积分是数学中的一个分支,主要研究函数的变化规律和性质。
其中导数和函数的极值与最值是微积分中的重要概念。
本文将就导数、极值和最值在微积分中的应用进行探讨。
导数是微积分中的基本概念之一。
在一元函数中,导数描述了函数在某一点附近的变化速率。
它可以用于推断函数的增减性、凸凹性等性质。
导数的计算可以通过求极限的方法进行,常见的导数公式如常函数的导数等于零、幂函数的导数等于其指数乘以系数等。
通过导数的计算,我们可以得到函数的驻点。
驻点是指函数在该点的导数为零或者不存在的点。
为了进一步研究函数的性质,我们可以求解驻点对应的函数值,从中得到函数的极值。
极值分为最大值和最小值两种情况。
通过比较驻点及其周围点的函数值,我们可以判断其为极大值还是极小值。
除了通过驻点求极值外,我们还可以通过函数的端点来判断函数的最值。
端点是指函数定义域的边界处的点。
在一段闭区间上,函数在端点处的取值可以是函数的最大值或最小值。
因此,求解函数的最值问题时,我们应该关注函数的驻点和端点。
为了更好地理解导数、极值和最值的概念,我们可以通过一个具体的例子来说明。
假设有一个函数f(x) = x^2 - 3x + 2,我们需要求解该函数在定义域内的极值和最值。
首先,我们计算函数的导数f'(x) = 2x - 3。
然后,通过求解f'(x) = 0的方程,我们可以得到驻点x = 3/2。
接下来,我们计算驻点处的函数值f(3/2) = -1/4。
同时,我们还需要计算函数在定义域的端点x = 0和x = 3处的函数值,即f(0) = 2和f(3) = 2。
通过比较这些函数值,我们可以得到函数f(x)的极小值为-1/4,最小值为-1。
除了以上的具体例子外,导数、极值和最值的概念在实际问题中也有很广泛的应用。
例如,在经济学中,通过求解生产函数的极值可以找到最优的生产方案;在物理学中,通过求解位移函数的极值可以得到物体的平衡位置。
导数与函数的极值、最值

导数与函数的极值、最值一、基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.二、常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](优质试题·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极小值点及极大值.[解](1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1.因此曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f (x )的极小值点为x =t 2+3,极大值为f (t 2-3)=(-3)3-9×(-3)=6 3.[解题技法] 求函数的极值或极值点的步骤 (1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (优质试题·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x , 得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). [解题技法]已知函数极值点或极值求参数的2个要领[专题训练]1.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x +ln x (x >0), ∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(优质试题·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选C f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧ a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1; 由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫13,1上单调递减,所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43. 故a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点二 利用导数解决函数的最值问题[典例] (优质试题·北京高考)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x .当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2,有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [专题训练]1.(优质试题·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝ ⎛⎭⎪⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3).答案:1442.已知函数f (x )=ln x -ax .(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2, 因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32, 所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32, 所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a ,当1<x<-a时,f′(x)<0,所以f(x)在(1,-a)上单调递减;当-a<x<e时,f′(x)>0,所以f(x)在(-a,e)上单调递增,所以f(x)min=f(-a)=ln(-a)+1=32,所以a=- e.综上,a=- e.[课时跟踪检测]A级1.(优质试题·辽宁鞍山一中模拟)已知函数f(x)=x3-3x-1,在区间[-3,2]上的最大值为M,最小值为N,则M-N=()A.20B.18C.3 D.0解析:选A∵f′(x)=3x2-3=3(x-1)(x+1),∴f(x)在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,∴M=1,N=-19,M-N=1-(-19)=20.2.(优质试题·梅州期末)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的单调递增区间B.(3,5)为函数y=f(x)的单调递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或3<x<5时,f′(x)<0,y=f(x)单调递减;当x>5或-1<x<3时,f′(x)>0,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C 错误.3.(优质试题·湖北襄阳四校联考)函数f(x)=12x2+x ln x-3x的极值点一定在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.(3,4)内解析:选B函数的极值点即导函数的零点,f′(x)=x+ln x+1-3=x+ln x -2,则f′(1)=-1<0,f′(2)=ln 2>0,由零点存在性定理得f′(x)的零点在(1,2)内,故选B.4.已知函数f(x)=x3+3x2-9x+1,若f(x)在区间[k,2]上的最大值为28,则实数k的取值范围为()A.[-3,+∞) B.(-3,+∞)C.(-∞,-3) D.(-∞,-3]解析:选D由题意知f′(x)=3x2+6x-9,令f′(x)=0,解得x=1或x=-3,所以f′(x),f(x)随x的变化情况如下表:又f(-3)=28,f(1)=-4,f(2)=3,f(x)在区间[k,2]上的最大值为28,所以k≤-3.5.(优质试题·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12 C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t , 令f ′(t )=0,得t =22,当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0.∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22.7.(优质试题·江西阶段性检测)已知函数y =ax -1x 2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,。
导数与函数极值最值

导数与函数的极值与最值1. 函数的极值⑴.判断 f (x 0)是极值的方法一般地,当函数 y =f (x )在点 x 0 处连续时,①.如果在 x 0 附近的左侧 f ′(x )>0,右侧 f ′(x )<0,那么 f (x 0)是极大值; ②.如果在 x 0 附近的左侧 f ′(x )<0,右侧 f ′(x )>0,那么 f (x 0)是极小值. ⑵.求可导函数极值的步骤:①.求 f ′(x );②.求方程 f ′(x )=0 的根;③.检查 f ′(x )在方程 f ′(x )=0 的根左右值的符号.如果左正右负,那么 y =f (x )在这个根处取得极大值;如果左负右正,那么 y =f (x )在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2. 函数的最值⑴.在闭区间[a ,b ]上连续的函数 y =f (x )在[a ,b ]上必有最大值与最小值.⑵.若函数 f (x )在[a ,b ]上单调递增,则 f (a )为函数的最小值,f (b )为函数的最大值;若函数 f (x )在[a ,b ]上单调递减,则 f (a )为函数的最大值,f (b )为函数的最小值.⑶.设函数 f (x )在[a ,b ]上连续,在(a ,b )内可导,求 f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①.求 f (x )在(a ,b )内的极值;②.将 f (x )的各极值与 f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 3. 利用极值求参数1. 极值点使得导函数为0,即极值点为导函数的零点.2. 极值点的个数就是导函数变号零点的个数3. 方法:①直接法:直接求方程,得到方程的根,在通过解不等式确定参数取值范围; ②分离参数法:将参数分离,构造新函数转化成求最值或者值域的问题; ③数形结合:先对解析式变形,在坐标系中画出函数图像,通过找交点求解.题型一 求极值【例1】(1)(2019·湖北高二期末)函数()f x 的导函数()f x '的图象如图所示,则( )A .12为()f x 的极大值点 B .2-为()f x 的极大值点 C .2为()f x 的极大值点D .45为()f x 的极小值点 (2)(2019·黑龙江铁人中学高二期中(文))函数()()2312f x x =-+的极值点是( ) A .0x =B .1x =C .1x =-或1D .1x =或0【解析】(1)对于A 选项,当122x -<<时,()0f x '>,当122x <<时,()0f x '<,12为()f x 的极大值点,A 选项正确;对于B 选项,当2x <-时,()0f x '<,当122x -<<时,()0f x '>,2-为()f x 的极小值点,B 错误; 对于C 选项,当122x <<时,()0f x '<,当2x >时,()0f x '>,2为()f x 的极小值点,C 选项错误; 对于D 选项,由于函数()y f x =为可导函数,且405f ⎛⎫'<⎪⎝⎭,45不是()f x 的极值点,D 选项错误.故:A. (2)函数的导数为2233()2(1)(3)6(1)f x x x x x '=-⨯=-, 当()0f x '=得0x =或1x =,当1x >时,()0f x '>,当01x <<时,()0f x '<, 所以1x =是极小值点.当0x <时,()0f x '<,当01x <<时,()0f x '<, 所以0x =不是极值点.故选B .【举一反三】1.(2018·安徽高二期末(理))函数()321313f x x x x =+--的极小值点是( ) A .1B .(1,﹣83)C .3-D .(﹣3,8)【解析】()223f x x x =+-',由2230x x +-=得31x =-或 函数()321313f x x x x =+--在(),3-∞-上为增函数,()3,1-上为减函数, ()1+∞,上为增函数,故()f x 在1x =处有极小值,极小值点为1.选A 2.(2019·安徽高二月考(文))已知函数()2ln f x ax b x =+在点M (1,1)处的切线方程为230x y +-=.(1)求函数()y f x =的解析式;(2)求函数()y f x =的单调区间和极值.【答案】(1)f (x )=x 2-4lnx (2)函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为22ln 2-,无极大值 【解析】(1)()2bf x ax x'=+, 因为点M (1,1)处的切线方程为2x +y -3=0,所以()()11122f a f a b ⎧==⎪⎨=+=-'⎪⎩,所以14a b =⎧⎨=-⎩,则f (x )=x 2-4lnx ;(2)定义域为(0,+∞),()24242x f x x x x-'=-=,令()0f x '=,得x =. 列表如下:故函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为222ln 2f=-=-,无极大值.题型二 求最值【例2】(2019·黑龙江铁人中学高二期中 )函数32()32f x x x =-+在区间[-1,1]上的最大值是( ) A .4 B .2 C .0 D .-2【答案】B【解析】令()2360f x x x '=-=,解得0x =2x =.()()()()02,22,12,10f f f f ==--=-=,故函数的最大值为2,所以本小题选B.【举一反三】1.(2019·湖南高一月考)已知函数2()4,[0,3],f x x x a x =-++∈若()f x 有最小值2-,则()f x 的最大值为____【解析】二次函数()y f x = 在[]0,2x ∈ 单调递增,当(]2,3x ∈ 单调递减故在x=0时取得最小值,即a=2题型三 利用极值最值求参数【例3】(1)(2019·河北唐山一中高三期中(理))若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为( ).A .1-B .32e --C .35e -D .1(2)(2019·贵州省铜仁第一中学高三(文))若函数()333f x x bx b =-+在()0,1内有极小值,则b 的取值范围为( ) A .01b <<B .1b <C .0b >D .12b <(3)(2019·安徽高二月考(文))若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是 A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)【答案】(1)A(2)A(3)C 【举一反三】1.已知是函数的极小值点,则的范围是_____2.已知是函数的极小值点,则取值范围________3.已知函数有两个极值点,且,则( )4.(2019·新疆高三月考)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是____.5.若函数在区间内有极值,则取值范围( C )0x =()()()22222f x x a x a x a=-++a ()(),02,-∞⋃+∞1x =()()()2202xk f x x e x kx k =--+>k ()0,e ()221ln f x x x a x =-++12,x x 12x x <D ()212ln 2.4A f x +<-()212ln 2.4B f x -<()212ln 2.4C f x +>-()212ln 2.4D f x ->()()()2122ln 02ax f x a x x a =-++>1,02⎛⎫ ⎪⎝⎭a6. 若函数在上有小于零的极值点,实数的取值范围是( )7. 若函数在区间恰有一个极值点,则实数取值范围______.8. 已知函数在区间上至少有一个极值点,实数取值范围______ 课后训练:1.(2019·江西高三期中(文))若函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,则实数m 的取值范围是( ) A .[)2,+∞ B .(),1-∞ C .(],2-∞ D .()2,+∞【答案】D 【解析】依题意()'2666f x x mx =-+,由于函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,所以()'2666fx x mx =-+在区间()1,+∞上有正有负,由于二次函数()'2666f x x mx =-+开口向上,对称轴为2m x =,2364660m ∆=-⨯⨯>,解得2m <-或2m >.当2m <-时,对称轴12mx =<-,()'060f =>故此时在区间()1,+∞上()'0f x >,函数()f x 单调递增,没有极值点.当2m >时,由于()'16661260f m m =-+=-<,且二次函数()'2666f x x mx =-+开口向上,故()'2666f x x mx =-+区间()1,+∞上必存在零点,也即()f x 在区间()1,+∞上存在极值点. 故选:D.2.(2019·陕西高三(文))函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤【答案】C【解析】因为2()31f x ax '=+,所以221()31030f x ax a x =+=⇒=-<',即0a <,应选答案C 。
导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.
导数与函数的极值和最值

导数与函数的极值和最值一 函数极值的定义极大值:已知函数()y f x =,设0x 是定义域内任意一点,如果对0x 附近的所有点x ,都有0()()f x f x <,()0f x '=,而且在0x x =附近的左侧()0f x '>,右侧()0f x '<,则称函数()f x 在点0x 处取得极大值,并把0x 称为函数()f x 的一个极大值点.极小值:已知函数()y f x =,设0x 是定义域内任意一点,如果对0x 附近的所有点x ,都有0()()f x f x >,()0f x '=,而且在0x x =附近的左侧()0f x '<,右侧()0f x '>,则称函数()f x 在点0x 处取得极小值,并把0x 称为函数()f x 的一个极小值点.注:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是函数的极值点.二、求函数极值的步骤:(1)确定函数的定义域,求出导函数()f x '.(2)求方程()0f x '=的根.(3)根据极值的定义确定极大值和极小值.例 1求函数31()443f x x x =-+的极值.例2已知函数'()2(1)ln f x f x x =-,则()f x 的极大值为____例3 函数23()(1)2f x x =-+的极值点是____.三、极值与参数范围问题例4. 已知函数3211()32f x x x cx d =-++有极值,则实数c 的取值范围为______.例 5. 若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围为_____.例6. 已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围为______.四、 函数最值(最大值和最小值)如何求函数在[,]a b 上的最值:(1)求函数()y f x =在(,)a b 内的极值和端点值(),()f a f b .(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小值的一个是最小值.例7. 已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=______例8.已知()(ln )f x a x x =-,若函数图像在点(2,(2))f 处切线倾斜角为4π,且32'()[()]2m g x x x f x =++在区间(2,3)上总存在极值,则实数m 的取值范围为_____课后训练题1 .若函数322()f x x ax bx a =--+在1x =处取得极值10,则a =____,b =_____. 2已知函数()(sin cos )x f x e x x =-,若()(sin cos )x f x e x x =-,若02011x π≤≤,则()f x 各极大值和为_____.3.设函数3221()2313f x x ax a x =-+-+,求函数()f x 的极值.3 .已知函数43219()42f x x x x cx =+-+有三个极值点,则实数c 的取值范围为_____.(27,5)-4 .设2()ln(1)f x x a x =++有两个极值点,则实数a 的取值范围为_______1(0,)25.已知()ln f x ax x =+,(1,)x e ∈且()f x 存在极值,则实数a 的取值范围为_____.6.函数()ln f x x x =-在区间(]0,e 上的最大值为____7.已知函数2()(2)x f x x x e =-,[2,)x ∈-+∞,则()f x 的最小值为____.8. 已知()ln f x ax x =-,(]0,x e ∈,当a =____时,()f x 最小值为39. 已知函数3()(3)f x a x ax =--在[]1,1-的最小值为3-,则实数a 的取值范围为_____ 3,122⎡⎤-⎢⎥⎣⎦10. 若函数3212()33f x x x =+-在区间(,5)a a +上存在最小值,则实数a 的取值范围为______11.若函数()ln a f x x x x=++,若()f x 有最值,则实数a 的取值范围为____ ()0,+∞。
一轮复习--导数与函数的极值、最值

其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊 重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆ቤተ መጻሕፍቲ ባይዱ。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=xf '(x)
-1
11
-1
o
y
x
导数与函数的单调性
题型1.导数与函数图象(,0)(>'x f 函数单调递增;,0)(<'x f 函数单调递减;即导数看正负,函数看增减。
1. 设函数()x f 在定义域内可导,()x f y =的图象如图2所示,则导函数()x f '可能为D
2. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是C
3. )(x f '是)(x f 的导函数,)(x f '的图象如图所示,则)(x f 的图象只可能是D
A B C D
4.已知函数)(x f x y '=的图像如右图所示,下面四个图象中)(x f y =的图象大致是(C )
31
-2
1-122-2o y
x
1-2
1
-122o
y
x
4
2
1
-2
o
y
x
42
2
-2
o
y
x
A B C D
5. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是D
x y O A x y O B x y O C y O
D x x
y
O 图2
o y x -33
y x O y x O y x O y x
O A . B . C . D . 6题图
6.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式
'()0x f x ⋅<的解集为__()()
3,03,⋃∞-__.
7.已知()f x 在R 上是可导函数,则 ()f x 的图象如图所示,则不
等
式
()()2
230
x
x f x '-->的解集为
____________
题型2.利用导数求单调区间(1.定义域2.求导3.令,0)(>'x f 求增区间;令,0)(<'x f 求减区间)
1. 函数13)(23+-=x x x f 是减函数的区间为 D A.),2(+∞ B.)2,(-∞ C.)0,(-∞ D.(0,2)
2. 函数x x x f ln 3)(+=的单调递增区间是C
A.)1,0(e
B.),(+∞e
C.),1(+∞e
D.(e
1
,e )
3. 函数x x y ln 82-=在区间)1,2
1
()41,0(和内分别为 A
A.单调递减,单调递增
B.单调递增,单调递增
C.单调递增,单调递减
D.单调递减,单调递减
题型3.由单调区间求参数取值范围(函数在区间(),a b 上增,,0)(≥'x f 恒成立;
函数在区间(),a b 上减,,0)(≤'x f 恒成立;)
1. 已知()321
233
y x bx b x =++++是R 上的单调增函数,则b 的范围D
A.1b <-或2b >
B.1b ≤-或2b ≥
C.21b -<<
D.12b -≤≤
2. 若m mx x x x f +++-=23)((m 为常数)在(-1,1)上是增函数,则m 的取值范围是D A.[)∞+,1 B.[]3,1 C.[]5,1 D. [)∞+,5 练2.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( )
(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D
练3.)(3
24)(3
2R x x ax x x f ∈-+=在区间[-1,
1]上是增函数。
则a 的范围是____}{11/≤≤-a a
3.(江西理科19)设.22
1
31)(23ax x x x f ++-=
若)(x f 在),3
2
(+∞上存在单调递增区间,求a 的取值范围;
解:已知()ax x x x f 221
3123++-=,()a x x x f 22++-='∴,函数()x f 在),3
2(+∞上存在单调递
增区间,即导函数在),3
2
(+∞上存在函数值大于零的部分,
9
10232)32()32(2->⇒>++-='∴a a f
4.已知函数 ()213ln 22
f x x x =-+在其定义域内的一个子区间()1,1a a -+内不是单调函数,
则实数a 的取值范围是____________31,2⎡⎫
⎪⎢⎣⎭
_
5.
函数321
23
y x ax x a =-+-在R 上不是单调函数,则a 的取值范围是___()(),11,-∞-+∞_____.
6.(福建文科22)已知b a ,为常数,且0≠a ,函数()ln ,()2f x ax b ax x f e =-++= (e =2.71828…是自然对数的底数). (1) 求实数b 的值; (2)求函数)(x f 的单调区间; 解析:(1)由2)(=e f ,得2=b
(2)2)ln ()(+-=x x x a x f ,则x a x f ln )(=',因为0≠a ,分以下两种情况 ①当0>a 时,函数在)1,0(上单调递减,在),1(+∞上单调递增; ②当0<a 时,函数在)1,0(上单调递增,在),1(+∞上单调递减。