整式的乘法易错题
整式的乘法易错题展示

整式的乘法易错题展示幂的运算是学习整式乘除运算的基础,由于幂的运算涉及到的运算性质较多,计算时易将性质混用导致错解.为帮助同学们学好这部分内容以及整式乘法的运算,避免解题出错,现就常见的错误类型例析如下.例1 计算(-x)3·(-x)5.错解:(-x)3·(-x)5=(-x)3×5=-x15.剖析:该题应根据“同底数幂相乘,底数不变,指数相加”的性质进行计算,而错解犯了变指数相加为指数相乘的错误.正解:(-x)3·(-x)5=(-x)3+ 5=(-x)8=x8.例2 计算:(1)a10+a10;(2)a10·a10.错解:(1) a10+a10=a20;(2) a10·a10=2a10.剖析:本题中的(1)是加法运算,应按合并同类项的法则进行,只把系数相加,字母和字母的指数不变;(2)是同底数幂的乘法,应是底数不变,指数相加.错解在把合并同类项与同底数幂相乘混淆了.正解:(1)a10+a10=(1+1)a10=2a10;(2)a10·a10=a10+10=a20.例3 计算(-a3)4·(-a)3.错解:(-a3)4·(-a)3=(-a)7·(-a)3=(-a)10=a10.剖析:幂的乘方性质为“幂的乘方,底数不变,指数相乘”.而错解中把指数相加了.正解:(-a3)4·(-a)3=-a12·a3=-a15.例4 计算(x6)2·(-x3)2.错解:(x6)2·(-x3)2=x36·x9=x45.剖析:本题错在把指数进行乘方运算了,正确的解法应按幂的运算性质“底数不变,指数相乘”进行计算.正解:(x6)2·(-x3)2=x12·x6=x18.例5 计算(-3×103)3.错解:(-3×103)3=(-3)×(103)3=-3×109.剖析:积的乘方的运算性质是“先把每个因式分别乘方,再把所得的幂相乘”.错解中没有把-3这个因数乘方.正解:(-3×103)3=(-3)3×(103)3=-27×109=-2.7×1010.例6 计算(-2a2b2)2.错解:(-2a2b2)2=-22a4b4=-4a4b4.剖析:错解中忽略了积中数字因数的符号,这类错误比较常见.(-2)2表示(-2)×(-2),结果应是正数.正解:(-2a2b2)2=(-2)2(a2)2(b2)2=4a4b4.例7 计算(-a)3·(-2a)2.错解:(-a)3·(-2a)2=[(-a)·(-2a)]6=(2a2)6=64a12.剖析:错在将底数乘以底数,指数乘以指数了,实际上,应先进行幂的运算,然后再根据单项式的乘法法则进行计算.正解:(-a)3·(-2a)2=(-a3)·(4a2)=-4a5.提示:当单项式的乘法运算中含有幂的乘方或积的乘方运算时,要先算乘方,然后再进行单项式的乘法运算.例8 计算3x(2x2-y+1).错解:3x(2x2-y+1)=3x·2x2-3xy=6x3-3xy.剖析:错在3x与1没有相乘,即漏乘了最后的常数项.正解:3x(2x2-y+1)=6x3-3xy+3x.提示:单项式与多项式相乘,一要注意符号的确定,二要注意用单项式分别乘以多项式的每一项,尤其不要漏乘常数项.例9 计算(2a-3b)(3a-4b).错解:(2a-3b)(3a-4b)=6a2+12b2.剖析:错解的原因在于没有掌握多项式的乘法法则,实际上两项的多项式乘以两项的多项式时,应得四项,然后再进行合并同类项.正解:(2a-3b)(3a-4b)=6a2-8ab-9ab+12b2=6a2-17ab+12b2.提示:进行多项式的乘法运算,一定要把握运算法则,计算时不要漏乘.。
八年级上册整式的乘法与因式分解易错题(Word版 含答案)

八年级上册整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( ) A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.4.已知a,b,c是△ABC的三条边的长度,且满足a2-b2=c(a-b),则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.5.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.6.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.8.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.9.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.13.(1)已知32m a =,33nb =,则()()332243m n m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.16.因式分解:3222x x y xy +=﹣__________.【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.17.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.18.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.已知16x x +=,则221x x+=______ 【答案】34【解析】∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
第15章《整式的乘除与因式分解》易错题

《整式的乘除因式分解》易错题分析整式的乘除例1、(﹣a)3(﹣a)2(﹣a5)=()A、a10B、﹣a10C、a30D、﹣a30考点:同底数幂的乘法。
分析:根据同底数幂相乘,底数不变,指数相加求解即可.解答:解:(﹣a)3(﹣a)2(﹣a5)=(﹣a3)•a2(﹣a5)=a3+2+5=a10.故选A.点评:本题主要利用同底数幂的乘法的性质求解,符号的运算是容易出错的地方.例2、已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A、a>b>cB、a>c>bC、a<b<cD、b>c>a考点:幂的乘方与积的乘方。
分析:先把81,27,9转化为底数为3的幂,再根据幂的的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.解答:解:∵a=813=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选A.点评:变形为同底数幂的形式,再比较大小,可使计算简便.例3、下列四个算式中正确的算式有()①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(﹣x)3]2=(﹣x)6=x6;④(﹣y2)3=y6.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方。
分析:根据幂的乘方,底数不变指数相乘的性质计算即可.(a m)n=a mn.解答:解:①应为(a4)4=a4×4=a16,故不对;②[(b2)2]2=b2×2×2=b8,正确;③[(﹣x)3]2=(﹣x)6=x6,正确;④应为(﹣y2)3=﹣y6,故不对.所以②③两项正确.故选C.点评:本题考查了幂的乘方的运算法则.应注意运算过程中的符号.例4、(2004•宿迁)下列计算正确的是()A、x2+2x2=3x4B、a3•(﹣2a2)=﹣2a5C、(﹣2x2)3=﹣6x6D、3a•(﹣b)2=﹣3ab2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方。
整式的乘法与因式分解易错题(Word版 含答案)

【答案】B
【解析】
【分析】
【详解】
解:x3-xy2=x(x2-y2)=x(x+y)(x-y),
当x=20,y=10时,x=20,x+y=30,x-y=10,
组成密码的数字应包括20,30,10,
所以组成的密码不可能是201010.
故选B.
【点睛】
本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.
9.将下列多项式因式分解,结果中不含有因式(a+1)的是()
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
【答案】C
【解析】
试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
5.把 分解因式,结果正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
先提公因式2,然后再利用平方差公式进行分解即可.
【详解】
=
= ,
故选C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )
浙教版七年级数学下第三章《整式的乘除》易错题(解析版)

浙江七年级数学下第三章《整式的乘除》易错题一、单选题(共30分)1.(本题3分)计算a 6•a 2的结果是( ) A .a 12 B .a 8 C .a 4 D .a 3【答案】B 【解析】 【分析】根据同底数幂的乘法的运算法则:a m •a n ="a"m+n (m,n 是正整数)求解即可求得答案. 【详解】 a 6•a 2=a 8. 故选B .2.(本题3分)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+【答案】A 【解析】 【详解】原式去括号合并即可得到结果. 解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y, 故选A .3.(本题3分)一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( ) A .12x 4 B .14x 4C .12x 4yD .12x 2【答案】A 【解析】 【分析】由三角形面积的求法,根据整式的运算法则计算即可. 【详解】解:设这条边上的高为h由三角形的面积公式可知:2621(2)2h xy x y ⨯⨯=,6226222412(2)22==4h x y xy x y x y x ÷=÷∴,本题考查了整式的运算,解题的关键是运用整式的除法运算法则,本题属于基础题型. 4.(本题3分)若ax =6,ay =4,则a 2x ﹣y 的值为( ) A .8 B .9C .32D .40【答案】B 【解析】 【详解】因为a 2x-y =a 2x ÷a y =(a x )2÷a y =62÷4=9,故答案为B.5.(本题3分)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为()3a b +,宽为()2a b +的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A .2,5,3B .3,7,2C .2,3,7D .2,5,7【答案】C 【解析】 【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b 的大长方形的面积是多少,判断出需要A 类、B 类、C 类卡片各多少张即可. 【详解】解:长为a+3b,宽为2a+b 的长方形的面积为: (a+3b )(2a+b )=2a 2+7ab+3b 2,∵A 类卡片的面积为a 2,B 类卡片的面积为b 2,C 类卡片的面积为ab, ∵需要A 类卡片2张,B 类卡片3张,C 类卡片7张. 故选C . 【点睛】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键. 6.(本题3分)若30m n +-=,则222426m mn n ++-的值为( ) A .12 B .2C .3D .0【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∵3m n +=,∵222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.7.(本题3分)图(1)是一个长为2m,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2【答案】C 【解析】 【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2. 又∵原矩形的面积为4mn,∵中间空的部分的面积=(m+n )2-4mn=(m-n )2. 故选C .8.(本题3分)小明总结了以下结论:∵a(b+c)=ab+ac ;∵a(b ﹣c)=ab ﹣ac ;∵(b ﹣c)÷a =b÷a ﹣c÷a(a≠0);∵a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( ) A .1 B .2C .3D .4【答案】C 【解析】根据乘法分配律,除法分配律和去括号解题即可. 【详解】解:∵a(b+c)=ab+ac,正确; ∵a(b ﹣c)=ab ﹣ac,正确; ∵(b ﹣c)÷a =b÷a ﹣c÷a(a≠0),正确;∵a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算. 故选C . 【点睛】本题考查的是去括号,熟练掌握乘法分配律,除法分配律是解题的关键. 9.(本题3分)若25a 2+(k ﹣3)a +9是一个完全平方式,则k 的值是( ) A .±30 B .31或﹣29 C .32或﹣28 D .33或﹣27【答案】D 【解析】 【详解】∵25a 2+(k ﹣3)a +9是一个完全平方式,∵k ﹣3=±30,解得:k =33或﹣27,故选D . 10.(本题3分)已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个 A .4 B .5 C .8 D .10【答案】B 【解析】 【分析】先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得. 【详解】2()()()x a x b x a b x ab ++=+++, 2216()x mx x a b x ab ∴+-=+++, ,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-; (2)当2,8a b ==-时,()286m =+-=-;(4)当8,2a b ==-时,()826m =+-=; (5)当16,1a b ==-时,()16115m =+-=; (6)当1,16a b =-=时,11615m =-+=; (7)当2,8a b =-=时,286m =-+=; (8)当4,4a b =-=时,440m =-+=; (9)当8,2a b =-=时,826m =-+=-; (10)当16,1a b =-=时,16115m =-+=-; 综上,符合条件的m 的值为15,6,0,6,15--,共有5个, 故选:B . 【点睛】本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(共21分)11.(本题3分)计算:(﹣2ab 2)3÷4a 2b 2=_____. 【答案】﹣2ab 4 【解析】 【分析】原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式除以单项式法则计算即可得到结果. 【详解】解:原式=-8 a 3b 6÷4a 2b 2=﹣2ab 4, 故答案为﹣2ab 4. 【点睛】本题考查此题考查了整式的除法,以及幂的乘方与积的乘方,解题的关键是熟练运用整式的运算法则,属于基础题型.12.(本题3分)计算:2220202019-=__________. 【答案】4039 【解析】 【分析】【详解】解:2220202019(20202019)(20202019)403914039-=+⨯-=⨯=. 故答案为:4039 【点睛】本题考查了平方差公式,熟练利用平方差简化计算是解题的关键.13.(本题3分)若关于x 、y 的代数式32323(2)mx nxy x xy xy ---+中不含三次项,则m-6n 的值为_______. 【答案】0 【解析】 【分析】先将代数式降次排序,再得出式子解出即可. 【详解】32323(2)mx nxy x xy xy ---+=()()32213m x n xy xy -+-+∵代数式关于x 、y 不含三次项 ∵m -2=0,1-3n =0 ∵m =2,n =13∵162603m n -=-⨯=故答案为:0 【点睛】本题考查代数式次数概念及代入求值,关键在于对代数式概念的掌握. 14.(本题3分)已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__. 【答案】9 【解析】 【详解】 ∵m −n =2,mn =−1,∵(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9. 故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相15.(本题3分)定义a b c d为二阶行列式,规定它的运算法则为a b c d=ad -bc.则二阶行列式3423x x x x ----的值为___.【答案】1 【解析】 【详解】 由题意可得:34 23x x x x ---- =(3)(3)(4)(2)x x x x ----- =2269(68)x x x x -+--+ =1. 故答案为1.16.(本题3分)已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.【答案】3 【解析】 【分析】把已知的式子化成2221[()()()]2a b a c b c -+-+-的形式,然后代入求解. 【详解】 解:120182019a =+,120192019b =+,120202019c =+, 1a b ∴-=-,2a c -=-,1b c -=-,则原式2221(222222)2a b c ab ac bc =++---2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+ 2221[()()()]2a b a c b c =-+-+- 1[141]2=⨯++ 3=,【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键. 17.(本题3分)如图所示,长方形ABCD 中放置两个边长都为4cm 的正方形AEFG 与正方形CHIJ ,若如图阴影部分的面积之和记为S 1,长方形ABCD 的面积记为S 2,已知:3S 2-S 1=96,则长方形ABCD 的周长为__________.【答案】24 【解析】 【分析】设KF=a,FL=b,利用a,b 表示出图中的阴影部分面积S 1与长方形面积S 2,然后根据3S 2-S 1=96可得a,b 的关系式,然后可求周长. 【详解】 设KF=a,FL=b,由图可得,EK=BH=LJ=GD=4-a,KH=EB=GL=DJ==4-b, ∵S 1=()()24432883--+=--+a b ab a b ab S 2=()()44446488+-+-=--+b a a b ab ∵3S 2-S 1=96∵()()364883288396--+---+=a b ab a b ab 整理得:4a b +=∵长方形ABCD 的周长=()()()224444216424+=+-++-=⨯-=AB BC b a 故答案为:24. 【点睛】本题考查列代数式表示图形面积以及代数式求值,利用长方形KFLI 的长和宽表示出图形面积是解题的关键. 三、解答题(共49分)18.(本题6分)计算:(1) 2(1)(1)x x x +-- (2) 32532(2)3x x x x --÷【答案】(1)3x+1;(2)6x . 【解析】 【分析】(1)先算括号里面的,再去括号,最后合并同类项即可得出答案; (2)先算括号和除法,再合并同类项即可得出答案. 【详解】解:(1)原式=()22x 2x 1x x ++--=22x 2x 1x x ++-+ =3x+1(2)原式=6664x 3x x -= 【点睛】本题考查的是代数式的化简,属于基础知识点.19.(本题8分)先化简,再求值:3(ab 2﹣2a 2b )﹣2(ab 2﹣a 2b ),其中a=﹣1,b=2. 【答案】-12 【解析】 【分析】根据整式的运算法则先化简,再将a=﹣1,b=2代入计算即可. 【详解】3(ab 2﹣2a 2b )﹣2(ab 2﹣a 2b ) =3ab 2﹣6a 2b ﹣2ab 2+2a 2b=ab 2﹣4a 2b 当a=﹣1,b=2时,原式=﹣1×22﹣4×(﹣1)2×2 =﹣12. 【点睛】考查学生的运算能力,解题的关键是熟练运用整式的运算法则. 20.(本题8分)先化简,再求值.222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中32x =,13y =-.【答案】1312- 【解析】先把222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭化简,然后把32x =,13y =-代入计算即可.【详解】解:原式222222222444333xy y xy y x y y y x y =---+-=-+. 当32x =,13y =-时, 原式221313()()323⎛⎫=-⨯-+⨯- ⎪⎝⎭1334=--1312=-. 【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.21.(本题8分)阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∵()()2222440m mn n n n -++-+=,∵()()2220m n n -+-=,∵()20m n -=,()220n -=,∵2n =,2m =. 根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则=a __________,b =__________. (2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.【答案】(1)a=-3,b=1;(2)16(3)9 【解析】 【详解】(1)∵2262100a b a b ++-+=,∵()()2269210a a b b ++-+=+,∵()()22310a b ++-=, ∵()230a +≥,()210b -≥, ∵30a +=,3a =-,10b -=,1b =; (2)∵22228160x y xy y +-++=,∵()()22228160x xy y y y -++++=,∵()()2240x y y -++=,∵()20x y -≥,()240y +≥,∵0x y -=,x y =,40y +=,4y =-,∵4x =-,∵16xy =;(3)∵22248180a b a b +--+=,∵222428160a a b b -++-+=,∵()()222140a b -+-=,∵()210a -≥,()240b -≥,∵10a -=,1a =,40b -=,4b =,∵a b c +>,∵5c <,∵b a c -<,∵3c >,∵a 、b 、c 为正整数,∵4c =,∵ABC 周长=1449++=.22.(本题9分)如图,某中学校园内有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,学校计划在中间留一块边长为(a +b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当a =2,b =4时,求绿化的面积.【答案】(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【解析】【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.23.(本题10分)学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.图1图2(1)如图1是由边长分别为a,b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1,可得等式:(a+2b)(a+b)=;(2)∵如图2是由几个小正方形和小长方形拼成的一个边长为a+b+c的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为;∵已知a+b+c=11,ab+bc+ac=38,利用∵中所得到的等式,求代数式a2+b2+c2的值.【答案】(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵45【解析】【详解】试题分析:(1)图1是由一个边长为a的正方形、一个边长为b的正方形和三个长为a,宽为b的长方形组成,所以面积为a2+3ab+2b2;(2)∵试题解析:图2是由三个边长分别为a、b、c的正方形、两个边长分别为a、b的长方形,两个边长分别为a、c的长方形,两个边长分别为b、c的长方形组成,所以等式为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵将∵的等式变形为(a+b+c)2=a2+b2+c2+2(ab+bc+ac),代入数值即可.(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵解:由∵,得(a+b+c)2=a2+b2+c2+2(ab+bc+ac).因为a+b+c=11,ab+bc+ac=38.所以112=a2+b2+c2+2×38.所以a2+b2+c2=45.故答案为(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵45.。
八年级整式的乘法与因式分解易错题(Word版 含答案)

八年级整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).3.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4 【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..4.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.5.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -=【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C7.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .8.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.9.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+=∵22()()x y x y x y -=+-,∴x -y=4,解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.13.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13;【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即.16.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.18.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为______.【答案】13【解析】【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故答案为13.【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.19.因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.分解因式:x2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.。
整式的乘法与因式分解易错题(Word版 含答案)

整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y ),将其当成整体提出,进而得到答案.2.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.3.若3x y -=,则226x y y --=( )A .3B .6C .9D .12【答案】C【解析】【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.4.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( ) A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.5.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -= 【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C7.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.8.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.9.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.10.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若()219x y +=,()25x y -=,则22xy +=______. 【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.12.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.13.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭=9xy xy ⎛ ⎝⎭⎝⎭故答案为:9xy xy ⎛⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.14.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.15.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13;【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即.16.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m+2=9,则m 2+21m =7, 故答案为:7 点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.19.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.20.分解因式:x 2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.。
整式的乘法与因式分解易错题(Word版 含答案)

整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.4.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.5.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a-1)=a2-1 B.a2-6a+9=(a-3)2C.x2+2x+1=x(x+2x)+1 D.-18x4y3=-6x2y2·3x2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选B.【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.6.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.7.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.12.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.13.-3x 2+2x -1=____________=-3x 2+_________.【答案】 -(3x 2-2x +1) (2x -1)【解析】根据提公因式的要求,先提取负号,可得-(3x 2-2x +1),再把2x-1看做一个整体去括号即可得(2x-1).故答案为:-(3x 2-2x +1) ,(2x -1).14.计算:532862a a a -÷=()___________.【答案】343a a -【解析】根据整式的除法—多项式除以单项式,可知:532862a a a -÷=()8a 5÷2a 2-6a 3÷2a 2=343a a -.故答案为:343a a -.15.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.16.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法易错题
一、选择题 1、若(x ﹣5)(2x ﹣n )=2x 2+mx ﹣15,则m 、n 的值分别是( )
A .m=﹣7,n=3
B .m=7,n=﹣3
C .m=﹣7,n=﹣3
D .m=7,n=3 2、下列各式计算正确的是( ) A .a 2+a 2=a 4 B .(3x )2=6x 2 C .(x 2)3=x 6 D .(x+y )2=x 2+y 2
3、已知2a =3,2b =6,2c =12,则a ,b ,c 的关系为①b=a+1②c=a+2③a+c=2b ④b+c=2a+3,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个
4、若(x ﹣2)(x+9)=x 2+px+q ,那么p 、q 的值是( )
A .p=7 q=18
B .p=7 q=﹣18
C .p=﹣7 q=18
D .p=﹣7 q=﹣18 5、若(x 2﹣x+m )(x ﹣8)中不含x 的一次项,则m 的值为( ) A .8 B .﹣8 C .0 D .8或﹣8 6、下列计算正确的是( )
A .a +a =2a
B .b 3•b 3=2b 3
C .a 3÷a =a 3
D .(a 5)2=a 7 7、如果a=355,b=444,c=533,那么a 、b 、c 的大小关系是( ) A .a >b >c B .c >b >a C .b >a >c D .b >c >a 8、为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S ﹣S=22017﹣1,所以1+2+22+23+…+22016=22017﹣1.仿照以上推理计算出1+5+52+53+…+52016的值是( ) A .5
2016
﹣1 B .5
2017
﹣1 C .4152016- D .4
1
52017-
9、若有理数a ,b 满足a 2+b 2=5,(a+b )2=9,则-4ab 的值为( )
A.2
B.-2
C.8
D.-8 10、下列等式能够成立的是( ).
A .(x -y)2=x 2-xy +y 2
B .(x +3y)2=x 2+9y 2
C .(-x -y )2=x 2+2xy +y 2
D .(m -9)(m +9)=m 2-9
11、若25x 2
+30xy+k 是一个完全平方式,则k 是( ) A .36y 2 B .9y 2 C .6y 2 D .y 2
12、若x +y =2,x 2+y 2=4,则x 2012+y 2012的值是( ). A .4 B .20122 C .2 2012 D .42012 二、选择题
13、正方形的边长增大5 cm ,面积增大75 cm 2.那么原正方形的边长为__________,面积为__________.
14、用图所示的正方形和长方形卡片若干张,拼成一个长为2a+b ,宽为a+b 的矩形,需要 A 类卡片_______张,B 类卡片_______张, C 类卡片_______张.
15、计算:(-1-2a)(2a-1)= .(a +2b)(a -2b)(a 2+4b 2)= 16、用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则x 2+y 2=
17、9x 2+mx+16是一个完全平方式,那么m= 18、如果(x+3)(x+a )=x 2﹣2x ﹣15,则a= .
19、设a ﹣b=2+3 ,b ﹣c=2﹣3 ,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc= 20、已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= 21、若2x =3,4y =5,则2x+2y = .
22、已知 x m =6,x n =3 ,则x 2m-3n =_____________. 23、|a ﹣5|+b 2﹣4b+4=0,则2a 2﹣8ab+8b 2= .
24、111010
)2
1
()65(522⨯-⨯⎪
⎪⎭
⎫ ⎝⎛=
三、解答题
25、计算
(1)4753⨯ (2)、22()()()a b a b a b +-+ (3)(-2a-3b )2
25、若3112x )32(求,3,2-+==y y X n m 的值.
26、已知(x 3+mx+n )(x 2﹣x+1)展开式中不含x 3和x 2项. (1)求m
、
n 的值 ;
(2)当m 、n 取第(1)小题的值时,求(m+n )(m 2﹣mn+n 2)的值.
27、先阅读,再填空:(x−1)(x+1)=x2−1;(x−1)(x2+x+1)=x3−1;(x−1)(x3+x2+x+1)=x4−1; (x−1)(x4+x3+x2+x+1)=x5−1.
观察上面各式:
①由此归纳出一般性规律:(x−1)(x n−1+x n−2+x n−3+…+x2+x+1)=_ __;
②根据①求出1+3+32+…+367+368的结果。
28、甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a 的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果。
29、把20cm长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5cm2,求这两段铁丝的长。
30、已知(2013−b)(2011−b)=1000,试求(2013−b)2+(2011−b)2的值。
31、若(2x−3)x+1=1,你能说出满足条件的x的值有哪几个?
32、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如4=22−02,12=42−22,20=62−42.因此4、12、20都是“神秘数”。
(1)28和2012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“神秘数”是4的倍数吗?为什么? 33、
34、规定两数a,b之间的一种运算,记作(a,b):如果 a c=b,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2,16 )=_______.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n
所以 3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
35、如图①所示是一个长为2m
,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m-n的正方形.
(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);
(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;
(3)请直接写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系;
(4)根据(3)中的等量关系,解决如下问题:若a+b=6,ab=4,求(a-b)2的值.。