乘法公式专项练习题
《乘法公式》练习题

《乘法公式》练习题(一)一、填空题1. (a +b )(a -b )=______________,公式的条件是________________,结论是_______________________.2. (x -1)(x +1)=__________, (2a +b )(2a -b )=______________, (31x -y )(31x +y )=______________. 3. (x +4)(-x +4)=_______________, (x +3y )(_________)=9y 2-x 2, (-m -n )(__________)=m 2-n 24. 98×102=(________)(_______)=( )2-( )2=____________.5. -(2x 2+3y )(3y -2x 2)=______________.6. (a -b )(a +b )(a 2+b 2)=_____________.7. (_____-4b )(_____+4b )=9a 2-16b 2, (_____-2x )(_____-2x )=4x 2-25y 28. (xy -z )(z +xy )=_____________, (65x -0.7y )(65x +0.7y )=__________________. 9. (41x +y 2)(___________)=y 4-161x 2 10.观察下列各式: (x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 根据前面各式的规律可得 (x -1)(x n +x n -1+…+x +1)=___________.二、选择题11.下列多项式乘法,能用平方差公式进行计算的是( )A.(x +y )(-x -y )B.(2x +3y )(2x -3z )C.(-a -b )(a -b )D.(m -n )(n -m ) 12.下列计算正确的是( )A.(2x +3)(2x -3)=2x 2-9B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 213.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +b )D.(0.5x -y )(-y -0.5x )14.(4x 2-5y )需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )215.a 4+(1-a )(1+a )(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 416.下列各式运算结果是x 2-25y 2的是( )A.(x +5y )(-x +5y )B.(-x -5y )(-x +5y )C.(x -y )(x +25y )D.(x -5y )(5y -x )三、解答题17. (-2x 2+5)(-2x 2-5) 18. a (a -5)-(a +6)(a -6) 19.(2x -3y )(3y +2x )-(4y -3x )(3x +4y )20. 2003×2001-20022 21.(x +y )(x -y )-x (x +y ) 25. 3(2x +1)(2x -1)-2(3x +2)(2-3x )《乘法公式》练习题(二)一.选择题1. 下列各式计算正确的是( )A .222)(b a b a +=+B .22224)2(b ab a b a +-=-C .2224)2(b a b a +=+D .9341)21(22++=+a a b a 2. 计算22)()(b a b a --+,其结果为() A .ab 4 B .ab 2 C .22a D .22b3. 如果122++ax x 是完全平方公式,则a 的值为() A .1 B .1- C .1± D .04. 12242+-ab b a 等于() A .22)1(-ab B .22)1(+ab C .222)1(-b aD .22)1(-b a 5. 222y x xy --等于() A .2)(y x - B .2)(y x -- C .2)(y x +- D .2)(y x --6.如果51=+a a ,那么=+221a a ( ) A .27B .23C .25D .7 7.若0)(2=-y x ,下面等式成立的是() A .xy y x 222=+ B .xy y x 222-=+ C .022=+y x D .xy y x 222=-8.边长为a 的正方形,其边长减少b 以后所得的正方形面积比原来正方形面积少() A .2b B .ab 2 C .ab b 22+ D .)2(b a b -1.2)2(b a --= 2.=-=-+22)](21[)221(a c b a3.如果5)(,9)(22=-=+y x y x ,则=xy4.已知235==+ab b a ,,求(1)22b ab a +-的值 (2)5)(2+-b a5. 2)23(z y x +-。
整式的乘法综合练习题(乘法公式三套)

整式的乘法分解演习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a) (x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(am)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(xn+5)=3xn+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(an)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为天然数)等于______.(二)选择:27.下列盘算最后一步的根据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x(乘法交流律)=-20(a2a3)·(x4x)(乘法联合律)=-20a5x5. ( )A.乘法意义;B.乘方界说;C.同底数幂相乘轨则;D.幂的乘方轨则.28.下列盘算准确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(ym)3·yn的运算成果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列盘算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.盘算-a2b2·(-ab3)2所得的成果是[ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列盘算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列盘算准确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的成果是 [ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不合错误.36.若0<y<1,那么代数式y(1-y)(1+y)的值必定是[ ]A.正的;B.非负;C.负的;D.正.负不克不及独一肯定.37.()2·(-4m)3的盘算成果是[ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.假如b2m<bm(m为天然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列盘算中准确的是[ ]A.am+1·a2=am+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3anb)4=-81a4nb4;B.(an+1bn)4=a4n+4b4n;C.(-2an)2·(3a2)3=-54a2n+6;D.(3xn+1-2xn)·5x=15xn+2-10xn+1. 41.下列盘算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)bx-y=bx-by,(4)2164=(64)3,(5)x2n-1 y2n-1=xy2n-2.A.只有(1)与(2)准确;B.只有(1)与(3)准确;C.只有(1)与(4)准确;D.只有(2)与(3)准确.42.(-6xny)2·3xn-1y的盘算成果是 [ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列盘算准确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列盘算准确的是[ ]A.(a+b)2=a2+b2;B.am·a n=amn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的盘算成果写成10的幂的情势,准确的是[ ]A.100×103=106; B.1000×10100=103000;C.1002n×1000=104n+3; D.1005×10=10005=1015.48.t2-(t+1)(t-5)的盘算成果准确的是 [ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分离是[ ] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使xnym·xnym>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不管m,n为奇数或偶数都可以;D.不管m,n为奇数或偶数都不成.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)盘算52.(6×108)(7×109)(4×104).53.(-5xn+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.xn+1(xn-xn-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2ambn)(-a2bn)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(3b4)2·(4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3am+2bn+2)(2am+2am-2bn-2+3bn).91.(-2xmyn)3·(-x2yn)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(-1.5b+1)(-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.盘算[(-a)2m]3·a3m+[(-a)3m]3(m为天然数).(四)化简(五)求值;104.先化简yn(yn+9y-12)-3(3yn+1-4yn),再求其值,个中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,个中x= 106.光的速度每秒约3×105千米,太阳光射到地球上须要的时光约是5×102秒.问地球与太阳的距离约是若干千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字交流,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为天然数),求证:ab-cb=ac.120.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3ny3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证实(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算演习(进步27题)1.=2.若2x + 5y-3 = 0 则=3.已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < cB.c < b < aC.a < c < bD.c < a < b4.已知,则x =5.21990×31991的个位数字是若干6.盘算下列各题(1)(2)(3)(4)7.盘算(-2x-5)(2x-5)8.盘算9.盘算,当a6 = 64时, 该式的值.10.盘算11.盘算12.盘算13.的值是n B.C.2n-1 D.22n-1A.14214.若, 求a2 + b2的值.15.求证: 不管x.y为何值, 多项式的值永弘远于或等于0.16.若,求: M-N的值是()A.正数 B.负数 C.非负数 D.可正可负17.已知a = -2000 b = 1997 c = -1995那么的值是若干.18.已知由此求的值为?19.实数a.b.c知足a = 6-b, c2 = ab-9,求证: a = b20.用公式解题,化简21.已知x + y = 5, , 求x -y 之值由此可以得到 ①②22.已知a +b +c = 2,求的值 23.若a + b = 5,24.已知求a.b 的值 25.已知, 求xy 的值 26.已知的值27.已知的值 《乘法公式》演习题(一)一.填空题1.(a+b)(a -b)=_____,公式的前提是_____,结论是_____.2.(x -1)(x+1)=_____,(2a+b)(2a -b)=_____,(31x -y)(31x+y)=_____.3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m -n)(_____)=m2-n24.98×102=(_____)(_____)=( )2-( )2=_____.5.-(2x2+3y)(3y -2x2)=_____.6.(a -b)(a+b)(a2+b2)=_____.7.(_____-4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y28.(xy -z)(z+xy)=_____,(65x -0.7y)(65x+0.7y)=_____.9.(41x+y2)(_____)=y4-161x2 10.不雅察下列各式: (x -1)(x+1)=x2-1 ,(x -1)(x2+x+1)=x3-1 , (x -1)(x3+x2+x+1)=x4-1 根据前面各式的纪律可得 (x -1)(xn+xn -1+…+x+1)=_____.二.选择题11.下列多项式乘法,能用平方差公式进行盘算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)12.下列盘算准确的是( )A.(2x+3)(2x -3)=2x2-9B.(x+4)(x -4)=x2-4C.(5+x)(x -6)=x2-30D.(-1+4b)(-1-4b)=1-16b213.下列多项式乘法,不克不及用平方差公式盘算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)14.(4x2-5y)需乘以下列哪个式子,才干应用平方差公式进行盘算( )A.-4x2-5yB.-4x2+5yC.(4x2-5y)2D.(4x+5y)215.a4+(1-a)(1+a)(1+a2)的盘算成果是( )A.-1B.1C.2a4-1D.1-2a416.下列各式运算成果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)三.解答题×0.97 18.(-2x2+5)(-2x2-5)19.a(a -5)-(a+6)(a -6) 20.(2x -3y)(3y+2x)-(4y -3x)(3x+4y) 21.(31x+y)(31x -y)(91x2+y2) 22.(x+y)(x -y)-x(x+y) 23.3(2x+1)(2x -1)-2(3x+2)(2-3x)24.9982-4 25.2003×2001-20022《乘法公式》演习题(二)1.222)(b a b a +=+--( ) 2.2222)(y xy x y x +-=----( ) 3.2222)(b ab a b a ++=----( ) 4.2229122)32(y xy x y x +-=-( ) 5.2294)32)(32(y x y x y x -=-+( )6______________)3)(32(=-+y x y x ;7._______________)52(2=+y x ; 8.______________)23)(32(=--y x y x ;9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13.4))(________2(2-=+x x ; 14._____________)3)(3()2)(1(=+---+x x x x ;15.____________)2()12(22=+--x x ;16.224)__________)(__2(y x y x -=-+; 17.______________)1)(1)(1)(1(42=++-+x x x x ;18.下列多项式乘法中不克不及用平方差公式盘算的是( )(A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+(C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +-19.下列多项式乘法中可以用平方差公式盘算的是( )(A ) ))((b a b a -+-(B ))2)(2(x x ++(C ) )31)(31(x y y x -+(D ) )1)(2(+-x x20.下列盘算不准确的是( )(A ) 222)(y x xy = (B ) 2221)1(xx x x +=- (C ) 22))((b a a b b a -=+- (D ) 2222)(y xy x y x ++=--21.化简:))(())(())((a c a c c b c b b a b a +-++-++-22.化简求值:22)2()2()2)(12(+---+-x x x x ,个中211-=x23.解方程:24.(1)已知2)()1(2-=---y x x x , (2)假如2215,6ab ab a b +=+= 求xy y x -+222的值; 求2222a b a b -+和的值 25.摸索题:(x-1)(x+1)=21x - (x-1)23(1)1x x x ++=- (x-1)324(11)x x x x ++-+= (x-1)4325(1)1x x x x x ++++=-……试求654322122222++++++的值 断定200520042003...21222+++++的值末位数《乘法公式》演习题(三)1.盘算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;(2)(x+y)4(x-y)4;(3)(a+b+c)(a2+b2+c2-ab-ac-bc).2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z);(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)(x+y-z).3.已知z2=x2+y2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).4.已知,,a b c 知足0a b c ++=,8abc =,那么111a b c++的值是(A )正数; (B )零 (C )负数 (D )正负不克不及肯定5.若实数,,a b c 知足2229a b c ++=,则代数式222()()()a b a c b c -+-+-的最大值是( )(A )27; (B )18; (C )15; (D )12.6.已知21()()()4b c a b c a -=--,且0a ≠,则b c a+= 7.已知2223336,14,36,a b c a b c a b c ++=++=++=求abc 的值.。
乘法公式练习题(含答案)

乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.乘法公式14.2.1 平方差公式1.B 2.C 3.C4.(1)a 2-9 (2)4x 2-9a 2 (3)b 2-a 2(4)2 2 100 2 99965.解:(1)原式=136x 2-y 2. (2)原式=20182-(2018+1)×(2018-1)=20182-20182+1=1.(3)原式=(x 2-1)(x 2+1)=x 4-1.6.解:原式=4-a 2+a 2-4a =4-4a .当a =-12时,原式=4+2=6. 14.2.2 完全平方公式第1课时 完全平方公式1.C 2.D3.(1)9a 2-12ab +4b 2 (2)9x 2-12x +4(3)x 2-2xy +y 2 (4)3x -14.解:(1)原式=4m 2+4mn +n 2.(2)原式=9x 2-6xy +y 2.(3)原式=4a 2+12ab +9ab 2-4a 2+12ab -9b 2=24ab .(4)原式=(100-0.2)2=1002-2×100×0.2+0.22=9960.04.5.解:(1)∵a +b =3,∴(a +b )2=9.(2)由(1)知(a +b )2=9,∴a 2+2ab +b 2=9.∵ab =2,∴a 2+b 2=9-2ab =9-4=5.第2课时 添括号法则1.C 2.C3.(1)b -c (2)b -c(3)x +y x 2+2xy +y 2+4xz +4yz +4z 24.解:∵a -3b =3,∴8-a +3b =8-(a -3b )=8-3=5.5.解:(1)原式=(2a +3b )2-1=4a 2+12ab +9b 2-1.(2)原式=x 2-2xy +y 2-4xz +4yz +4z 2.。
乘法公式精选题(含答案)

5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
乘法公式专项练习题

乘法公式专项练习题乘法是数学中非常重要的运算之一,掌握乘法公式对于解决各种数学问题至关重要。
在这份文档中,我们将提供一系列乘法公式的专项练习题,帮助您巩固和加深对乘法公式的理解和应用。
练习题1:计算下列乘积:1) (2x)(-3x)2) (4a)(-5b)3) (-6)(2x^2)练习题2:简化下列乘积表达式:1) 3x^2 * 5x^32) -4a^2 * 2a^43) -6x^3 * -2x^2练习题3:计算下列表达式的值:1) (4 + 2)(6 - 3)2) (5 - 3)^23) (2x + 3)(4x - 5)练习题4:计算下列表达式的值:1) (2 + 3) + (4 - 1)2) (5 - 2) * 33) (2x + 5) - (3x - 4)练习题5:利用分配律计算下列表达式的值:1) 2(3x + 4)2) -5(2a - 3)3) -x(2x^2 - 3x + 1)练习题6:计算下列乘积并简化结果:1) (3a + 2b)(3a - 2b)2) (-4x - 5y)(4x + 5y)3) (2x^2 + 3xy - 5y^2)(2x^2 - 3xy + 5y^2)练习题7:计算下列表达式的值:1) (-2)^32) 3^2 * 2^43) (-5)^2 * (-3)^3练习题8:计算下列乘积:1) -2 * (-3)2) 0 * 53) 7 * (-4)练习题9:计算下列乘积并用科学计数法表示结果:1) 2.5 * 10^4 * 1.2 * 10^32) 6.8 * 10^5 * 3.2 * 10^23) 5.2 * 10^7 * 7.6 * 10^1练习题10:计算下列乘积并用适当的单位表示结果:1) 5 km * 2 h2) 3 m * 4 s3) 10 g * 5 cm^3以上是乘法公式的专项练习题,通过解答这些题目,您将更加熟悉和掌握乘法公式的运用。
如果您遇到了困难或有任何疑问,建议您向老师寻求帮助,他们将为您提供更详细的解答和指导。
完整版)乘法公式专项练习题

完整版)乘法公式专项练习题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()。
答案:D。
以上都可以。
2.下列多项式的乘法中,可以用平方差公式计算的是()。
答案:B。
(-a+b)(a-b)3.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()。
答案:C。
14.计算[(a-b)(a+b)]等于()。
答案:A。
a2-b25.已知(a+b)2=11,ab=2,则(a-b)2的值是()。
答案:B。
36.若x2-7xy+M是一个完全平方式,那么M是()。
答案:D。
49y27.若x,y互为不等于的相反数,n为正整数,你认为正确的是()。
答案:B。
xn、XXX一定是互为相反数。
8.下列计算中,错误的有()。
答案:D。
4个。
①(3a+4)(3a-4)=9a2-16;②(2a2-b)(2a2+b)=4a4-b2;③(3-x)(x+3)=-x2+9;④(-x+y)·(x+y)=-x2+y2.9.若x2-y2=30,且x-y=-5,则x+y的值是()。
答案:A。
5.10.已知a1996x1995,b1996x1996,c1996x1997,那么a2b2c2ab bc ca的值为()。
答案:C。
3.11.已知x0,且M(x22x1)(x22x1),N(x2x1)(x2x1),则M与N的大小关系为()。
答案:A。
XXX。
12.设a、b、c是不全相等的任意有理数。
若x a2bc,y b2ca,z c2ab,则x、y、z()。
答案:D。
至少有一个大于0,至少有一个小于0.1.$(-2x+y)(-2x-y)=4x^2-y^2$,$(-3x^2+2y^2)(3x^2+2y^2)=9x^4-4y^4$。
2.$(a+b-1)(a-b+1)=a^2+b^2-2b$,$(a+b-1)^2-(a-b+1)^2=4ab-2a$。
3.差为$(5-2)^2-(5-4)^2=9$。
4.$a^2+b^2-2a+2b+2=0$,$a^{2004}+b^{2005}=a^2+b^2-ab(a-b)^2=(a-b)^2$。
乘法公式练习含答案

①(-2ab + 5x)(5x + 2ab)②(ax —)(— ax — y) ③(—ab — c)(ab — c) ④(mn)( — m — n) (A)4 个(B)3 个 2.若 x + y = 6, x — y = 5,贝U x 2— y 2等于((A)11一、填空题 1直接写出结果:⑴(x + 2)(x — 2)= _______ ;(2)(2x + 5y)(2x — 5y)= _____ (3)(x — ab)(x + ab)= ______ ; (4)(12+ b 2)(b 2— 12)= _____ .2.直接写出结果:(1)(x + 5)2= _______ ; (2)(3m + 2n)2= ______ ;2b 2(3)(x — 3y 『= _______ ; (4)(2a)2 =________ ; 3⑸(-x + y)2= _______ ; (6)(— x — y)2= _____ .3•先观察、再计算:(1)(x + y)(x — y)= _____ ; (2)(y + x)(x — y)= ______ ; (3)(y — x)(y + x)= _____ ; (4)(x +y)(— y + x) = ______ ; (5)(x — y)(—x — y) = ___ ;(6)(— x — y)(— x +y) = _____ .4. ______________________________________ 若 9x 2+ 4y 2= (3x + 2y)2+ M ,贝U M = _______________________________________ . 、选择题1•下列各多项式相乘,可以用平方差公式的有().(B) 153.下列计算正确的是().(A)(5 — m)(5+ m) = m 2— 25 (C) (— 4 — 3n)(— 4+ 3n)=— 9n 2+16 4.下列多项式不是完全平方式的是((A)x 2— 4x — 4 (C)9s f + 6ab + b 2 5.下列等式能够成立的是( ).(A)(a — b)2= (— a- b)2 (C)(m — n)2 = (n — m)2 (C)2 个(D)1 个).(C) 30 (D)60(B)(1 — 3m)(1 + 3m) = 1 — 3m 2 (D) (2ab — n)(2ab + n) = 4ab 2 — n 2).(B)- m 2 m4(D)4t 2 + 12t + 9(B)(x — y)2= x 2 — y 2(D)(x —y)(x+ y)= (—x—y)(x—y)6•下列等式不能恒成立的是().(A)(3x—y)2= 9x2—6xy+ y21 2(C)(—m n)2三、计算题2 b 21 (3a -)(3a2 1m mn n4(B)(a+ b —c)2= (c—a—b)24 4(D)(x —y)(x+ y)(x —y) = x —y2. (x n—2)(x n+ 2).3. 乎)( 3n 詈). 4 2x 3y 3y 2x2 . 35. 6. (—m2n + 2)(—m2n—2).7 . (4x 2 、23y).2& (3mn—5ab).9. (5a2—b4)2.10. (—3X2+ 5y)2.11. (—4X3— 7y2)2. 12. (y—3)2—2(y+ 2)(y—2).四、解答题1. 应用公式计算:(1)103 X 97; (2)1.02 X 0.98 ;(3)10- 967 7 2. 当X= 1, y= 2 时,求(2X— y)(2x+ y)—(X + 2y)(2y—x)的值.1 2 c3. 用适当方法计算:(1)(40—)2;(2)2992.B 、Qm2丄n3)(丄m22 5 2丄n3)54. 若a+ b= 17, ab= 60,求(a—b)2和a2+ b2的值.一、填空题a a1. ( 3 -)(3 -) = ______________ .2 22. __________________________ (—3x—5y)(—3x+ 5y) = .3•在括号中填上适当的整式:(1)(x+ 5)( _____ )= x2—25; (2)(m—n)( ____ ) = n2—m2;(3)(—1—3x)(_ )=1 —9x2;(4)(a+ 2b)( )=4b2—a2 4. (1)x2—10x+=( —5)2:(2)x2++ 16=( —4)2;(3)x2—x+=(x —)2;(4)4x2++ 9=( + 3)2.5. 多项式x2—8x+ k是一个完全平方式,则k= ________6. ___________________________________________ 若x2+ 2ax+16是一个完全平方式,则a= ______________________________________ .、选择题1•下列各式中能使用平方差公式的是().A、(x2—y2)(y2+x2)C、(—2x—3y)(2x+ 3y)D、(4x—3y)(—3y+ 4x)2. 下面计算(一7+ a+ b)(—7—a—b)正确的是().A、原式=(—7+ a+ b)[ —7—(a+ b)] == —7 —(a+ b)2B、原式=(—7 + a+ b)[ —7—(a+ b)]= 7?+ (a+ b)?C、原式=[—(7—a—b)][ —(7 + a+ b)] = 7?—(a+D、原式=[—(7 + a) + b][ —(7 + ——b] = (7 + a)2 —b?3. (a+ 3)(a + 9)(a— 3)的计算结果是().A、a4+ 81B、—a4—81C、a — 81D、81 —a44. 下列式子不能成立的有()个.①(一y)2= (y—x)2②(一2b)2= a—4 b2③(一b)3= (b—a"a—b)2④(+ y)(x—y)= (—x—y)(—x+ y)⑤ 1 — + x)2=—x2—2xA、1aB、2b、2,,,,十, 一、,一,,C、3D、45.计算(- -)的结果与下面计算结果一样的是( ).2 21 2 1 2A、2(ab) B、尹b) abC、,a b)2 ab D、丄(a b)2ab4 4二、计算题1. ( 3a21b2)( 2b23a2).2. (x+ 1)(x2+ 1)(x—1)(x4+ 1).3. (m—2n)(2n+ m)—(—3m—4n)(4n—3m).5. (x—2y)2+ 2(x+ 2y)(x—2y) + (x+ 2y)2.4. (2a+ 1)2(2a—1)2.6. (a+ b+ 2c)(a+ b—2c).7. (x+ 2y —z)(x—2y+z).8. (a+ b+ c)2. 9. (x 2y -1)2.38米、宽少6米,且场地面积比花四、解答题1. 一长方形场地内要修建一个正方形花坛,预计花坛边长比场地的长少坛面积大104平方米,求长方形的长和宽.2. 回答下列问题:(1) 填空:X2占(X 丄)2__________ = (X -1)2________X X X1 2 1(2) 若a —5,则a —的值是多少?a a2 1(3)若a—3a+ 1 = 0,则a —的值是多少?a1•巧算:(1)(1 2)(1 *)(i 訓土)土;(2)(3+ 1)(32+ 1)(34+ 1)(38+ 1)…32+ 1).2. 已知:x, y为正整数,且4x2—9y2= 31,你能求出x, y的值吗?试一试.3. 若x2—2x+ 10+ y2+ 6y= 0,求(2x—y)2的值.4. 若a + b4+ 才b2= 5, ab= 2,求a + b2的值.5.若△ ABC三边a, b, c满足a2+ b2+ c2= ab+ bc+ ca,试问△ ABC的三边有何关系?1. B2. C3. C4. A5. C6. D三、计算题C 4b 22n4 2 9 22 23 22y1. 9a2. x — 4.3. — m n •4. xy • 5. 449163 26. m 4n 2— 47.9 2x 2+xy + 4 2-y 2.8. 9m 2n 2— 30mnab + 25a 2b 2.16916四、解1. (1)9991; (2)0.9996; (3)9948492.— 15.1 3. (1)1640; (2)89401.4提升精练4. 49; 169. 一、 填空题1. 9.2. 9x 2 —25y 2.3. (1)x — 5. (2)— m — n . (3)3x — 1. (4)2b —a.1. 6. 4. 16a 4— 8才 +1 5. 4x 2.a 2+ b 2 + c 2 + 2ab + 2bc + 2ac 乘法公式参考答案巩固专练 一、 填空题 1.(I)x 2 — 4; (2)4X 2— 25y 2; (3)x 2—帝;(4)b 4— 144.2. (I)x 2 + 10X + 25; (2)9m 2 + 12mn + 4n 2; (3)x 2— 6xy + 9y 2; (4)4a 2 4ab3(5)x 2— 2xy + y 2; (6)x 2 + 2xy + y 2.3. (1)x — y 2; (2)x — y ; (3)y 2— x 2; (4)x 2— y 2; (5)y 2— x 2; (6)x 2 — y 2.4. — 12xy . 二、选择题1 14. (1)25; x ; (2)— 8x ; x ; (3) ; (4)12x ; 2x .5. 16.6.± 4.4 2二、选择题^b 4 9a 42. x 8— 13.— 8m 2 + 12n 24a 2+ 2ab + b 2— 4c 2 7. x 2— 4y 2— z 2+ 4yz & 2 2 9. x 4xy 4y四、解答题1.长12米,宽10米.2. (1)2; 2; (2)23; (3)7.跨越导练1. A2. C3. C三、计算题 4. B 5. D9. 25a 4— 10s ?b 4+ b 8. 10. 9x 4— 30x 2y + 25y 2. 11. 16x 6+ 56x 3?+ 49y 4. 12.— y 2 — 6y + 17.1 2n 1 1 丄“1. (1)2. (2)— 3—2. x= 8; y= 53. 254. 35.相等.2 2。
中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 3.下列计算中,错误的有( ) A .1个 B .2个 C .3个 D .4个①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .6 C .-6 D .-55. 若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于( ) A.-1 B.0 C.1 D.26. 计算[(a 2-b 2)(a 2+b 2)]2等于( )A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 87. 已知(a +b )2=11,ab =2,则(a -b )2的值是( ) A.11 B.3 C.5 D.198. 若x 2-7xy +M 是一个完全平方式,那么M 是( ) A.27y 2 B.249y 2 C.449y 2 D.49y 2 9. 若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A. x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等10. 已知19961995a x =+,19961996b x =+,19961997c x =+,那么222a b c ab bc ca ++---的值为( ). (A )1 (B )2 (C )3 (D )411. 已知0x ≠,且22(21)(21)M x x x x =++-+,22(1)(1)N x x x x =++-+,则M 与N 的大小关系为( ). (A )M N > (B )M N < (C )M N = (D )无法确定12. 设a b c 、、是不全相等的任意有理数.若2x a bc =-,22y b ca z c ab =-=-,,则x y z 、、( ). A .都不小于0 B .都不大于0 C .至少有一个小于0 D .至少有一个大于0二、填空题1. (-2x+y )(-2x -y )=______. (-3x 2+2y 2)(______)=9x 4-4y 4.2. (a+b -1)(a -b+1)=(_____)2-(_____)2.3. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____ .4. 若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.5. 5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.6. 多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。
7.已知x 2-5x +1=0,则x 2+21x =________, x-1x =________.8. 已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.9. 填空: ①a 2+b 2=(a+b)2-___ __ ②(a+b)2=(a -b)2+_ _③a 3+b 3=(a+b)3-3ab( _) ④a 4+b 4=(a 2+b 2)2-_ _⑤a 5+b 5=(a+b)(a 4+b 4)-_ ___ ⑥a 5+b 5=(a 2+b 2)(a 3+b 3)-__ _10. 已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 。
11. 已知(2013)(2011)2012x x --=,那么22(2013)(2011)x x -+-= 。
12. 计算:2485(61)(61)(61)(61)1+++++= 。
13. 已知,x y 满足2226210x y x y ++=+,则代数式xy x y+= 。
14. 已知13a a +=,则4221a a a ++= 。
15. 已知3,5a b a c -=+=-,则代数式2ac bc a ab -+-= 。
16. 若222,4x y x y -=+=,则20022002x y += 。
17. 若21310x x -+=,则441x x +的个位数是 。
18. 222246140x y z x y z ++--++=,则x y z ++= 。
19. 如果正整数,x y 满足方程2264x y -=,则这样的正整数对(,)x y 的个数是 。
20. 已知20131,20132,20133a x b x c x =+=+=+, 则222a b c ab bc ca ++---= 。
21. 多项式22687x y x y +-++的最小值为____________.22. 1.345×0.345×2.69-1.3453-1.345×0.3452=_______________.23. 请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________。
24. 如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________。
三、解答题1.计算 (1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5; (4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .(5) (a+2)(a 2+4)(a 4+16)(a -2) (6)12-22+32-42+……+992-1002+1012(7)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(8)22221111(1)(1)(1)(1)2319992000----2、解方程(1)x (9x -5)-(3x -1)(3x +1)=5. (2)(x+2)+(2x+1)(2x -1)=5(x 2+3)3. 若x ≠1,则(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4. (1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.4. 计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=28-1. 根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.5. 已知m 2+n 2-6m+10n+34=0,求m+n 的值6. 已知6,4a b a b +=-=求ab 与22a b +的值。
7. 已知()5,3a b ab -==求2()a b +与223()a b +的值。
8. 已知1=++z y x ,且0111=++zy x , 求222z y x ++的值?9. 广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?10. 试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
11. 已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?12.已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
13.若123456786123456789⨯=M ,123456787123456788⨯=N 试比较M 与N 的大小14.已知012=-+a a ,求2007223++a a 的值.15.从边长为a 的大正方形纸板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图J 甲),然后拼成一个平行四边形(如图乙)那么通过计算两个图形阴影部分的面积,可以验证成立的公式为______________。
16. 已知4250-能被60~70之间的两个整数整除,求这两个整数?初中数学竞赛专题——乘法公式石狮一中黄约翰一、内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:5.多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。